Method and apparatus for estimating neural recruitment

Information

  • Patent Grant
  • 11445958
  • Patent Number
    11,445,958
  • Date Filed
    Tuesday, June 22, 2021
    3 years ago
  • Date Issued
    Tuesday, September 20, 2022
    2 years ago
Abstract
An implantable device for estimating neural recruitment arising from a stimulus, has a plurality of electrodes. A stimulus source provides stimuli to be delivered from the electrodes to neural tissue. Measurement circuitry obtains a measurement of a neural signal sensed at the electrodes. A control unit is configured to control application of a selected stimulus to neural tissue using the stimulus electrodes; and after the selected neural stimulus, apply a probe stimulus having a short pulse width. A remnant neural response evoked by the probe stimulus is measured; and the control unit estimates from the remnant neural response a neural recruitment caused by the selected neural stimulus.
Description
TECHNICAL FIELD

The present invention relates to measuring a neural response to a stimulus, and in particular relates to measurement of a compound action potential by using one or more electrodes implanted proximal to the neural pathway, in order to estimate neural recruitment resulting from an applied stimuli.


BACKGROUND OF THE INVENTION

There are a range of situations in which it is desirable to apply neural stimuli in order to give rise to a compound action potential (CAP). For example, neuromodulation is used to treat a variety of disorders including chronic pain, Parkinson's disease, and migraine. A neuromodulation system applies an electrical pulse to tissue in order to generate a therapeutic effect. When used to relieve chronic pain, the electrical pulse is applied to the dorsal column (DC) of the spinal cord. Such a system typically comprises an implanted electrical pulse generator, and a power source such as a battery that may be rechargeable by transcutaneous inductive transfer. An electrode array is connected to the pulse generator, and is positioned in the dorsal epidural space above the dorsal column. An electrical pulse applied to the dorsal column by an electrode causes the depolarisation of neurons, and generation of propagating action potentials. The fibres being stimulated in this way inhibit the transmission of pain from that segment in the spinal cord to the brain. To sustain the pain relief effects, stimuli are applied substantially continuously, for example at 100 Hz.


While the clinical effect of spinal cord stimulation (SCS) is well established, the precise mechanisms involved are poorly understood. The DC is the target of the electrical stimulation, as it contains the afferent Aβ fibres of interest. Aβ fibres mediate sensations of touch, vibration and pressure from the skin, and are thickly myelinated mechanoreceptors that respond to non-noxious stimuli. The prevailing view is that SCS stimulates only a small number of Aβ fibres in the DC. The pain relief mechanisms of SCS are thought to include evoked antidromic activity of Aβ fibres having an inhibitory effect, and evoked orthodromic activity of Aβ fibres playing a role in pain suppression. It is also thought that SCS recruits Aβ nerve fibres primarily in the DC, with antidromic propagation of the evoked response from the DC into the dorsal horn thought to synapse to wide dynamic range neurons in an inhibitory manner.


Neuromodulation may also be used to stimulate efferent fibres, for example to induce motor functions. In general, the electrical stimulus generated in a neuromodulation system triggers a neural action potential which then has either an inhibitory or excitatory effect. Inhibitory effects can be used to modulate an undesired process such as the transmission of pain, or to cause a desired effect such as the contraction of a muscle.


The action potentials generated among a large number of fibres sum to form a compound action potential (CAP). The CAP is the sum of responses from a large number of single fibre action potentials. The CAP recorded is the result of a large number of different fibres depolarising.


The propagation velocity is determined largely by the fibre diameter and for large myelinated fibres as found in the dorsal root entry zone (DREZ) and nearby dorsal column the velocity can be over 60 ms−1. The CAP generated from the firing of a group of similar fibres is measured as a positive peak potential P1, then a negative peak N1, followed by a second positive peak P2. This is caused by the region of activation passing the recording electrode as the action potentials propagate along the individual fibres. An observed CAP signal will typically have a maximum amplitude in the range of microvolts, whereas a stimulus applied to evoke the CAP is typically several volts.


To resolve a 10 μV SCP with 1 μV resolution in the presence of an input 5V stimulus, for example, requires an amplifier with a dynamic range of 134 dB, which is impractical in implant systems. As the neural response can be contemporaneous with the stimulus and/or the stimulus artefact, CAP measurements are difficult to obtain. This is particularly so for pain relief where patients typically obtain best effects with a pulse width in the range of 100-500 μs which ensures much of the neural response occurs while the stimulus is still ongoing, making measurement of the neural response effectively impossible.


For effective and comfortable operation, it is necessary to maintain stimuli amplitude or delivered charge above a recruitment threshold, below which a stimulus will fail to recruit any neural response. It is also necessary to apply stimuli which are below a comfort threshold, above which uncomfortable or painful percepts arise due to increasing recruitment of Aδ fibres which are thinly myelinated sensory nerve fibres associated with acute pain, cold and pressure sensation. In almost all neuromodulation applications, a single class of fibre response is desired, but the stimulus waveforms employed can recruit other classes of fibres which cause unwanted side effects, such as muscle contraction if motor fibres are recruited. The task of maintaining appropriate stimulus amplitude is made more difficult by electrode migration and/or postural changes of the implant recipient, either of which can significantly alter the neural recruitment arising from a given stimulus, depending on whether the stimulus is applied before or after the change in electrode position or user posture. Postural changes alone can cause a comfortable and effective stimulus regime to become either ineffectual or painful.


Another control problem, faced by neuromodulation systems of all types, is achieving neural recruitment at a sufficient level required for therapeutic effect, but at minimal expenditure of energy. The power consumption of the stimulation paradigm has a direct effect on battery requirements which in turn affects the device's physical size and lifetime. For rechargeable systems, increased power consumption results in more frequent charging and, given that batteries only permit a limited number of charging cycles, ultimately this reduces the lifetime of the device.


Any discussion of documents, acts, materials, devices, articles or the like which has been included in the present specification is solely for the purpose of providing a context for the present invention. It is not to be taken as an admission that any or all of these matters form part of the prior art base or were common general knowledge in the field relevant to the present invention as it existed before the priority date of each claim of this application. Throughout this specification the word “comprise”, or variations such as “comprises” or “comprising”, will be understood to imply the inclusion of a stated element, integer or step, or group of elements, integers or steps, but not the exclusion of any other element, integer or step, or group of elements, integers or steps.


SUMMARY OF THE INVENTION

According to a first aspect the present invention provides a method of estimating neural recruitment arising from a selected neural stimulus, the method comprising:

    • applying the selected neural stimulus;
    • after the selected neural stimulus, applying a probe stimulus having a short pulse width;
    • measuring a remnant neural response evoked by the probe stimulus; and
    • from the remnant neural response, estimating neural recruitment caused by the selected neural stimulus.


According to a second aspect the present invention provides an implantable device for estimating neural recruitment arising from a selected neural stimulus, the device comprising:

    • a plurality of electrodes including one or more nominal stimulus electrodes and one or more nominal sense electrodes;
    • a stimulus source for providing stimuli to be delivered from the one or more stimulus electrodes to neural tissue;
    • measurement circuitry for obtaining a measurement of a neural signal sensed at the one or more sense electrodes; and
    • a control unit configured to control application of a selected stimulus to neural tissue using the stimulus electrodes; the control unit further configured to, after the selected neural stimulus, apply a probe stimulus having a short pulse width; the control unit further configured to measure a remnant neural response evoked by the probe stimulus; and the control unit further configured to estimate from the remnant neural response a neural recruitment caused by the selected neural stimulus.


The present invention thus provides for probing of an un-recruited fibre population which was not recruited by the selected stimulus, by reference to which an understanding of the population recruited by the selected stimulus can be obtained.


Embodiments of the invention may be particularly beneficial in providing for estimation of neural recruitment effected by a selected stimulus having a long pulse width, for example in the range of 100-500 μs, in relation to which it is not possible to directly measure a neural response due to temporal overlap of the stimulus and response.


In preferred embodiments, the probe stimulus is applied quickly after the selected stimulus, within the refractory period of the fibres recruited by the selected stimulus.


In some embodiments, a second probe stimulus is applied after the refractory period of fibres recruited by either the selected stimulus or the probe stimulus, and a second measure of evoked neural response is obtained as caused by the second probe stimulus. In such embodiments, the neural recruitment arising from the selected neural stimulus may be estimated by comparing the remnant neural response to the second measure.


Additionally or alternatively, some embodiments may comprise:

    • a) applying the probe stimulus at a time t after conclusion of the selected stimulus;
    • b) obtaining a measure of a remnant neural response arising from the probe stimulus;
    • c) changing t; and
    • d) repeating (a), (b) and (c) to determine variations in the remnant neural response measure, with varying t.


For example, with increasing t an increase in the remnant neural response may indicate the refractory period of the fibre population recruited by the selected stimulus.


In embodiments of the invention in which an estimate of refractory period is obtained, the refractory period may be monitored over time in order to diagnose onset or progression of a disease.


According to another aspect the present invention provides a computer program product comprising computer program code means to make a computer execute a procedure for estimating neural recruitment arising from a selected neural stimulus, the computer program product comprising computer program code means for carrying out the method of the first aspect.


According to a first aspect the present invention provides a method for measuring a neural response to a stimulus, the method comprising:

    • settling measurement circuitry prior to a stimulus, by connecting a sense electrode to the measurement circuitry to allow the measurement circuitry to settle towards a bio-electrically defined steady state;
    • recovering charge on stimulus electrodes by short circuiting the stimulus electrodes to each other;
    • applying an electrical stimulus from the stimulus electrodes to neural tissue, while keeping the sense electrode disconnected from the measurement circuitry;
    • imposing a delay during which the stimulus electrodes are open circuited and the sense electrode is disconnected from the measurement circuitry and from the stimulus electrodes; and
    • after the delay, measuring a neural response signal present at the sense electrode by connecting the sense electrode to the measurement circuitry.


According to a second aspect the present invention provides an implantable device for measuring a neural response to a stimulus, the device comprising:

    • a plurality of electrodes including one or more nominal stimulus electrodes and one or more nominal sense electrodes;
    • a stimulus source for providing a stimulus to be delivered from the one or more stimulus electrodes to neural tissue;
    • measurement circuitry for amplifying a neural signal sensed at the one or more sense electrodes; and
    • a control unit configured to control application of a stimulus to the neural tissue and measurement of an evoked neural response, the control unit configured to settle the measurement circuitry prior to a stimulus by connecting the or each sense electrode to the measurement circuitry to allow the measurement circuitry to settle towards a bioelectrically defined steady state, the control unit further configured to recover charge on the stimulus electrodes by short circuiting the stimulus electrodes to each other, the control unit further configured to cause the stimulus source to apply an electrical stimulus from the stimulus electrodes to neural tissue while keeping the or each sense electrode disconnected from the measurement circuitry, the control unit further configured to impose a delay during which the stimulus electrodes are open circuited and the sense electrode is disconnected from the measurement circuitry and from the stimulus electrodes, and the control unit further configured to measure a neural response signal present at the sense electrode by connecting the or each sense electrode to the measurement circuitry after the delay.


It is to be understood herein that open circuiting of an electrode involves ensuring that the electrode is disconnected from other electrodes, the stimulus source, the measurement circuitry and from voltage rails. Ensuring that the sense electrode is disconnected from the stimulus electrodes during the delay period avoids charge transfer onto the sense electrode(s) and associated artefact. The present invention recognizes that connecting the sense electrodes to the stimulus electrodes during a post-stimulus delay period can undesirably give rise to such charge transfer and associated artefact, particularly if the delay is short relative to the time constant of the stimulus electrodes, the latter typically being around 100 μs. The sense electrode is preferably open circuited during the post-stimulus delay so as to be disconnected from all other electrodes of the array, to prevent such charge transfer to the sense electrode from other non-stimulus electrodes.


The present invention recognizes that it is beneficial to provide for pre-stimulus settling of the measurement circuitry towards a bio-electrically defined steady state. This ensures that charge recovery occurs in the settling stage prior to the stimulus and not during or immediately after the stimulus and thus does not give rise to artefact during or immediately after the stimulus. Where repeated measurement cycles are undertaken, the present invention further permits the measurement amplifier to accumulate a bias point over multiple cycles rather than re-setting the bias point each cycle. The settle period is preferably sufficiently long to permit the electrodes and circuitry to reach an equilibrium, and for example the settle period may be around 1 ms or greater, as permitted by a stimulus rate. For example if therapeutic stimuli are applied to a dorsal column at about 100 Hz and do not give rise to a slow neural response, then after the approximately 2 ms duration of an evoked fast response up to about 8 ms would be available for the settling period. However, this is generally longer than required and the settling period may be substantially less than 8 ms.


