The invention relates to method and apparatus for estimating local impedance factors. More particularly, the invention relates to method and apparatus for determining a local impedance factor in an electromagnetic energy delivery device used to non-invasively treat patients.
Electromagnetic energy delivery devices are often utilized to treat patients for various medical, cosmetic, and therapeutic reasons. For example, such devices may be utilized to heat tissue to within a selected temperature range to produce a desired effect, such as improving the appearance of the patient by removing or reducing wrinkles, tightening skin, removing hair, etc. Such devices generate a signal, such as an optical, infrared, microwave, or radiofrequency (RF) signal, which is then applied to the patient to heat tissue in a desired manner. Examples of such electromagnetic energy delivery devices are disclosed in commonly-assigned U.S. Pat. Nos. 5,660,836 and 6,350,276, the disclosure of each of which is incorporated by reference herein in its entirety.
Because of the energy associated with these signals and their application to human patients, generation and use of these systems must be controlled to ensure that sufficient energy is applied to achieve an adequate therapeutic effect without harming the patient. In order to monitor and control the application of energy, various radiofrequency devices sense applied currents and voltages to ensure that these parameters are within pre-determined operational ranges. These devices also measure or calculate total system impedance, and control voltages and currents consistent with the impedance measured so that only predetermined ranges of radiofrequency energies are delivered by the device to the patient. However, merely sensing applied currents and voltages and delivering controlled amounts of energy is not necessarily indicative of an appropriate level of treatment being applied to each patient because each patient generally presents varying physical properties that are uniquely effected by the applied energy.
For example, part of the energy delivered by the device is absorbed by a patient treatment zone to heat this zone. Another part of the delivered energy is absorbed by the patient in locations remote from the treatment zone, which results in non-therapeutic heating in these removed locations. Still further parts of the delivered energy are absorbed by the device delivery and return wires, connectors, and other components. The distribution of the energy absorption varies from treatment zone to treatment zone for any given patient, and varies among different patients. As a specific numerical example, if the intent is to deliver 50 joules of energy to a treatment zone, a device energy delivery setting of 150 joules will be suffice when a local impedance of the treatment zone is one third of the total system impedance. When the local impedance of the treatment zone is larger, excessive energy may be delivered to the treatment zone, which may damage the tissue. Conversely, when the local impedance of the treatment zone is smaller, insufficient energy may be delivered to the treatment zone so that the desired therapeutic result (e.g., tissue tightening) is not achieved.
The determination of the fraction and, hence, amount of energy absorbed by a localized patient treatment zone requires some knowledge of the local impedance associated with the treatment zone and other device and system impedances. Because these impedances vary from patient-to-patient and are non-constant for different treatment areas on any given patient, a clinician may rely on patient pain feedback to properly set the energy delivery settings on these devices to deliver a therapeutic amount of energy to the treatment zone. Patient feedback is described in U.S. Publication No. 20030236487, the disclosure of which is incorporated by reference herein in its entirety. Reliance on patient feedback is disadvantageous because, on one hand, the amount of energy delivered to a patient with a low tolerance for pain may be non-therapeutic. On the other hand, excessive energy may be delivered to a patient that is overly pain-tolerant based on the lack of a verbalized pain feedback.
Therefore, an apparatus and method are needed for estimating impedances associated with patient treatment zones and other device and system impedances so that appropriate energy levels may be delivered to the patient treatment zone to achieve therapeutic results and yet not harm a patient.
The invention overcomes the problems outlined above, as well as other problems with conventional treatment methods and devices, and provides improved methods and electromagnetic energy devices for the treatment of patients at specific patient treatment zones. In order to better determine appropriate therapeutic energy levels, the invention estimates local impedance factors associated with respective patient treatment zones, and uses these estimated factors to determine the energy levels. Generally, the methods of patient treatment of the invention comprise sending first and second measurement signals partially through a patient treatment zone to determine corresponding measurement values and using the determined measurement values to estimate the local impedance factor.