The delay may be in the range of substantially zero to 1 ms, and for example may be about 0.3 ms. Such embodiments permit onset of the neural response to be observed, this typically occurring about 0.3 ms after the stimulus for an electrode 3 cm away from the stimulus site. In embodiments in which an amplifier of the measurement circuitry has a very high dynamic range, the delay may be set to a smaller value. The delay is preferably set to a value which ensures the measurement amplifier is not saturated and therefore performs linearly at all times when connected without experiencing clipping, and for example a feedback loop may be implemented to determine a suitable delay which avoids amplifier saturation for a given stimulus.


In preferred embodiments of the invention, the signal from the or each sense electrode is passed to a sample-and-hold circuit at the input of a measurement amplifier. In such embodiments measurements of a single evoked response may be obtained from a plurality of sense electrodes, even if the measurement circuitry of each electrode is connected to the control unit only by a two wire bus or the like, as is commonly required in implanted electrode arrays.


Additionally or alternatively, a buffer or follower amplifier is preferably provided in some embodiments, between the sense electrode and the measurement amplifier. The buffer is preferably connected to the sense electrode without interposed switches, so that the high reverse impedance of the buffer effectively prevents switching transients from being conveyed to the sense electrode, thereby avoiding artefact which may arise upon the sense electrode if subjected to such transients. The buffer amplifier is also preferably configured to give current gain to drive a storage capacitor of a sample and hold circuit. A series capacitor may be interposed between the sense electrode and the buffer to avoid DC transfer with the tissue.


In preferred embodiments of the invention, the stimulus and sense electrodes are selected from an implanted electrode array. The electrode array may for example comprise a linear array of electrodes arranged in a single column along the array. Alternatively the electrode array may comprise a two dimensional array having two or more columns of electrodes arranged along the array. Preferably, each electrode of the electrode array is provided with an associated measurement amplifier, to avoid the need to switch the sense electrode(s) to a shared measurement amplifier, as such switching can add to measurement artefact. Providing a dedicated measurement amplifier for each sense electrode is further advantageous in permitting recordings to be obtained from multiple sense electrodes simultaneously.


The measurement may be a single-ended measurement obtained by passing a signal from a single sense electrode to a single-ended amplifier. Alternatively, the measurement may be a differential measurement obtained by passing signals from two sense electrodes to a differential amplifier.


While recovering charge by short circuiting the stimulus electrodes together, it may in some embodiments be advantageous to disconnect the sense electrode from the measurement circuitry, for example by setting a sample-and-hold circuit to “hold”.


Embodiments of the invention may prove beneficial in obtaining a CAP measurement which has lower dynamic range and simpler morphology as compared to systems more susceptible to artefact. Such embodiments of the present invention may thus reduce the dynamic range requirements of implanted amplifiers, and may avoid or reduce the complexity of signal processing systems for feature extraction, simplifying and miniaturizing an implanted integrated circuit. Such embodiments may thus be particularly applicable for an automated implanted evoked response feedback system for stimulus control. Thus, in a further aspect, the present invention provides a method for feedback control of a neural stimulus, the method comprising an implanted control unit obtaining a CAP measurement in accordance with the method of the first aspect, and the implanted control unit using the obtained CAP measurement to control the delivery of subsequent neural stimuli by the implant.


In some embodiments of the invention, an averaged CAP measurement may be obtained by (i) delivering a first biphasic stimulus which starts with a pulse of a first polarity and then delivers a pulse of a second polarity opposite to the first polarity, and obtaining a first measurement of a CAP evoked by the first stimulus; (ii) delivering a second biphasic stimulus which starts with a pulse of the second polarity and then delivers a pulse of the first polarity, and obtaining a second measurement of a CAP evoked by the second stimulus; and (iii) taking an average of the first measurement and the second measurement to obtain an averaged measurement. Such embodiments exploit the observation that artefact polarity usually reflects the stimulus polarity, whereas the CAP polarity is independent of the stimulus polarity and is instead determined by the anatomy and physiology of the spinal cord membrane, so that averaging the first and second measurements will tend to selectively cancel out artefact. Further noting that an “anodic first” biphasic stimulus usually has a lower stimulus threshold for neural recruitment than a “cathodic first” biphasic stimulus, the averaged measurement may have a morphology of either (i) a typical CAP of half amplitude if only the anodic-first stimulus exceeds the stimulus threshold; (ii) the average of two CAPs of different amplitude if both stimuli exceed the stimulus threshold but the cathodic first stimulus does not cause saturation recruitment; or (iii) a typical CAP if both stimuli exceed saturation recruitment. Some embodiments may therefore obtain a curve of the averaged measurement vs. stimulus amplitude in order to obtain information regarding the recruitment effected by each stimulus, and such information may be used for feedback control by the implant.


In some embodiments, the method of the present invention may be applied contemporaneously with administration of a drug, in order to gauge efficacy of drug delivery. For example, the implant may comprise or be operatively connected to a drug reservoir and drug delivery pump, with the pump being controlled by feedback based on CAP measurements.


According to another aspect the present invention provides a computer program product comprising computer program code means to make an implanted processor execute a procedure for measuring a neural response to a stimulus, the computer program product comprising computer program code means for carrying out the method of the first aspect.


The present invention recognises that when considering spinal cord stimulation, obtaining information about the activity within the spinal segment where stimulation is occurring is highly desirable. Observing the activity and extent of propagation both above (rostrally of) and below (caudally of) the level of stimulation is also highly desirable. The present invention recognises that in order to record the evoked activity within the same spinal segment as the stimulus requires an evoked potential recording system which is capable of recording an SCP within approximately 3 cm of its source, i.e. within approximately 0.3 ms of the stimulus.


In preferred embodiments the stimulus comprises a bi-phasic pulse, and the stimulus electrodes have no capacitors. In contrast to a monophasic pulse and capacitor arrangement, such embodiments permit the stimulus electrode current to be interrupted, or forced to zero, at those times where it would interfere with measurement. Omitting capacitors is also desirable in order to minimise the size of the implanted device.





BRIEF DESCRIPTION OF THE DRAWINGS

An example of the invention will now be described with reference to the accompanying drawings, in which:



FIG. 1 illustrates an implantable device suitable for implementing the present invention;



FIG. 2 is a schematic of a feedback controller which refines future stimuli based on estimated recruitment of neurons by past stimuli;



FIG. 3 illustrates the masked to unmasked stimulation paradigm provided by the present embodiment of the invention;



FIG. 4 illustrates recordings of actual evoked responses in accordance with the method of one embodiment of the present invention; and



FIG. 5 is a plot of the (P1-N1) amplitude of measurements of responses evoked by two pulses, for varying inter-stimulus interval.



FIG. 6 illustrates currents and voltages which can contribute to SCP measurements;



FIG. 7 illustrates the circuitry of one embodiment of the present invention, throughout five phases of a measurement cycle;



FIG. 8 illustrates idealised waveforms arising in the circuit of FIG. 2 during each phase of the measurement cycle;



FIG. 9 illustrates SCP measurements made using the embodiment of FIG. 2;



FIG. 10 illustrates the circuitry of an alternative embodiment of the invention implementing differential CAP measurements;



FIG. 11 illustrates delayed activation of a measurement amplifier to avoid clipping;



FIG. 12 illustrates an embodiment in which alternate phased stimuli are used to obtain an averaged CAP measurement;



FIG. 13a illustrates the “anodic first” and “cathodic first” CAP responses induced by the method of FIG. 12, while FIG. 13b illustrates the averaged measurement obtained therefrom;



FIG. 14 illustrates the CAP response to anodic-first and cathodic-first stimuli, respectively, with increasing stimulus amplitude;



FIG. 15 illustrates the nature of differential CAP measurements in the spinal cord;



FIG. 16 illustrates yet another embodiment of the invention, in which a single electrode serves both as a stimulus electrode and also as the sense electrode in the same measurement cycle;



FIG. 17 illustrates a model of a metal electrode in a conductive solution;



FIG. 18 illustrates segmented electrodes which may be used to reduce artefact without sacrificing noise, impedance or current carrying capacity; and



FIGS. 19a and 19b illustrate the effect of epidural administration of Lignocaine on suppression of the spinal evoked responses.





DESCRIPTION OF THE PREFERRED EMBODIMENTS


FIG. 1 illustrates an implantable device 100 suitable for implementing the present invention. Device 100 comprises an implanted control unit 110, which controls application of neural stimuli, and controls a measurement process for obtaining a measurement of a neural response evoked by the stimuli from each of a plurality of electrodes. Device 100 further comprises an electrode array 120 consisting of a three by eight array of electrodes 122, each of which may be selectively used as either the stimulus electrode or sense electrode, or both.



FIG. 2 is a schematic of a feedback controller which refines future stimuli based on estimated recruitment of neurons by past stimuli. The present embodiment provides for the recruitment estimator in FIG. 2 to obtain a measurement of a masked neural response arising in response to a probe stimuli applied during a refractory period of a therapeutic stimulus, and also provides for measurement of an unmasked neural response arising in response to a probe stimuli applied after a refractory period of the same or equivalent subsequent therapeutic stimulus. Comparing the ratio or difference between the masked and unmasked neural responses indicates a level of recruitment achieved by the therapeutic stimulus.


In this embodiment the evoked CAP measurements are made by use of the neural response measurement techniques set out in the Australian provisional patent application No. 2011901817 in the name of National ICT Australia Ltd entitled “Method and apparatus for measurement of neural response” from which the present application claims priority.


Long pulse widths on the order of 400 μs, as used in many commercially available stimulators, cause problems for the measurement of evoked response, as much of the neural response passes the recording electrodes during the stimulus period. That is, in such a biphasic pulse, at least 0.8 ms passes from stimulus onset before measurement is possible. As shown in FIG. 3a, the therapeutic stimulus 302 continues for a sufficiently long period of time that it substantially temporally overlaps the evoked neural response 304. The signal amplitudes in FIG. 3 are not to scale, and the therapeutic stimulus is of the order of volts while the neural response measurement is of the order of tens of microvolts, so that in the case shown in FIG. 3a the evoked response is practically impossible to measure directly. Nevertheless, for many reasons it is desirable to measure or estimate the amplitude of the response Rt induced by stimulus 302.



FIGS. 3b and 3c illustrate the masked to unmasked stimulation paradigm provided by the present embodiment of the invention. In order to estimate how many fibres are recruited in the neural response 304 arising from the long therapeutic pulse 302, a shorter probe pulse 306 is delivered shortly after the therapeutic stimulus 302. The neural response 308 caused by probe pulse 306 is not contemporaneous with any stimulus, and is therefore able to be measured without being swamped by large stimulus voltages. Notably, by delivering the probe pulse 306 during the refractory period of the fibres triggered in response 304, the response 308 has an amplitude RI which is proportional to the number of fibres which were not triggered by the long pulse 302.


After a time delay of sufficient length to allow all fibres triggered as part of either response 304 or response 308 to exit their refractory states, another short probe pulse 310 is delivered as shown in FIG. 3c. Probe pulse 310 preferably has the same parameters as probe pulse 306.


Obtaining a measure of response 312 provides an unmasked response amplitude measurement RS, with RS>RI, against which the first, masked response 308 can be compared. This masked/unmasked ratio (RI. RS) can be used to estimate what proportion of the accessible fibre population was stimulated in response 304 by therapeutic stimulus 302, thereby allowing Rt to be estimated. Notably, when performed sufficiently quickly that a fibre-to-electrode distance will remain substantially constant, this technique is not susceptible to the problem of unknown fibre-to-electrode distance as the ratios cancel the effect of variable electrode-to-fibre distance.


In addition to determining recruitment of long pulse width stimuli, it can be useful to measure physiological parameters such as refractory periods in order to give a diagnosis of various conditions or diseases. Thus, in another embodiment of the invention the refractory period is estimated by first obtaining a measure RS of the unmasked neural response to a given probe stimulus. Then, two stimuli are applied close together separated by a variable delay td (FIG. 3b). With increasing td, the amplitude RI can be expected to markedly increase when the onset of pulse 306 is delayed sufficiently to allow the average refractory period of the neural population recruited in response 304 to conclude, so that observing such an increase in RI allows that population's refractory period to be estimated. There are a number of neurological conditions and non-neurological conditions which can affect the refractory period. This measurement technique may thus serve as a useful diagnostic indicator.



FIG. 4 illustrates recordings of actual evoked responses in accordance with the embodiment of FIG. 3. The recordings of a response pair were made on 8 spaced apart electrodes along the spinal column as the evoked responses 404, 408 travelled along the spinal column adjacent to the array. As can be seen, an initial response 404 is evoked by a first stimulus, and then a second response 408 is evoked immediately afterwards in the refractory period of the neural population recruited as part of response 404. Response 408 is of reduced, but non-zero, amplitude. The relative ratios of the amplitudes of the measurements of the two responses thus permit the above-described information to be elicited.



FIG. 5 is a plot of the (P1-N1) amplitude of measurements of responses 502, 506 respectively evoked by a first pulse 302 and a second pulse 306 of equal amplitude and pulse width, for varying inter-stimulus interval td. As can be seen at 502, the first pulse 302 produces the same recruitment and response amplitudes irrespective of td. However, the recruitment effected by the second pulse 306 varies considerably with td, as shown by 506. Two fibre population characteristics are evident in this plot, either or both of which may be investigated in accordance with the present invention in order to determine suitable stimulus parameters and/or physiological state or change. First, pulse 302 will depolarise some fibres close to threshold, but without activating them. This partial depolarisation means that for small td, in the range (512) of about 0 to 200 μs, where pulse 306 is sufficiently close in time to pulse 302, some fibres that had not been activated by 302 may be activated by 306 more easily than is the case for the remainder of the refractory period for td>200 s. This depolarisation will decay with time, usually to resting levels before the end of the absolute refractory period for the fibres that were activated by 302. This means for short inter-stimulus intervals (e.g. <200 us), there will be a response 308 from fibres which had residual depolarisation from 302. Second, for td greater than about 400 μs, a relative refractory period 514 commences, during which fibres activated by 302 gradually become able to be activated again. Between the remnant depolarisation period 512 and the relative refractory period 514, the absolute refractory period dominates and the second pulse 306 is almost entirely unable to recruit any response (it is noted that curve 506 is at levels around 5 μV in this period which may be noise and does not necessarily indicate any response has been evoked). Thus assessing curve 506 instantaneously permits a current state of both (a) the residual depolarisation decay 512, and (b) onset of the relative refractory period 514 to be assessed. Monitoring curve 506 over time permits changes in these characteristics to be determined, for example to be used for feedback to optimise therapeutic stimuli or in order to diagnose or monitor an underlying disease.


While FIG. 3b shows the probe pulse 306 as having the same amplitude as therapeutic pulse 302, alternative embodiments may advantageously use probe pulses 306 and/or 310 which are of a different amplitude to therapeutic pulse 302. For example, therapeutic pulse 302 is usually set to a comfortable level for the patient, and at such a level not all fibres are usually recruited by pulse 302. Pulse 306 may therefore be set to have a greater amplitude and/or a greater total charge than therapeutic stimulus 302 in order to ensure that the probe pulse 306 will recruit at least some fibres even when applied during the refractory period of fibres recruited as part of response 304.


In another embodiment the probe stimulus 306 may be configured to have reduced recruitment capability as compared to pulse 302, so that if pulse 306 is applied during the absolute refractory period of fibres recruited as part of response 304 then pulse 306 will recruit no additional response. In such embodiments, when the relative delay td is such that probe stimulus 306 occurs in the relative refractory period of response 304, being the period in which some fibres recruited as part of response 304 have concluded their refractory period but some have not, then the probe stimulus response 308 will begin to recruit fibres. Determining the value of td at which a threshold exists for response 308 starting to arise provides useful information regarding the refractory period of response 304.


Routinely, during assessment of patients for spinal cord stimulation therapy, the patient will undergo a trial stimulation procedure. This is where the patient is implanted with a percutaneous lead with an externalised set of contacts. The lead is attached to an external pulse generator and the patient has use of the device for several days. At the end of the trial period the clinician and patient assess the performance of the system with regard to pain relief and a choice is made whether or not to proceed with a full implantation. The take-home device for trial purposes may consist of both a stimulus generator but also an evoked response measurement system. The ERT responses recorded during the trial period could be used to adjust the stimulus parameters as described above.


The ERT system measures amplitude growth functions etc., collected at time of surgery and during the trial stimulation period, and together with subjective performance measures could be used to develop a correlation between the response parameters and the patient outcomes. For instance, there is considerable variation in threshold response and there may exist a correlation between threshold and outcome where lower thresholds generate better outcomes. There are a large number of neurological parameters that can be collected in performing ERT measures, including refractory periods. Systematic collection of this data across a number of patients will allow analysis for correlation with outcome.


It will be appreciated by persons skilled in the art that numerous variations and/or modifications may be made to the invention as shown in the specific embodiments without departing from the spirit or scope of the invention as broadly described. For example the neural response measurement may be conducted in accordance with any suitable CAP measurement technique. The present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive.



FIG. 6 shows the currents and voltages that contribute to SCP measurements. These signals include the stimulus current 102 applied by stimulus electrodes, which is a charge-balanced biphasic pulse to provide low artefact. In the case of spinal cord stimulation, the stimulus currents 102 used to provide paraesthesia and pain relief typically consist of pulses in the range of 3-30 mA amplitude, with pulse width typically in the range of 100-400 μs. The stimuli can comprise monophasic or biphasic pulses.


The stimulus 102 induces a voltage on adjacent electrodes, referred to as stimulus crosstalk 104. Where the stimuli 102 are SCP stimuli they typically induce a voltage 104 in the range of about 1-5 V on a SCP sense electrode.


The stimulus 102 also induces electrode artefact, which is a residual voltage on an electrode resulting from uneven charge distribution on its surface. The electrode artefact is indicated in the voltage waveform 104 after cessation of stimulus crosstalk. The stimulus 102 disturbs the galvanic interface between the sense electrode and the tissue, so that after stimulus crosstalk in voltage 104 concludes, a voltage known as the electrode artefact continues on the electrode, as indicated in waveform 104 in FIG. 6. Electrode artefact is very difficult to measure, and depends on factors such as the stimulation pulse, the geometry of the electrodes and the bio-electrical nature of the tissue surrounding the electrodes. Electrode artefact can have a typical value of 50 μV at a time 50 μs after stimulation ceases. Electrode artefact is difficult to measure because it is indistinguishable from electrical artefact, the latter being caused by the amplifier's exposure to the high stimulation voltages. Further, the causes of electrical artefact can be subtle, and therefore hard to identify and eliminate.


An appropriate stimulus 102 will also induce nerves to fire, and thereby produces an evoked neural response 106. In the spinal cord, the neural response 106 has two major components: a fast response lasting ˜2 ms and a slow response lasting ˜15 ms. The amplitude of the evoked response seen by epidural electrodes is typically no more than hundreds of microvolts, but in some clinical situations can be only tens of microvolts.


In practical implementation a measurement amplifier used to measure the evoked response does not have infinite bandwidth, and will normally have infinite impulse response filter poles, and so the stimulus crosstalk 104 will produce an output 108 during the evoked response 106, this output being referred to as electrical artefact. Electrical artefact can be in the hundreds of millivolts as compared to a SCP of interest in the tens of microvolts. Electrical artefact can however be reduced by suitable choice of a high-pass filter pole frequency.


The measurement amplifier output 110 will therefore contain the sum of these various contributions 102-108. Separating the evoked response of interest (106) from the artefacts 104 and 108 is a major technical challenge. For example, to resolve a 10 μV SCP with 1 μV resolution, and have at the input a 5V stimulus, requires an amplifier with a dynamic range of 134 dB. As the response can overlap the stimulus this represents a difficult challenge of amplifier design.



FIGS. 7a-7e are schematic diagrams of the five phases of operation of a sample and hold (S/H) measurement amplifier in accordance with one embodiment of the present invention. The stimulus and measurement circuitry 200 comprises a buffer amplifier 206 that is always connected to the sense electrode 202 such that there is no switch between the sense electrode 202 and the buffer amplifier 206. The output of the buffer amplifier 206 drives a sample and hold circuit 208, followed by a high gain amplifier 210 with unity gain at DC. The front-end amplifier 206 has sufficiently wide bandwidth that it can follow the voltage induced on the sense electrodes 202 by the stimulus pulse, and settle before the SCP begins. A current source 212 can be selectively connected to stimulus electrodes 204 to deliver a stimulus. The stimulus electrodes 204 and sense electrode 202 are in the same electrode array of a single implanted device.


The stimulus and measurement circuitry 200 operates to obtain a SC measurement using five phases. The first phase shown in FIG. 7a open circuits the stimulus electrodes 204 and connects the sense electrode 202 to the measurement amplifier 210 by setting the sample and hold circuit to “sample”. The first phase shown in FIG. 7a allows the amplifier chain 206, 210 to settle, with no disturbance from the stimulating electrodes 204.


In the second phase shown in FIG. 7b, the stimulus electrodes 204 are short circuited to each other. This allows the stimulating electrodes 204 to recover charge, so as to avoid DC injection to the tissue as is required for electrical implants. During this phase, the sample-and-hold 208 is set to “hold” so that charge transfer on the stimulus electrodes 204 does not disrupt the measurement amplifier 210.


In the third phase shown in FIG. 7c, the stimulation is applied. The stimulus electrodes 204 are switched to the current source 212, and the sample-and-hold 208 is set to “hold” so that the large stimulus crosstalk seen on electrode 202 is not presented to the measurement amplifier 210.


The fourth phase shown in FIG. 7d provides for a post-stimulus delay. In this phase the stimulus electrodes 204 are open circuited, and the sample-and-hold remains in the “hold” position, to allow the electrodes 202, 204 settle towards equilibrium, as defined by bio-electrical conditions.


Finally, in the fifth phase shown in FIG. 7e, the SCP present at sense electrode 202 is measured by switching the sample-hold 208 to “sample”.


When performing repeated measurement cycles in this fashion, it is noted that the switch positions are the same in the phase 1 “settling” and the phase 5 “measuring” states. Thus, the state of phase 5 is maintained, by virtue of a subsequent phase 1, until the electrodes and circuitry are in equilibrium, even after the time that useful SCP data is no longer present or being captured. Such embodiments thus provide a greater length of the “settle” state.



FIG. 8 shows idealised waveforms arising during the SCP measurement process of FIG. 7. FIG. 8 illustrates the current 802 of stimulus electrodes 204, and the output voltage 804 of amplifier 210, during each of the five phases of the measurement cycle. Importantly, it can be seen that phase 1 permits the amplifier bias point to settle to a steady state as defined by bio-electrical conditions at the sense electrode, while phases 2-4 do not disrupt the amplifier 210 bias point.


An advantage of this circuit is that in the phase 2 equilibration, the circuitry around amplifier 210 is a low-pass filter, and is therefore relatively immune to noise and input transients. This also allows the amplifier 210 to accumulate its bias point over successive measurement cycles, as it does not need to be reset for each cycle. Moreover, because of the buffer 206 before the sample/hold 208, the input-referred effect (i.e. the effect upon sense electrode 202) of the charge injection into the sample/hold 208 is lower.


In the embodiment of FIG. 7, the sense electrode 202 is never shorted to the stimulus electrodes 204, recognising that this creates dis-equilibrium in the sense electrodes and adds artefact, rather than having the effect of creating equilibrium as previously thought. In some embodiments, it may be possible to overlap the “settle” (equilibrate) phase of FIG. 7a, and the “charge recovery” phase of FIG. 7b, although it would be expected that the artefact would be higher, and the time taken to reach equilibrium longer.



FIG. 9 is a plot of 22 separate measurements of ovine SCP made using the embodiment of FIG. 7. The measurements were obtained sequentially for differing stimuli, the stimuli comprising biphasic current pulses of 40 μs pulse width and a current amplitude which varied from 0-10 mA. The measurements were then plotted on a single chart to produce FIG. 9.


The waveforms of FIG. 9 have lower dynamic range and simpler morphology than measurements produced by previous approaches, due to the absence of stimulus crosstalk and reduced artefact. When wishing to provide a system built on an implanted integrated circuit, wide dynamic range amplifiers are difficult to design, as are signal processing systems for feature extraction. Beneficially, the nature of the measured waveforms shown in FIG. 9 permits, for example, a circuit for extracting the peak-to-peak SCP amplitude to have fewer components than would be required to operate upon the waveform produced by previous approaches. Thus the techniques of the present invention for artefact reduction greatly assist in building a practical implanted, evoked response feedback system.