In embodiments of the invention, the first and second measurement values may be determined by measuring at least one parameter selected from the group consisting of currents and voltages associated with the first and second measurement signals. Advantageously, the estimated local impedance factor may be determined as a ratio between the local impedance associated with the treatment zone and a total system impedance of the device.
The electrical impedance is a complex number characterized by a resistance R, which comprises the real part of the complex number, and a capacitive reactance, which comprises the imaginary part of the complex number. The first and second measurement values used to estimate the local impedance factor may reflect the voltage, current, impedance, and phase angle relationship between the voltage and current of the measurement signal, as understood by a person having ordinary skill in the art.
In actual treatment practice, a patient is typically treated by repetitively sending respective therapeutic signals through individual treatment zones. In such a case, individual estimated local impedance factors are determined for each of these treatment zones, and the corresponding magnitudes of therapeutic energy are determined using such local impedance factors.
Improved electromagnetic energy patient treating devices include an electromagnetic energy generator and a treatment tip operatively coupled with the generator to deliver electromagnetic energy into patient treatment zones. The generator includes a controller, which may be housed with the energy generator or separate therefrom, for delivering at least first and second measurement signals to the tip for passage into the patient treatment zone. The controller is operable to estimate the local impedance factor associated with the patient treatment zone using data derived from the measurement signals.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with a general description of the invention given above and the detailed description of the embodiments given below, serve to explain the principles of the invention.
a is a schematic view of a system or device constructed in accordance with the principles of various embodiments of the invention, as applied to a patient undergoing treatment.
b is a schematic view showing energy transmission characteristics of the system of
c is a simplified electrical schematic of the system of the system of
d is an electrical schematic associated with an embodiment of the invention.
e is another electrical schematic pertinent to an embodiment of the invention.
a is a perspective view of the treatment/measurement electrode of
b is a graph illustrating an interpolation estimation technique associated with an embodiment of the invention.
c illustrates another embodiment of a measurement/treatment electrode of the invention.
With reference to
Generator 16 may include other elements in addition to the signal generation elements, such as a controller 44 and at least one sensor 46. Sensor 46 may detect any one of any of signal current, voltage, resistance, impedance, and/or other signal parameters. The controller 44 and sensor 46 may be integral within the same housing as other elements of the generator 16, such as within a common generator housing, or the controller 44, sensor 46, and other generator elements, such as the signal generating elements, may be positioned within separate housings, e.g., multiple housings or units. Generator 16 is operable to generate a signal, such as a radio frequency or microwave signal, utilizing generally known and conventional signal generation elements. The generator 16 may be operable to generate a high frequency signal, such as a radiofrequency signal having a frequency in the range of about 1 MHz to about 20 MHz.
In use, the generator 16 generates a treatment signal 28 that flows through generator cable 24, into treatment handpiece 20, through treatment electrode 18, through patient skin surface 14, and through treatment zone 12. The portion of the treatment electrode 18 contacting the skin surface 14 may be cooled during generation and transfer of the treatment signal 28. The treatment signal 28 then flows through body tissue 30 that is outside the zone 12, through remote patient tissue zone 32 and skin surface 34, through return electrode 22, and finally through generator return cable 26.
When the treatment signal 28 is a radiofrequency signal, the energy associated with the signal may be represented by electromagnetic field vectors, as indicated diagrammatically by the radiating lines 36 in
Treatment electrodes 18 that capacitively couple energy with tissue in the treatment zone 12 may be as small as about 0.10 cm2 to about 20 cm2 and still result in therapeutic heating of zone 12. The treatment zone 12 may have a depth of about 1 mm to about 40 mm, depending on the amount and rate of energy delivery and other system and physiological parameters. Therapeutic electrodes having areas in the range of about 0.25 cm2 to about 10 cm2 are quite typical. Capacitively coupled treatment electrodes 18 suitable for use in the invention are described in U.S. Pat. No. 6,413,255, the disclosure of which is incorporated by reference herein in its entirety.