Moreover, it is notable that in this case of a 40 μs pulse width the measurement system is settled and ready to record prior to onset of the evoked CAP. The sense electrode was less than 50 mm from the stimulus electrode, and a post-stimulus delay of 50 μs was observed before the measurement amplifier was switched in to obtain the recordings shown in FIG. 9.



FIG. 10 illustrates the circuitry of an alternative embodiment of the invention in which a differential measurement amplifier is used, and charge recovery is via a voltage rail Vdd. As can be seen, in accordance with the present invention the measurement phases are carried out in a corresponding manner despite the use of different hardware.


In the embodiments of either FIG. 7 or FIG. 10, artefact can cause the high-gain measurement amplifier 210 to clip, and the amplifier can subsequently be slow to recover. However, in preferred embodiments the sample point, being the transition from the “stimulate” to “measure” phases, is delayed, allowing clipping to be avoided. FIG. 11 illustrates the manner of determining a suitable delay 602. Such embodiments may permit use of a higher amplifier gain than would otherwise be the case. In particular, a variable delay and increased amplifier gain may be particularly apt in circumstances where high-gain is desired, and parts of the SCP of interest do not immediately follow the stimulation. Thus, delaying the start of measurement will avoid the side effects of clipping.


In another embodiment of the invention shown in FIG. 12, a method to eliminate artefact from an SCP measurement is to alternate the phase of stimulus waveforms and take an average of obtained measurements. FIG. 12 shows the stimulus current for a positive “anodic-first” stimulus 702, and the stimulus current for a negative “cathodic first” stimulus 704. In this embodiment these are applied in succession with respective CAP measurements obtained after each stimulus. The respective measurement electrode voltages 706 and 708 arising from each such stimulus are also shown. It will be observed where indicated in waveforms 706, 708 that the artefact from each of the two stimuli are of identical magnitude, but opposite sign. In most situations it will be found that the artefact polarity depends on the stimulus polarity. An example of this would be electrical artefact caused by the high-pass poles of the front-end amplifier 206. Clearly, either phase could be used for stimulating nervous tissue, though their effects will differ.


In contrast, the positive and negative phase stimuli 702, 704 produce SCPs of differing amplitudes, but approximately similar shape and importantly of similar polarity, as this is determined by the anatomy and physiology of the spinal cord membrane. Thus, when the voltages 706, 708 resulting from the positive and negative phase stimuli 702, 704 are recorded, and averaged, the opposite phase stimulation artefacts substantially cancel, leaving the SCP or a combination of the two SCPs 710. Note that in practical situations, the artefact can have much higher amplitude than the SCP, making it much harder to detect the SCP than is apparent from FIG. 12.


The response of the spinal cord to these two polarities of stimulation are referred to as the “anodic first” and “cathodic first” SCP responses, as referred to the electrode considered to be that closest to the recording electrode. I.e. anodic-first stimulation makes the stimulating electrode closest to the sense electrode anodic in the first phase of stimulus. Usually cathodic-first stimulation has a lower threshold for neural activation than is the case for anodic-first stimulation. Nevertheless, the SCP polarity is independent of whether the stimulus is anodic first 702 or cathodic first 704.



FIG. 13a illustrates spinal cord measurements obtained in response to anodic-first and cathodic-first stimulations, respectively. Note that measurement obtained in response to the anodic-first stimulation lacks the characteristic P1-N1-P2 form, indicating that the anodic-first stimulation did not evoke a neural response in this case. In contrast, the measurement obtained in response to the cathodic-first stimulus exhibits a significant evoked neural response.



FIG. 13b shows an average of the two responses in FIG. 15a. As can be seen, while the characteristic form of the SCP has been altered, the artefact is essentially removed.


This embodiment of the invention further recognises that the averaged waveform of FIG. 13b can be used to obtain a range of information despite the atypical SCP form. In this regard, FIG. 14 illustrates SCP growth curves against stimulus amplitude, for both anodic-first and cathodic-first stimuli. FIG. 14 also shows the growth behaviour of the average SCP against stimulus amplitude. It can be seen from FIG. 14 that the threshold of the average response is identical to the threshold of the more sensitive cathodic-first stimulation.


When the stimulus amplitude is in the range 902 such that only the cathodic-first stimulus produces an SCP, then the averaged SCP waveform would have a normal SCP morphology but would be half the amplitude compared to a true cathodic first SCP due to the averaging. In the region 904 where both the anodic first and cathodic first responses contribute to the averaged SCP, the resultant averaged SCP waveform will have morphology in between the two measurements. It would not directly represent an SCP, but rather the average of two different SCPs. Nevertheless, this waveform could still be valuable for example in implementing an automatic control loop for stimulation adjustment, as it gives a value proportional to neural recruitment.


Some embodiments of the invention, such as the embodiment of FIG. 10, may use differential amplifiers so as to detect the voltage difference between two sense electrodes. Differential amplifiers simplify the task of separating electrode artefact. If they are connected to electrodes with similar area, and separated from the stimulation electrodes in a similar manner, then they receive similar levels of electrode artefact and this will be removed when their difference voltage is obtained. However, in such a system the voltage recorded by the amplifier is the difference between the voltages at two points along a bundle of neurons, and can thus be difficult to interpret. When making SCP measurements, it is preferable to use single-ended amplifiers as they more accurately measure the SCP, and they are more sensitive in measuring the SCP.


Differential amplifiers are often used because they provide a means to reduce electrode artefact, when other means have been insufficient. However, FIG. 15 illustrates a problem of measuring SCPs with differential amplifiers. It shows a spinal cord potential. As this potential travels along the spine at a velocity, which can be as high as 80 m·s-1, it can also be considered as a spatial wave. Given that a peak-to-peak cycle of the fast response of an SCP typically lasts for 1 ms, the wave will travel 8 cm in this time. Using this 1 ms=8 cm scale, a 5 cm electrode array is drawn alongside the SCP in FIG. 15. Connected to this electrode array are two amplifiers configured to make differential SCP measurements from separate pairs of sense electrodes. As can be seen from FIG. 15, the difference between the voltages on the adjacent electrodes will be quite small and significantly smaller than the peak to peak amplitude of the SCP, and thus more susceptible to electrical noise generated by the amplifier. The output of the amplifier will approximate the differential of the SCP, and thus be harder to interpret than a simple measure of the SCP itself. If measuring evoked SCPs with a micropackage stimulator design, for example in a system using a two-wire bus, differential measurements between non-adjacent electrodes are not possible. Further, if wishing to measure the slow response of the SCP, which has a period of about 6 ms and correspondingly reduced signal gradients, differential measurements are even more difficult to effect. Thus it will be appreciated that single-ended measurements are preferable, as long as artefact can be kept at a sufficiently low level.


With the measurement sequence of the present invention, the artefact is reduced so that some embodiments may instead use a single-ended amplifier, even in situations where previously they would have suffered from too much electrode artefact. Moreover, trials to date show that recording can be initiated with an extremely short time interval from cessation of the stimulus, permitting the same electrode array to be used for recording and stimulation, and even permitting recordings to be made on the electrode immediately adjacent to the stimulus electrode in an electrode array with electrode spacings of less than 10 mm.


Single ended amplifiers have the further advantage that they consist of fewer capacitors and amplifier components than differential amplifiers, so will take up less space on a silicon chip, which is a significant benefit when intended for use in an implanted system with many electrodes and where the silicon area for each amplifier is limited.


Preferred embodiments of the invention may comprise a separate amplifier chain (e.g. 206, 208, 210, see FIG. 7) for every electrode, organised in parallel manner, permitting simultaneous recording of a single CAP from multiple sense electrodes in parallel, and also eliminating the switching noise arising in systems which switch the sense electrode to a shared measurement amplifier.



FIG. 16 illustrates another embodiment of the invention in which the sense electrode is one of the stimulus electrodes. The follower/buffer amplifier in this embodiment has sufficient dynamic range to withstand the stimulus phase, however in alternative embodiments a switch may be interposed between the measurement electrode and the measurement circuitry to isolate the follower/buffer amplifier during the stimulus phase.


Further embodiments of the invention may employ divisible electrodes, as discussed below with reference to FIGS. 17 and 18. When considering electrode artefact in particular, the sources of electrode artefact are relatively poorly understood. The surface of a metal electrode can be modelled as an RC network. For an accurate model, an infinite-phase element is required, but for the explanation of artefact a simple RC model will suffice, as shown in FIG. 17a. A conductive solution can be modelled as a mesh of resistors. Where a conductive solution meets a piece of metal of finite dimensions, the metal provides an alternative conduction path to the solution. This charges the electrode-to-tissue capacitances at the “ends” of the electrodes, with opposite polarities. The electrode does not acquire net charge, but it does cease to be in equilibrium. After the external current ceases, then the electrode will pass current through the solution as it re-equilibrates for a short time after the stimulus. This current will affect the potential of another electrode in the solution, and in the case of multielectrode arrays a unique such current will arise at every electrode in response to local conditions experienced at that electrode. The cumulative impact of such reequilibration currents is seen by a sense electrode as electrode artefact.


A similar effect happens when current flows between two electrodes, as shown in FIG. 17b. During application of a stimulus, the current preferentially flows between the parts of the electrodes where they are closest. When the current is interrupted, the charge on the surface of the electrodes must re-equilibrate; this also leads to a residual current and contributes to electrode artefact seen by a sense electrode.


The model of FIG. 17 predicts that using smaller electrodes will reduce artefact. However, smaller electrodes will have higher noise when used as measurement electrodes, and higher resistance and lower current carrying capacity when used as stimulus electrodes. Two means to reduce artefact without sacrificing noise, impedance or current carrying capacity are shown in FIGS. 18a and 18b. The electrode configuration of FIG. 18a reduces artefact induced in a single metallic electrode; the electrode is composed of two or more smaller electrodes that can be disconnected during a stimulation phase, and reconnected during a measurement phase. In the configuration of FIG. 18b, an electrode is segmented, and individual current sources are provided for each segment. This forces the current in the segments to match, and so reduces artefact.


The evoked response telemetry of the present invention may in some embodiments be used to monitor the effect of a delivered compound. The administration of compounds (drugs or other chemical therapeutics) to effect a change in the nervous system is common for treatment of a wide number of diseases and disorders. Anaesthetics of various types are administered to the spinal cord for the relief of pain. Perhaps the most common form is administration of anaesthetics in the epidural space for pain relief during child birth.


In such embodiments, a catheter comprising a drug delivery tube may be fitted with electrode elements and configured to obtain neural response measurements in accordance with the present invention in order to monitor drug-induced effects on the neural response. Alternatively an electrode array may be temporarily or permanently implanted and used to apply neural stimuli and monitor the neural response. The neural response measurements may be obtained repeatedly during administration of the drug in order to directly measure the effect of the administered drug and control the dosage delivered.



FIGS. 19a and 19b illustrate the effect of administration of anaesthetic to the spinal cord, with a neural response being present prior to administration and largely being absent subsequent to administration. As can be seen, there is a direct correlation between the measured evoked response and the dosage of the anaesthetic. A “partial block” may be effected by ceasing administration of the anaesthetic once the neural response amplitude reduces to a desired level. The technology described herein is suitable for full implantation within the body of a subject and as a result the evoked potential monitoring could be used in the administration of an active compound to produce a therapeutic benefit. The system could be integrated with in an implantable pump to control the administration of the compound.


It will be appreciated by persons skilled in the art that numerous variations and/or modifications may be made to the invention as shown in the specific embodiments without departing from the spirit or scope of the invention as broadly described. The present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive.

Claims
  • 1. A method of applying stimulus to a tissue, the method comprising: delivering, by a plurality of stimulus electrodes, a therapeutic pulse having a first pulse width,delivering a probe pulse having a second pulse width after the therapeutic pulse, wherein the second pulse width is less than the first pulse width, and wherein the probe pulse evokes a neural response,measuring, by one or more sense electrodes, the neural response evoked by the probe pulse;determining a neural recruitment caused by the probe pulse based on the neural response; anddetermining a parameter for a subsequent therapeutic pulse based on the neural recruitment.
  • 2. The method of claim 1, wherein the first pulse width is in a range of about 100-500 μs.
  • 3. The method of claim 1, wherein the determining the parameter comprises: comparing the neural recruitment with a target neural recruitment;deriving, using a controller, a command from the comparison; andselecting, based on the command, the parameter for the subsequent therapeutic pulse.
  • 4. The method of claim 1, wherein measuring the neural response comprises: settling measurement circuitry prior to the probe pulse, by connecting the one or more sense electrodes to the measurement circuitry to allow the measurement circuitry to settle towards a bio-electrically defined steady state;recovering charge on the plurality of stimulus electrodes by short circuiting the plurality of stimulus electrodes to each other;keeping the one or more sense electrodes disconnected from the measurement circuitry while delivering the probe pulse;imposing a delay during which the plurality of stimulus electrodes are open circuited and the one or more sense electrodes are disconnected from the measurement circuitry and from the plurality of stimulus electrodes; andmeasuring, after the delay, the neural response by connecting the one or more sense electrodes to the measurement circuitry.
  • 5. The method of claim 1, wherein the probe pulse is delivered after a refractory period of fibres recruited by the therapeutic pulse.
  • 6. The method of claim 3, wherein the selecting the parameter comprises refining a parameter for a previously delivered therapeutic pulse.
  • 7. The method of claim 3, wherein the target neural recruitment is a predetermined neural recruitment.
  • 8. The method of claim 1, wherein the probe pulse is delivered at least 1 ms after the end of the therapeutic pulse.
  • 9. An implantable device for applying neural stimulus to neural tissue, the device comprising: a plurality of electrodes including one or more nominal stimulus electrodes and one or more nominal sense electrodes;a stimulus source for delivering stimulus pulses via the one or more stimulus electrodes to neural tissue;measurement circuitry for obtaining a measurement of a neural signal sensed at the one or more sense electrodes; anda control unit configured to: control the stimulus source to deliver a therapeutic pulse to neural tissue via the one or more stimulus electrodes, the therapeutic pulse having a first pulse width;control the stimulus source to deliver a probe pulse to the neural tissue having a second pulse width after the therapeutic pulse, wherein the second pulse width is less than the first pulse width, and wherein the probe pulse evokes a neural response;control the measurement circuitry to measure the neural response evoked by the probe pulse;determine a neural recruitment caused by the probe pulse based on the neural response; anddetermine a parameter for a subsequent therapeutic pulse based on the neural recruitment.
  • 10. The implantable device of claim 9, wherein the first pulse width is in a range of about 100-500 μs.
  • 11. The implantable device of claim 9, wherein the control unit is configured to determine the parameter for the subsequent therapeutic pulse by: comparing the neural recruitment with a target neural recruitment;deriving a command from the comparison; andselecting, based on the command, the parameter for the subsequent therapeutic pulse.
  • 12. The implantable device of claim 9, wherein the control unit is configured to control the stimulus source to deliver the probe pulse after a refractory period of fibres recruited by the therapeutic pulse.
  • 13. The implantable device of claim 11, wherein the control unit is configured to select the parameter by refining a parameter for a previously delivered therapeutic pulse.
  • 14. The implantable device of claim 11, wherein the target neural recruitment is a predetermined neural recruitment.
  • 15. The implantable device of claim 9, wherein the control unit is configured to control the stimulus source to deliver the probe pulse at least 1 ms after the end of the therapeutic pulse.
  • 16. The implantable device of claim 9, wherein the control unit is configured to control the measurement circuitry to measure the neural response by: settling the measurement circuitry prior to the probe pulse by connecting one or more sense electrodes to the measurement circuitry to allow the measurement circuitry to settle towards a bio-electrically defined steady state,recovering charge on the one or more stimulus electrodes by short circuiting the one or more stimulus electrodes to each other;keeping one or more sense electrodes disconnected from the measurement circuitry while delivering the probe pulse,imposing a delay during which the one or more stimulus electrodes are open circuited and one or more sense electrodes are disconnected from the measurement circuitry and from the stimulus electrodes; andmeasuring, after the delay, the neural response by connecting one or more sense electrodes to the measurement circuitry.
  • 17. A method of applying stimulus to a tissue, the method comprising: delivering, by a plurality of stimulus electrodes, a plurality of therapeutic pulses having a first pulse width,delivering a plurality of probe pulses having a second pulse width interleaved with at least some therapeutic pulses of the plurality of therapeutic pulses, wherein the second pulse width is less than the first pulse width, and wherein the plurality of probe pulses evoke neural responses,measuring, after a probe pulse of the plurality of probe pulses and prior to a subsequent therapeutic pulse of the plurality of therapeutic pulses, a neural response evoked by the probe pulse of the plurality of probe pulses via one or more sense electrodes;determining a neural recruitment caused by the probe pulse of the plurality of probe pulses based on the neural response; anddetermining a parameter for the subsequent therapeutic pulse based on the neural recruitment.
  • 18. The method of claim 17, wherein the first pulse width is in a range of about 100-500 μs.
  • 19. The method of claim 17, wherein the determining the parameter comprises: comparing the neural recruitment with a target neural recruitment;deriving, using a controller, a command from the comparison; andselecting, based on the command, the parameter for the subsequent therapeutic pulse.
  • 20. The method of claim 19, wherein the selecting the parameter comprises refining a parameter for a previously delivered therapeutic pulse.
  • 21. The method of claim 19, wherein the target neural recruitment is a predetermined neural recruitment.
  • 22. An implantable device for applying neural stimulus to neural tissue, the device comprising: a plurality of electrodes including one or more nominal stimulus electrodes and one or more nominal sense electrodes;a stimulus source for delivering stimulus pulses via the one or more stimulus electrodes to neural tissue;measurement circuitry for obtaining a measurement of a neural signal sensed at the one or more sense electrodes; anda control unit configured to: control the stimulus source to deliver a plurality of therapeutic pulses to neural tissue via the one or more stimulus electrodes, the plurality of therapeutic pulses having a first pulse width;control the stimulus source to deliver a plurality of probe pulses to the neural tissue having a second pulse width interleaved with at least some therapeutic pulses of the plurality of therapeutic pulses, wherein the second pulse width is less than the first pulse width, and wherein the plurality of probe pulses evoke neural responses;control the measurement circuitry to measure, after a probe pulse of the plurality of probe pulses and prior to a subsequent therapeutic pulse of the plurality of therapeutic pulses, a neural response evoked by the probe pulse of the plurality of probe pulses;determine a neural recruitment caused by the probe pulse of the plurality of probe pulses based on the neural response; anddetermining a parameter for the subsequent therapeutic pulse based on the neural recruitment.
  • 23. The implantable device of claim 22, wherein the first pulse width is in a range of about 100-500 μs.
  • 24. The implantable device of claim 23, wherein the control unit is configured to determine the parameter for the subsequent therapeutic pulse by: comparing the neural recruitment with a target neural recruitment;deriving a command from the comparison; andselecting, based on the command, the parameter for the subsequent therapeutic pulse.
  • 25. The implantable device of claim 24, wherein the control unit is configured to select the parameter by refining a parameter for a previously delivered therapeutic pulse.
  • 26. The implantable device of claim 24, wherein the target neural recruitment is a predetermined neural recruitment.
  • 27. The implantable device of claim 22, wherein the control unit is configured to control the stimulus source to deliver each probe pulse of the plurality of probe pulses after a refractory period of fibres recruited by a previously delivered therapeutic pulse.
  • 28. The implantable device of claim 22, wherein the control unit is configured to control the stimulus source to deliver each probe pulse of the plurality of probe pulses at least 1 ms after the end of a previously delivered therapeutic pulse.
Priority Claims (2)
Number Date Country Kind
2011901817 May 2011 AU national
2011901827 May 2011 AU national
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 15/928,040 filed Mar. 21, 2018, which is a continuation of U.S. patent application Ser. No. 14/117,152 filed Nov. 12, 2013 and issued as U.S. Pat. No. 9,974,455 on May 22, 2018, which is the National Stage of International Application No. PCT/AU2012/000517 filed May 11, 2012, which claims the benefit of Australian Provisional Patent Application No. 2011901827 filed May 13, 2011 and Australian Provisional Patent Application No. 2011901817 filed May 13, 2011, all of which are incorporated herein by reference.