Conversely, therapeutic heating in zone 32 adjacent the return electrode 22 is generally not desired, particularly for an RF monopolar system represenative of an embodiment of the invention. Such heating is prevented by making the return electrode 22 sufficiently large such that the rate of heat deposited in zone 32 is less than or equal to the rate at which the body removes heat from zone 32. Typically, the return electrode 22 is generally made about 10 times to about 100 times as large as the treatment electrode 18 to prevent or minimize heating in zone 32 and to keep any heating in zone 32 below therapeutic amounts.
c is a simplified electrical schematic of the device of
To aid in understanding the invention, assume that empirical experiments indicate that optimum therapeutic results are achievable if 50 joules of energy are delivered to a certain treatment zone 12 during an anticipated patient treatment time period (e.g., about 1 second to about 10 seconds) for the delivery of this energy. If the ratio of r1 to r2 is 0.5 (i.e., r1 is one third of total impedance, r1 plus r2), the generator should be adjusted to deliver 150 joules of energy. Then 50 joules of energy will be deposited in the treatment zone, as desired. However, if the ratio is less than 0.5, too little energy will be deposited in the treatment zone, and if the ratio is more than 0.5 too much energy will be deposited. The invention seeks to estimate this ratio and to also estimate how r1 varies relative to other system impedances so that the energy generated by the generator 16 may be adjusted, with the result that desired and appropriate amounts of energy will be deposited in the treatment zone.
The system 10 is operable to determine a local impedance factor for a patient treatment zone 12, which is adjacent a skin surface 14, that is treated by the system 10.
According to a first specific embodiment of the invention, one or a series of first measurement signals are generated by the generator 16 to calculate an approximation of the bulk impedance r2, and a second measurement signal is generated to calculate an approximation of the total system impedance r3. Given approximations of r2 and r3, r1 may be readily estimated as may various local impedance factors. r3 may be approximated by measuring a total system impedance with the treatment electrode 18 in place. This is accomplished by sending a generator measurement signal along cable 24, and measuring any combinations of currents, voltages and impedances associated with the measurement signal. Then, r2 may be approximated by replacing the treatment electrode 18 with a large area electrode 48 (
According to a second specific embodiment of the invention and with reference to
Impedances are measured for each measurement signal of this series. If the size of the array is smaller than the return electrode 22, then these impedances may be used in a curve fit to extrapolate to an approximate large size electrode 48 to provide the bulk impedance r2.
For each of these specific embodiments of the invention, two assumptions are made that may bear on the exact implementation of these impedance estimates. The first assumption is that using two large electrodes will provide an accurate bulk impedance estimate that has no significant local impedance component. The second assumption is that the local impedance is only local and contains none of the bulk impedance component. It is possible that one of these assumptions may be incorrect for certain types of treatment electrodes 18 and/or for certain areas of a body being treated. One or more scaling factors may be empirically derived and used to compensate for inaccuracies introduced by these assumptions. Empirical measurements may result in a finding of a single scaling factor useful for all treatment electrodes, or perhaps different scaling factors for different treatment electrodes. Typical scaling factors and their relation to total, bulk and local impedances are given by:
ZL=(ZT−KBZB)/KL
where ZL is the local impedance, ZT is the total impedance, ZB is the bulk impedance, KB is an empirically derived bulk constant, and KL is an empirically derived bulk constant.
With reference to
A first measurement signal is sent through the first electrode segment 54 of the array represented by treatment electrode 52 and an impedance measured. Then, a second measurement signal is sent through another electrode segment 56 of the array and a second impedance is measured. So long as the area of the first electrode segment 54 differs from the area of the second electrode segment 56, algorithms know to a person having ordinary skill in the art may be used to estimate local, bulk, and total impedance from these two measurements. It may readily be appreciated the electrode 50 of
In an exemplary algorithm, the two measurement electrode segments 54, 56 are used for obtaining the measurement signals and the second electrode segment 56 corresponds to the electrode area that will be used to deliver therapeutic energy or a treatment signal after the local impedance factor estimate is made. A measurement signal is sent through electrode segment 54, and a first total resistance rT1 is measured. Then, a second measurement signal is sent through the electrode segment 56 and a second total resistance rT2 is measured. Electrical schematics of these two measurement signals are shown in
rL1=(rT1−rT2)/(1−(A1/A2))
and
rL2=rT2+rL1−rT1
Because the total system impedance is represented by rT2, the desired local impedance factors may be readily calculated and estimated.