US Referenced Citations (338)
Number Name Date Kind
3724467 Avery et al. Apr 1973 A
3736434 Darrow May 1973 A
3817254 Maurer Jun 1974 A
3898472 Long Aug 1975 A
4158196 Crawford, Jr. Jun 1979 A
4418695 Buffet Dec 1983 A
4474186 Ledley et al. Oct 1984 A
4628934 Pohndorf et al. Dec 1986 A
4807643 Rosier Feb 1989 A
4856525 van den Honert Aug 1989 A
5113859 Funke May 1992 A
5139020 Koestner et al. Aug 1992 A
5143081 Young et al. Sep 1992 A
5156154 Valenta, Jr. et al. Oct 1992 A
5172690 Nappholz et al. Dec 1992 A
5184615 Nappholz et al. Feb 1993 A
5188106 Nappholz et al. Feb 1993 A
5215100 Spitz et al. Jun 1993 A
5324311 Acken Jun 1994 A
5417719 Hull et al. May 1995 A
5431693 Schroeppel Jul 1995 A
5458623 Lu et al. Oct 1995 A
5476486 Lu et al. Dec 1995 A
5497781 Chen et al. Mar 1996 A
5638825 Yamazaki et al. Jun 1997 A
5702429 King et al. Dec 1997 A
5758651 NygarD et al. Jun 1998 A
5776170 Macdonald et al. Jul 1998 A
5785651 Kuhn et al. Jul 1998 A
5792212 Weijand et al. Aug 1998 A
5814092 King Sep 1998 A
5895416 Barreras et al. Apr 1999 A
5913882 King Jun 1999 A
5999848 Gord et al. Dec 1999 A
6020857 Podger Feb 2000 A
6027456 Feler et al. Feb 2000 A
6038480 Hrdlicka et al. Mar 2000 A
6066163 John May 2000 A
6114164 Dennis et al. Sep 2000 A
6144881 Hemming et al. Nov 2000 A
6157861 Faltys et al. Dec 2000 A
6212431 Hahn et al. Apr 2001 B1
6246912 Sluijter et al. Jun 2001 B1
6381496 Meadows et al. Apr 2002 B1
6449512 Boveja Sep 2002 B1
6463328 John Oct 2002 B1
6473649 Gryzwa et al. Oct 2002 B1
6473653 Schallhorn et al. Oct 2002 B1
6493576 Dankwart-Eder Dec 2002 B1
6516227 Meadows et al. Feb 2003 B1
6522932 Kuzma Feb 2003 B1
6600955 Zierhofer et al. Jul 2003 B1
6658293 Vonk et al. Dec 2003 B2
6675046 Holsheimer Jan 2004 B2
6782292 Whitehurst Aug 2004 B2
6895280 Meadows et al. May 2005 B2
6898582 Lange et al. May 2005 B2
6909917 Woods et al. Jun 2005 B2
7089059 Pless Aug 2006 B1
7171261 Litvak et al. Jan 2007 B1
7177675 Suffin et al. Feb 2007 B2
7206640 Overstreet Apr 2007 B1
7231254 DiLorenzo et al. Jun 2007 B2
7286876 Yonce et al. Oct 2007 B2
7412287 Yonce et al. Aug 2008 B2
7450992 Cameron Nov 2008 B1
7634315 Cholette Dec 2009 B2
7734340 De Ridder Jun 2010 B2
7742810 Moffitt Jun 2010 B2
7792584 Van Oort et al. Sep 2010 B2
7818052 Litvak et al. Oct 2010 B2
7831305 Gliner Nov 2010 B2
7835804 Fridman et al. Nov 2010 B2
7890182 Parramon et al. Feb 2011 B2
7894905 Pless et al. Feb 2011 B2
8190251 Molnar et al. May 2012 B2
8224459 Pianca et al. Jul 2012 B1
8239031 Fried et al. Aug 2012 B2
8249698 Mugler et al. Aug 2012 B2
8359102 Thacker et al. Jan 2013 B2
8417342 Abell Apr 2013 B1
8454529 Daly et al. Jun 2013 B2
8494645 Spitzer et al. Jul 2013 B2
8515545 Trier Aug 2013 B2
8538541 Milojevic et al. Sep 2013 B2
8588929 Davis et al. Nov 2013 B2
8620459 Gibson et al. Dec 2013 B2
8655002 Parker Feb 2014 B2
8670830 Carlson et al. Mar 2014 B2
8886323 Wu et al. Nov 2014 B2
8945216 Parker et al. Feb 2015 B2
9044155 Strahl Jun 2015 B2
9155892 Parker et al. Oct 2015 B2
9302112 Bornzin et al. Apr 2016 B2
9381356 Parker et al. Jul 2016 B2
9386934 Parker et al. Jul 2016 B2
9566439 Single et al. Feb 2017 B2
9872990 Parker et al. Jan 2018 B2
9974455 Parker et al. May 2018 B2
10206596 Single et al. Feb 2019 B2
10278600 Parker et al. May 2019 B2
10368762 Single Aug 2019 B2
10426409 Single Oct 2019 B2
10500399 Single Dec 2019 B2
10568559 Parker et al. Feb 2020 B2
10588524 Single et al. Mar 2020 B2
10588698 Parker et al. Mar 2020 B2
10632307 Parker Apr 2020 B2
10842996 Baru et al. Nov 2020 B2
10849525 Parker et al. Dec 2020 B2
10894158 Parker Jan 2021 B2
10918872 Parker et al. Feb 2021 B2
11006846 Parker et al. May 2021 B2
11006857 Parker May 2021 B2
11045129 Parker et al. Jun 2021 B2
11110270 Parker et al. Sep 2021 B2
11167129 Parker Nov 2021 B2
20020055688 Katims May 2002 A1
20020099419 Ayal et al. Jul 2002 A1
20020193670 Garfield et al. Dec 2002 A1
20030032889 Wells Feb 2003 A1
20030045909 Gross et al. Mar 2003 A1
20030139781 Bradley et al. Jul 2003 A1
20030153959 Thacker et al. Aug 2003 A1
20030195580 Bradley et al. Oct 2003 A1
20040088017 Sharma et al. May 2004 A1
20040122482 Tung et al. Jun 2004 A1
20040158298 Gliner Aug 2004 A1
20040225211 Gozani et al. Nov 2004 A1
20040254494 Spokoyny Dec 2004 A1
20050010265 Baru Fassio et al. Jan 2005 A1
20050017190 Eversmann et al. Jan 2005 A1
20050021104 DiLorenzo Jan 2005 A1
20050065427 Magill et al. Mar 2005 A1
20050070982 Heruth et al. Mar 2005 A1
20050075683 Miesel et al. Apr 2005 A1
20050101878 Daly et al. May 2005 A1
20050107674 Parthasarathy et al. May 2005 A1
20050113877 Giardiello et al. May 2005 A1
20050137670 Christopherson et al. Jun 2005 A1
20050149154 Cohen Jul 2005 A1
20050192567 Katims Sep 2005 A1
20050203600 Wallace Sep 2005 A1
20050209655 Bradley et al. Sep 2005 A1
20050282149 Kovacs et al. Dec 2005 A1
20060009820 Royle et al. Jan 2006 A1
20060020291 Gozani et al. Jan 2006 A1
20060135998 Libbus et al. Jun 2006 A1
20060195159 Bradley et al. Aug 2006 A1
20060212089 Tass Sep 2006 A1
20060217782 Boveja et al. Sep 2006 A1
20060264752 Rubinsky et al. Nov 2006 A1
20060287609 Litvak et al. Dec 2006 A1
20070021800 Bradley et al. Jan 2007 A1
20070073354 Knudson et al. Mar 2007 A1
20070100378 Maschino May 2007 A1
20070178579 Ross et al. Aug 2007 A1
20070185409 Wu et al. Aug 2007 A1
20070208394 King et al. Sep 2007 A1
20070225765 King Sep 2007 A1
20070225767 Daly et al. Sep 2007 A1
20070244410 Fridman et al. Oct 2007 A1
20070250120 Flach et al. Oct 2007 A1
20070255372 Metzler et al. Nov 2007 A1
20070282217 McGinnis et al. Dec 2007 A1
20070287931 Dilorenzo Dec 2007 A1
20080021292 Stypulkowski Jan 2008 A1
20080051647 Wu et al. Feb 2008 A1
20080064947 Heruth et al. Mar 2008 A1
20080077191 Morrell Mar 2008 A1
20080097529 Parramon et al. Apr 2008 A1
20080132964 Cohen et al. Jun 2008 A1
20080147155 Swoyer Jun 2008 A1
20080183076 Witte et al. Jul 2008 A1
20080208304 Zdravkovic et al. Aug 2008 A1
20080234780 Smith et al. Sep 2008 A1
20080275527 Greenberg et al. Nov 2008 A1
20080294221 Kilgore Nov 2008 A1
20080300655 Cholette Dec 2008 A1
20080319508 Botros et al. Dec 2008 A1
20090030337 Gozani et al. Jan 2009 A1
20090033486 Costantino et al. Feb 2009 A1
20090058635 Lalonde et al. Mar 2009 A1
20090082691 Denison et al. Mar 2009 A1
20090149912 Pacey, Jr. et al. Jun 2009 A1
20090157155 Bradley Jun 2009 A1
20090270957 Pianca Oct 2009 A1
20090287277 Conn et al. Nov 2009 A1
20090299214 Wu et al. Dec 2009 A1
20090306491 Haggers Dec 2009 A1
20090306533 Rousche et al. Dec 2009 A1
20100010388 Panken et al. Jan 2010 A1
20100057159 Lozano Mar 2010 A1
20100058126 Chang et al. Mar 2010 A1
20100069835 Parker Mar 2010 A1
20100069996 Strahl Mar 2010 A1
20100070007 Parker Mar 2010 A1
20100070008 Parker Mar 2010 A1
20100100153 Carlson et al. Apr 2010 A1
20100106231 Torgerson Apr 2010 A1
20100114237 Giftakis et al. May 2010 A1
20100114258 Donofrio et al. May 2010 A1
20100125313 Lee et al. May 2010 A1
20100125314 Bradley et al. May 2010 A1
20100145222 Brunnett et al. Jun 2010 A1
20100152808 Boggs Jun 2010 A1
20100179626 Pilarski Jul 2010 A1
20100191307 Fang et al. Jul 2010 A1
20100204748 Lozano et al. Aug 2010 A1
20100222844 Troosters et al. Sep 2010 A1
20100222858 Meloy Sep 2010 A1
20100249643 Gozani et al. Sep 2010 A1
20100249867 Wanasek Sep 2010 A1
20100258342 Parker Oct 2010 A1
20100262208 Parker Oct 2010 A1
20100262214 Robinson Oct 2010 A1
20100280570 Sturm et al. Nov 2010 A1
20100286748 Midani et al. Nov 2010 A1
20100331604 Okamoto et al. Dec 2010 A1
20100331926 Lee et al. Dec 2010 A1
20110004207 Wallace et al. Jan 2011 A1
20110021943 Lacour et al. Jan 2011 A1
20110028859 Chian Feb 2011 A1
20110040546 Gerber et al. Feb 2011 A1
20110077712 Killian Mar 2011 A1
20110087085 Tsampazis et al. Apr 2011 A1
20110093042 Torgerson et al. Apr 2011 A1
20110106100 Bischoff May 2011 A1
20110184488 De Ridder et al. Jul 2011 A1
20110204811 Pollmann-retsch Aug 2011 A1
20110224665 Crosby et al. Sep 2011 A1
20110224749 Ben-David et al. Sep 2011 A1
20110264165 Molnar et al. Oct 2011 A1
20110270343 Buschman et al. Nov 2011 A1
20110307030 John Dec 2011 A1
20110313310 Tomita Dec 2011 A1
20110313483 Hincapie et al. Dec 2011 A1
20120029377 Polak Feb 2012 A1
20120059275 Fagin et al. Mar 2012 A1
20120101552 Lazarewicz et al. Apr 2012 A1
20120101826 Visser et al. Apr 2012 A1
20120109004 Cadwell May 2012 A1
20120109236 Jacobson et al. May 2012 A1
20120155183 Aritome Jun 2012 A1
20120185020 Simon et al. Jul 2012 A1
20120245481 Blanco et al. Sep 2012 A1
20120253423 Youn et al. Oct 2012 A1
20120277621 Gerber et al. Nov 2012 A1
20120277823 Gerber et al. Nov 2012 A1
20120310301 Bennett et al. Dec 2012 A1
20130041449 Cela et al. Feb 2013 A1
20130053722 Carlson et al. Feb 2013 A1
20130060302 Polefko et al. Mar 2013 A1
20130172774 Crowder et al. Jul 2013 A1
20130268043 Tasche et al. Oct 2013 A1
20130289661 Griffith et al. Oct 2013 A1
20130289683 Parker et al. Oct 2013 A1
20140046407 Ben-Ezra et al. Feb 2014 A1
20140066803 Choi Mar 2014 A1
20140142447 Takahashi et al. May 2014 A1
20140194771 Parker et al. Jul 2014 A1
20140194772 Single et al. Jul 2014 A1
20140236042 Parker et al. Aug 2014 A1
20140236257 Parker et al. Aug 2014 A1
20140243926 Carcieri Aug 2014 A1
20140243931 Parker et al. Aug 2014 A1
20140249396 Shacham-diamand et al. Sep 2014 A1
20140276195 Papay et al. Sep 2014 A1
20140277250 Su et al. Sep 2014 A1
20140277267 Vansickle et al. Sep 2014 A1
20140288551 Bharmi et al. Sep 2014 A1
20140288577 Robinson et al. Sep 2014 A1
20140296737 Parker et al. Oct 2014 A1
20140324118 Simon et al. Oct 2014 A1
20140350634 Grill et al. Nov 2014 A1
20140358024 Nelson et al. Dec 2014 A1
20150018699 Zeng et al. Jan 2015 A1
20150025597 Surth et al. Jan 2015 A1
20150051637 Osorio Feb 2015 A1
20150148869 Dorvall, II et al. May 2015 A1
20150164354 Parker et al. Jun 2015 A1
20150174396 Fisher et al. Jun 2015 A1
20150238104 Tass Aug 2015 A1
20150238304 Lamraoui Aug 2015 A1
20150282725 Single Oct 2015 A1
20150313487 Single Nov 2015 A1
20150360031 Bornzin et al. Dec 2015 A1
20150374999 Parker Dec 2015 A1
20160082265 Moffitt et al. Mar 2016 A1
20160082268 Hershey et al. Mar 2016 A1
20160101289 Stolen et al. Apr 2016 A1
20160106980 Sürth et al. Apr 2016 A1
20160121124 Johanek et al. May 2016 A1
20160129272 Hou et al. May 2016 A1
20160144189 Bakker et al. May 2016 A1
20160166164 Obradovic et al. Jun 2016 A1
20160175594 Min et al. Jun 2016 A1
20160287126 Parker et al. Oct 2016 A1
20160287182 Single Oct 2016 A1
20160367808 Simon et al. Dec 2016 A9
20170001017 Parker et al. Jan 2017 A9
20170049345 Single Feb 2017 A1
20170071490 Parker et al. Mar 2017 A1
20170135624 Parker May 2017 A1
20170173335 Min et al. Jun 2017 A1
20170173341 Johanek et al. Jun 2017 A1
20170216587 Parker Aug 2017 A1
20170361101 Single Dec 2017 A1
20180071513 Weiss et al. Mar 2018 A1
20180104493 Doan et al. Apr 2018 A1
20180110987 Parker Apr 2018 A1
20180117335 Parker et al. May 2018 A1
20180132747 Parker et al. May 2018 A1
20180132760 Parker May 2018 A1
20180133459 Parker et al. May 2018 A1
20180228391 Parker et al. Aug 2018 A1
20180228547 Parker Aug 2018 A1
20180229046 Parker et al. Aug 2018 A1
20180256052 Parker et al. Sep 2018 A1
20190001139 Mishra et al. Jan 2019 A1
20190030339 Baru et al. Jan 2019 A1
20190125269 Markovic et al. May 2019 A1
20190168000 Laird-wah Jun 2019 A1
20190216343 Single et al. Jul 2019 A1
20190239768 Karantonis et al. Aug 2019 A1
20190307341 Parker et al. Oct 2019 A1
20190357788 Single Nov 2019 A1
20200029914 Single Jan 2020 A1
20200129108 Parker et al. Apr 2020 A1
20200155240 Parker et al. May 2020 A1
20200215331 Single Jul 2020 A1
20200282208 Parker Sep 2020 A1
20210001133 Williams et al. Jan 2021 A1
20210016091 Parker et al. Jan 2021 A1
20210121696 Parker et al. Apr 2021 A1
20210162214 Parker Jun 2021 A1
20210267518 Parker et al. Sep 2021 A1
20210308449 Parker Oct 2021 A1
Foreign Referenced Citations (113)
Number Date Country
2013277009 Jan 2016 AU
103648583 Mar 2014 CN
103654762 Mar 2014 CN
103842022 Jun 2014 CN
104411360 Mar 2015 CN
0219084 Apr 1987 EP
1244496 Oct 2002 EP
0998958 Aug 2005 EP
2019716 Nov 2007 EP
2243510 Oct 2010 EP
2443995 Apr 2012 EP
2520327 Nov 2012 EP
2707095 Mar 2014 EP
3229893 Oct 2017 EP
2006504494 Feb 2006 JP
2009512505 Mar 2009 JP
2012524629 Oct 2012 JP
2013500779 Jan 2013 JP
2013527784 Jul 2013 JP
2013536044 Sep 2013 JP
2014522261 Sep 2014 JP
2014523261 Sep 2014 JP
1983003191 Sep 1983 WO
1993001863 Feb 1993 WO
1996012383 Apr 1996 WO
2000002623 Jan 2000 WO
2002036003 Nov 2001 WO
2002038031 May 2002 WO
2002049500 Jun 2002 WO
2002082982 Oct 2002 WO
2003028521 Apr 2003 WO
2003043690 May 2003 WO
2003103484 Dec 2003 WO
2004021885 Mar 2004 WO
2004103455 Dec 2004 WO
2005032656 Apr 2005 WO
2005105202 Nov 2005 WO
2005122887 Dec 2005 WO
2006091636 Aug 2006 WO
2007050657 May 2007 WO
2007064936 Jun 2007 WO
2007127926 Nov 2007 WO
2007130170 Nov 2007 WO
2008004204 Jan 2008 WO
2008049199 May 2008 WO
2009002072 Dec 2008 WO
2009002579 Dec 2008 WO
2009010870 Jan 2009 WO
2009130515 Oct 2009 WO
2009146427 Dec 2009 WO
2010013170 Feb 2010 WO
2010044989 Apr 2010 WO
2010051392 May 2010 WO
2010051406 May 2010 WO
2010057046 May 2010 WO
2010124139 Oct 2010 WO
2010138915 Dec 2010 WO
2011011327 Jan 2011 WO
2011014570 Feb 2011 WO
WO 2011017778 Feb 2011 WO
2011066477 Jun 2011 WO
2011066478 Jun 2011 WO
2011112843 Sep 2011 WO
2011119251 Sep 2011 WO
2011159545 Dec 2011 WO
2012027252 Mar 2012 WO
2012027791 Mar 2012 WO
2012155183 Nov 2012 WO
2012155184 Nov 2012 WO
2012155185 Nov 2012 WO
2012155187 Nov 2012 WO
2012155188 Nov 2012 WO
2012155189 Nov 2012 WO
2012155190 Nov 2012 WO
2012162349 Nov 2012 WO
2013063111 May 2013 WO
2013075171 May 2013 WO
2014071445 May 2014 WO
2014071446 May 2014 WO
2014143577 Sep 2014 WO
2014150001 Sep 2014 WO
2015070281 May 2015 WO
2015074121 May 2015 WO
2015109239 Jul 2015 WO
2015143509 Oct 2015 WO
2015168735 Nov 2015 WO
2016011512 Jan 2016 WO
2016048974 Mar 2016 WO
2016059556 Apr 2016 WO
2016077882 May 2016 WO
2016090420 Jun 2016 WO
2016090436 Jun 2016 WO
2016115596 Jul 2016 WO
2016161484 Oct 2016 WO
2016168798 Oct 2016 WO
2016191807 Dec 2016 WO
2016191808 Dec 2016 WO
2016191815 Dec 2016 WO
WO 2017053504 Mar 2017 WO
2017173493 Oct 2017 WO
2017210352 Dec 2017 WO
2017219096 Dec 2017 WO
2018119220 Jun 2018 WO
2018160992 Sep 2018 WO
2019178634 Sep 2019 WO
2019204884 Oct 2019 WO
2019231796 Dec 2019 WO
2020082118 Apr 2020 WO
2020082126 Apr 2020 WO
2020082128 Apr 2020 WO
2020087123 May 2020 WO
2020087135 May 2020 WO
2020124135 Jun 2020 WO
Non-Patent Literature Citations (244)
Entry
“Percutaneous Lead Kit”, St. Jude Medical Clinician's Manual, Models 3143, 3146, 3149, 3153, 3156, 3159, 3183, 3186, 3189, published Sep. 2016, 24 pages.
Extended European Search Report in European Appln No. 18910394.8, dated Oct. 15, 2021, 8 pages.
Australian Examination Report for Application No. 2019283936, dated Apr. 1, 2021, 7 pages.
European Search Report for European Application 12785619.3 Search Completed Oct. 13, 2014, dated Oct. 23, 2014, 7 pgs.
European Search Report for European Application 12785669.8 Search Completed Sep. 22, 2014, dated Sep. 29, 2014, 5 pgs.
European Search Report for European Application No. 15861444.6, Search completed Jul. 13, 2018, dated Jul. 23, 2018, 8 pgs.
Extended European Search Report for EP Application 12785483.4 completed Sep. 16, 2014, 7 pgs.
Extended European Search Report for European Application No. 11820923.8, report completed Dec. 9, 2013, dated Dec. 17, 2013, 6 pgs.
Extended European Search Report for European Application No. 13852669.4, Search completed Jun. 8, 2016, dated Jun. 22, 2016, 09 Pgs.
Extended European Search Report for European Application No. 14861553.7, Search completed Jun. 8, 2017, dated Jun. 19, 2017, 8 Pgs.
Extended European Search Report for European Application No. 14863597.2, Search completed Jun. 6, 2017, dated Jun. 13, 2017, 9 Pgs.
Extended European Search Report for European Application No. 15768956.3, Search completed Oct. 3, 2017, dated Oct. 10, 2017, 8 Pgs.
Extended European Search Report for European Application No. 15789515.2, Search completed Dec. 4, 2017, dated Jan. 30, 2018, 7 Pgs.
Extended European Search Report for European Application No. 16739680.3, Search completed Jun. 1, 2018, dated Jun. 12, 2018, 9 Pgs.
Extended European Search Report for European Application No. 16802237.4, Search completed Dec. 11, 2018, dated Dec. 19, 2018, 9 Pgs.
Extended European Search Report for European Application No. 16802238.2, Search completed Oct. 17, 2018, dated Oct. 24, 2018, 8 Pgs.
Extended European Search Report for European Application No. 17778477.4, report completed Nov. 12, 2019, dated Nov. 20, 2019, 7 pgs.
Extended European Search Report for European Application No. 17814341.8, report completed Dec. 12, 2019, dated Jan. 2, 2020, 8 pgs.
Extended European Search Report for European Application No. 13853514.1, Search completed Jun. 8, 2016, dated Jun. 15, 2016, 07 Pgs.
International Preliminary Report for International Application No. PCT/AU2017/050296, dated Oct. 9, 2018, 7 Pgs.
International Preliminary Report for International Application No. PCT/AU2017/050647, dated Dec. 25, 2018, 8 pgs.
International Preliminary Report on Patentability for International Application No. PCT/AU2011/001127, dated Mar. 5, 2013, 9 pgs.
International Preliminary Report on Patentability for International Application No. PCT/AU2012/000511, dated Nov. 19, 2013, 6 pgs.
International Preliminary Report on Patentability for International Application No. PCT/AU2012/000512, dated Nov. 19, 2013, 8 pgs.
International Preliminary Report on Patentability for International Application No. PCT/AU2012/000513, dated Nov. 19, 2013, 11 pgs.
International Preliminary Report on Patentability for International Application No. PCT/AU2012/000515, dated Nov. 19, 2013, 5 pgs.
International Preliminary Report on Patentability for International Application No. PCT/AU2012/000516, dated Nov. 19, 2013, 9 pgs.
International Preliminary Report on Patentability for International Application No. PCT/AU2012/000517, dated Nov. 19, 2013, 6 pgs.
International Preliminary Report on Patentability for International Application No. PCT/AU2012/000518, dated Nov. 19, 2013, 11 pgs.
International Preliminary Report on Patentability for International Application No. PCT/AU2012/001441, dated May 27, 2014, 10 pgs.
International Preliminary Report on Patentability for International Application No. PCT/AU2013/001279, dated May 12, 2015, 6 pgs.
International Preliminary Report on Patentability for International Application No. PCT/AU2013/001280, dated May 12, 2015, 6 pgs.
International Preliminary Report on Patentability for International Application No. PCT/AU2014/001049, dated May 17, 2016, 5 pgs.
International Preliminary Report on Patentability for International Application No. PCT/AU2014/050369, dated May 24, 2016, 8 pgs.
International Preliminary Report on Patentability for International Application No. PCT/AU2015/050135, dated Oct. 4, 2016, 13 pgs.
International Preliminary Report on Patentability for International Application No. PCT/AU2015/050215, dated Nov. 8, 2016, 4 pgs.
International Preliminary Report on Patentability for International Application No. PCT/AU2015/050422, dated Jan. 31, 2017, 8 pgs.
International Preliminary Report on Patentability for International Application No. PCT/AU2015/050724, dated May 23, 2017, 5 pgs.
International Preliminary Report on Patentability for International Application No. PCT/AU2015/050753, dated Jun. 13, 2017, 7 pgs.
International Preliminary Report on Patentability for International Application No. PCT/AU2015/050787, dated Jun. 13, 2017, 6 pgs.
International Preliminary Report on Patentability for International Application No. PCT/AU2016/050019, dated Jul. 25, 2017, 9 pgs.
International Preliminary Report on Patentability for International Application No. PCT/AU2016/050263, dated Oct. 10, 2017, 9 pgs.
International Preliminary Report on Patentability for International Application No. PCT/AU2018/050278, dated Sep. 29, 2020, 7 pgs.
International Preliminary Report on Patentability for International Application No. PCT/AU2019/050384, dated Oct. 27, 2020, 8 pgs.
International Search Report & Written Opinion for International Application No. PCT/AU2013/001280, Search Completed Jan. 16, 2014, dated Jan. 16, 2014, 8 Pgs.
International Search Report & Written Opinion for International Application PCT/AU2013/001279, Search Completed Jan. 9, 2014, dated Jan. 9, 2014, 9 Pgs.
International Search Report and Written Opinion for International Application No. PCT/AU2011/001127, date completed Nov. 11, 2011, dated Nov. 15, 2011, 13 pgs.
International Search Report and Written Opinion for International Application No. PCT/AU2012/001441, International Filing Date Nov. 23, 2012, Search Completed Feb. 26, 2013, dated Feb. 26, 2013, 14 pgs.
International Search Report and Written Opinion for International Application No. PCT/AU2014/001049, Search completed Feb. 10, 2015, dated Feb. 10, 2015, 8 Pgs.
International Search Report and Written Opinion for International Application No. PCT/AU2014/050369, Search completed Feb. 20, 2015, dated Feb. 20, 2015, 14 Pgs.
International Search Report and Written Opinion for International Application No. PCT/AU2015/050135, Search completed Jun. 30, 2015, dated Jun. 30, 2015, 26 Pgs.
International Search Report and Written Opinion for International Application No. PCT/AU2015/050422, Search completed Oct. 14, 2015, dated Oct. 14, 2015, 17 Pgs.
International Search Report and Written Opinion for International Application No. PCT/AU2015/050724, Search completed May 9, 2016, dated May 9, 2016, 8 Pgs.
International Search Report and Written Opinion for International Application No. PCT/AU2015/050753, Search completed Feb. 10, 2016, dated Feb. 10, 2016, 10 Pgs.
International Search Report and Written Opinion for International Application No. PCT/AU2015/050787, Search completed Mar. 16, 2016, dated Mar. 16, 2016, 10 Pgs.
International Search Report and Written Opinion for International Application No. PCT/AU2016/050019, Search completed May 4, 2016, dated May 4, 2016, 16 Pgs.
International Search Report and Written Opinion for International Application No. PCT/AU2016/050263, Search completed Nov. 16, 2016, dated Nov. 16, 2016, 8 Pgs.
International Search Report and Written Opinion for International Application No. PCT/AU2016/050430, Search completed Aug. 16, 2016, dated Aug. 16, 2016, 10 Pgs.
International Search Report and Written Opinion for International Application No. PCT/AU2016/050431, Search completed Aug. 16, 2016, dated Aug. 16, 2016, 11 Pgs.