As with the prior two embodiments, empirically derived scaling factors may be determined to compensate for inaccuracies introduced by various assumptions used above.
Algorithms may be incorporated into the system 10 for computing the local impedance value and the fraction of total impedance which is in the patient treatment zone 12. This process may result in the ability to predict a safer treatment range for each patient. Patients may be treated under deeper anesthesia, thus eliminating patient discomfort during treatment, after safe and effective treatment settings are forecasted and estimated by the system for each patient.
Relays, switches, and other controllable elements may be coupled with measurement electrode 50 to selectively energize various electrode areas 1-9 and with measurement electrode 52 to selectively energize electrode segments 54, 56, as described above. For example, the controller 44 may be coupled with the relays to select various relays to enable the propagation of energy through selected electrode areas 1-9 of measurement electrode 50, or electrode segments 54, 56 of measurement electrode 52. The various control elements may be integral with the electrodes 50, 52, the handpiece 20, the generator 16, and/or other system 10 elements. The system 10 may additionally include other elements, such as conventional computing elements and/or data storage elements. For example, the conventional computing elements and data storage elements may enable the system 10 to record, store, track, and analyze various data sensed by the sensors or otherwise inputted into the system 10. Furthermore, in some embodiments, the treatment electrodes 18, 50, 52 and/or handpiece 20 may include data storage elements, such as an EPROM, to store specific data regarding the particular electrodes being utilized. Thus, data corresponding to the treatment of the patient, such as previous treatments of the patient, determined patient impedance factors, etc, may be stored and recalled later by the computing elements or controller 44 for use during treatment. Additionally, the generator 16 may be operable to utilize stored data to estimate local, bulk, and total impedance factors for the patient based upon previously stored data.
Throughout treatment of the patient, measurement of local, bulk and/or total system impedance may be repeated to continually determine the local impedance factors associated with each treatment zone. For example, the system 10 may be utilized to continually determine the local impedance factor during treatment of the patient through use of the treatment electrodes 50, 52. So, for example, if a patient's full face is being treated by an RF treatment tip having a three cm2 area, it would be typical to deliver a therapeutic energy or treatment signal to the patient repetitively, say 100, 200, 300 or as much as 600 times as different areas of the face are heated. The local impedance factor could be repetitively determined, and the energy delivered repetitively varied in response to the local impedance factors so determined.
System 10 may be used for any therapeutic, medical, and/or cosmetic-related treatment. For example, the system 10 may be a radiofrequency, microwave, ultrasound, infrared, optical, laser, acoustic, electromagnetic, or other similar energy generating device. Such energy-based systems, including the system 10, generally direct energy at a patient to heat tissue and modify various patient physical properties, such as tissue appearance, physical tissue structure, etc. In particular, system 10 may be a radiofrequency based system, such as the ThermaCool® systems commercially available from Thermage Inc. (Hayward, Calif.), modified to estimate the local impedance factor for energy delivery as disclosed herein.
Local impedance factors may be estimated using electrode assemblies disclosed in application Ser. No. 11/423,068, filed on Jun. 8, 2006 and entitled “Treatment Apparatus and Methods for Delivering Energy at Multiple Selectable Depths in Tissue”; the disclosure of the referenced application is hereby incorporated by reference herein in its entirety.
While the invention has been illustrated by a description of various embodiments and while these embodiments have been described in considerable detail, it is not the intention of the applicants to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications will readily appear to those skilled in the art. Thus, the invention in its broader aspects is therefore not limited to the specific details, representative apparatus and method, and illustrative example shown and described. Accordingly, departures may be made from such details without departing from the spirit or scope of applicants' general inventive concept.
This application claims the benefit of U.S. Provisional Application Ser. No. 60/723,695 filed Oct. 5, 2005, the disclosure of which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
60723695 | Oct 2005 | US |