International Search Report and Written Opinion for International Application No. PCT/AU2016/050439, Search completed Jul. 15, 2016, dated Jul. 15, 2016, 8 Pgs.
International Search Report and Written Opinion for International Application No. PCT/AU2017/050296, Search completed Jul. 28, 2017, dated Jul. 28, 2017, 10 Pgs.
International Search Report and Written Opinion for International Application No. PCT/AU2017/050647, Search completed Sep. 29, 2017, dated Sep. 29, 2017, 13 Pgs.
International Search Report and Written Opinion for International Application No. PCT/AU2018/050278, Search completed Jun. 18, 2018, dated Jun. 18, 2018, 12 Pgs.
International Search Report and Written Opinion for International Application No. PCT/AU2019/050384, Search completed Jun. 25, 2019, dated Jun. 25, 2019, 15 Pgs.
International Search Report and Written Opinion for International Application No. PCT/AU2019/051385, Search completed Mar. 24, 2020, dated Mar. 24, 2020, 8 Pgs.
International Search Report and Written Opinion for International Application No. PCT/AU2015/050215, Search completed Jul. 30, 2015, dated Jul. 30, 2015, 8 Pgs.
International Search Report for Australian Application 2011901829 Search Completed Feb. 6, 2012, dated Feb. 7, 2012, 3pgs.
International Search Report for International Application No. PCT/AU2012/000511, International Filing Date May 11, 2012, Search Completed May 17, 2012, dated May 18, 2012, 4 pgs.
International Search Report for International Application No. PCT/AU2012/000512, International Filing Date May 11, 2012, Search Completed Jul. 10, 2012, dated Jul. 11, 2012, 4 pgs.
International Search Report for International Application No. PCT/AU2012/000513, International Filing Date May 11, 2012, Search Completed May 29, 2012, dated May 30, 2012, 5 pgs.
International Search Report for International Application No. PCT/AU2012/000515, International Filing Date May 11, 2012, Search Completed May 21, 2012, dated Jun. 4, 2012, 5 pgs.
International Search Report for International Application No. PCT/AU2012/000516, International Filing Date May 11, 2012, Search Completed Jul. 11, 2012, dated Jul. 12, 2012, 8 pgs.
International Search Report for International Application No. PCT/AU2012/000517, International Filing Date May 11, 2012, Search Completed Jun. 4, 2012, dated Jun. 6, 2012, 3 pgs.
International Search Report for International Application No. PCT/AU2012/000518, International Filing Date May 11, 2012, Search Completed Jun. 8, 2012, dated Jun. 12, 2012, 4 pgs.
International Search Report for International Application No. PCT/AU2019/051151, International Filing Date Oct. 22, 2019, Search Completed Feb. 24, 2020, dated Feb. 24, 2020, 9 pgs.
International Search Report for International Application No. PCT/AU2019/051160, International Filing Date Oct. 23, 2019, Search Completed Jan. 28, 2020, dated Jan. 28, 2020, 13 pgs.
International Search Report for International Application No. PCT/AU2019/051163, International Filing Date Oct. 23, 2019, Search Completed Jan. 21, 2020, dated Jan. 31, 2020, 8 pgs.
International Search Report for International Application No. PCT/AU2019/051197, International Filing Date Oct. 30, 2019, Search Completed Jan. 21, 2020, dated Jan. 21, 2020, 15 pgs.
International Search Report for International Application No. PCT/AU2019/051210, International Filing Date Nov. 2, 2019, Search Completed Feb. 4, 2020, dated Feb. 4, 2020, 10 pgs.
International Type Search Report for International Application No. AU 2015902393, Search completed May 16, 2016, dated May 16, 2016, 8 Pgs.
Japanese Office Action for Application No. 2017-546830, dated Feb. 20, 2020, 5 pages with English translation.
Japanese Office Action for Application No. 2017-553090, dated Mar. 16, 2020, 12 pages with English translation.
Japanese Office Action for Application No. 2018-552138, dated Mar. 1, 2021, 7 pages with English translation.
Japanese Office Action for Application No. 2018-513699, dated Jun. 8, 2020, 7 pages with English translation.
Massachusetts Institute of Technology, The Compound Action Potential of the Frog Sciatic Nerve, Quantitative Physiology: Cells and Tissues. Fall, 1999, Retrieved from http://umech.mit.edu/freeman/6.021J/2001/lab.pdf on May 22, 2012.
Medtronic, Spinal Cord Stimulation, RestoreSensor Neurostimulator, Features and Specification: Specification, Printed Jun. 16, 2014, 2 pgs.
Medtronic, Spinal Cord Stimulation, RestoreSensor Neurostimulator, Features and Specification: Summary Printed Jun. 16, 2014, 1 pg.
Office Action for Chinese Patent Application No. 201680020725.4, dated Mar. 16, 2020, 8 pgs.
Partial European Search Report for European Application No. 16775966.1, Search completed Oct. 26, 2018, dated Nov. 6, 2018, 11 Pgs.
Written Opinion for International Application No. PCT/AU2012/000511, International Filing Date May 11, 2012, Search Completed May 17, 2012, dated May 18, 2012, 5 pgs.
Written Opinion for International Application No. PCT/AU2012/000512, International Filing Date May 11, 2012, Search Completed Jul. 10, 2012, dated Jul. 11, 2012, 7 pgs.
Written Opinion for International Application No. PCT/AU2012/000513, International Filing Date May 11, 2012, Search Completed May 29, 2012, dated May 30, 2012, 10 pgs.
Written Opinion for International Application No. PCT/AU2012/000515, International Filing Date May 11, 2012, Search Completed May 21, 2012, dated Jun. 4, 2012, 4 pgs.
Written Opinion for International Application No. PCT/AU2012/000516, International Filing Date May 11, 2012, Search Completed Jul. 11, 2012, dated Jul. 12, 2012, 8 pgs.
Written Opinion for International Application No. PCT/AU2012/000517, International Filing Date May 11, 2012, Search Completed Jun. 4, 2012, dated Jun. 6, 2012, 5 pgs.
Written Opinion for International Application No. PCT/AU2012/000518, International Filing Date May 11, 2012, Search Completed Jun. 8, 2012, dated Jun. 12, 2012, 10 pgs.
Medtronic, RestoreSensor Neurostimulator, Retrieved from: http://web.archive.org/web/20150328092923/http://professional.medtronic.com:80/pt/neuro/scs/prod/restore-sensor/features-specifications/index.htm,, Capture Date Jul. 9, 2012, Printed on May 11, 2017.
“Advanced Pain Therapy using Neurostimulation for Chronic Pain”, Medtronic RestoreSensor clinical trial paper,Clinical summary, Nov. 2011, pp. 32.
“Battelle Neurotechnology—Moving Beyond The Limits in Neurotechnology”, Battelle, www.battelle.org, May 2014, pp. 1-2.
“Evoke 12C Percutaneous Leads”, Saluda Medical, specifications available in the “Evoke Surgical Guide”, version 6, http://www.saludamedical.com/manuals/, retrieved May 2017.
“Haptic technology”, Wikipedia, Retrieved from http://en.wikipedia.org/wiki/Haptic_technology, Last modified on Sep. 15, 2014, Printed on Sep. 15, 2014, 5 pgs.
“Implants for surgery, Cardiac pacemakers”, IS-1 standard ISO 5841-3-2000, Oct. 15, 2000.
“Neural Bypass Technology Enables Movement in Paralyzed Patient”, Posted on Jul. 29, 2014, 6 a.m. in Brain chips/computer interface, pp. 1-2.
“Spinal Cord Stimulation, About Spinal Cord Stimulation”, Medtronic, Retrieved from: http://professional.medtronic.com/pt/neuro/scs/edu/about/index.htm, Printed on Jun. 16, 2014, 2 pgs.
“Wide bandwidth BioAmplifier”, http://www.psylab.com/html/default_bioamp.htm, Printed Jan. 30, 2014, 1-3 pages.
Abrard et al., “A time-frequency blindsignal separation methodapplicable to underdetermined mixtures of dependent sources”, Signal Processing 85 (2005) 1389-1403.
Alam et al., “Evaluation of optimal electrode configurations for epidural spinal cord stimulation in cervical spinal cord injured rats”, Journal of Neuroscience Methods, Mar. 2015, 28 pgs.
Al-Ani et al., “Automatic removal of high-amplitude stimulus artefact from neuronal signal recorded in the subthalamic nucleus”, Journal of Neuroscience Methods, vol. 198, Issue 1, 2011, pp. 135-146.
Andreassen et al., “Muscle Fibre Conduction Velocity in Motor Units of the Human Anterior Tibial Muscle: a New Size Principle Parameter”, J. Physiol, (1987), 391, pp. 561-571.
Andy, “Parafascicular-Center Median Nuclei Stimulation for Intractable Pain and Dyskinesia (Painful-Dyskinesia)”, Stereotactic and Functional Neurosurgery, Appl. Neurophysiol., 43, No. 3-5, 1980, pp. 133-144.
Bahmer et al., “Application of triphasic pulses with adjustable phase amplitude ratio (PAR) for cochlear ECAP recording: I. Amplitude growth functions”, Journal of Neuroscience Methods, Clinical Neuroscience, 2012, vol. 205, pp. 202-211.
Bahmer et al., “Effects of electrical pulse polarity shape on intra cochlear neural responses in humans: Triphasic pulses with cathodic second phase”, Hearing Research, 2013, vol. 306, pp. 123-130.
Baltuch et al., “Deep brain stimulation for Parkinson's disease”, CRC Press, 2007, 108.
Balzer et al., “Localization of cervical and cervicomedullary stimulation leads for pain treatment using median nerve somatosensay evoked potential collision testing”, Journal of Neurosurgery, Jan. 2011, vol. 114, No. 1: pp. 200-205.
Blum, A. R. “An Electronic System for Extracellular Neural Stimulation and Recording”, Dissertation, Georgia Institute of Technology, Aug. 2007, Retrieved from http://smartech.gatech.edu/handle/1853/16192 on Jan. 30, 2012.
Borg et al., “Conduction velocity and refractory period of single motor nerve fibres in antecedent poliomyelitis”, Journal of Neurology, Neurosurgery, and Psychiatry, vol. 50, 1987, 443-446.
Bratta et al., “Orderly Stimulation of Skeletal Muscle Motor Units with Tripolar Nerve Cuff Electrode”, IEEE Transactions on Biomedical Engineering, vol. 36, No. 8, 1989, pp. 836-843.
Brown et al., “Impact of Deep Brain Stimulation on Upper Limb Askinesia in Parkinson's Disease”, Annals of Neurology, 45, No. 4, 1999, pp. 473-488.
Budagavi et al., “Modelling of compound nerve action potentials health and disease”, Engineering in Medicine and Biology Society, 1992 14th Annual International Conference of the IEEE. vol. 6. IEEE, 1992. pp. 2600-2601.
Casey et al., “Separation of Mixed Audio Sources by Independent Subspace Analysis”, Mitsubishi Electric Research Laboratories (2001), 8 pgs.
Celestin et al., “Pretreatment Psychosocial Variables as Predictors of Outcomes Following Lumbar Surgery and Spinal Cord Stimulation: A Systematic Review and Literature Synthesis”, American Academy of Pain Medicine, 2009, vol. 10, No. 4, pp. 639-653. doi: 10.1111/j. 1526-4637.2009.00632.X.
Cong et al., “A 32-channel modular bi-directional neural interface system with embedded DSP for closed-loop operation”, 40th European Solid State Circuits Conference (ESSCIRC), 2014, pp. 99-102.
Connolly et al., “Towards a platform for prototyping control systems for optimization of neuromodulation therapies”, IEEE Biomedical Circuits and Systems Conference (BioCAS), 2015, pp. 1-4.
Coquery et al., “Backward and forward masking in the perception of cutaneous stimuli”, Perception & Psychophysics, 1973, vol. 13.No. 2, pp. 161-163.
Dawson, G. D., “The relative excitability and conduction velocity of sensory and motor nerve fibres in man”, Journal of Physiology, 1956, vol. 131(2), pp. 436-451.
De Ridder et al., “Burst Spinal Cord Stimulation toward Paresthesia-Free Pain Suppression”, Nuerosurgery—online.com, May 2010, vol. 66, No. 8, pp. 986-990.
Delgado et al., “Measurement and interpretation of electrokinetic phenomena”, Pure Appl. Chem., 2005, vol. 77, No. 10, pp. 1753-1805.
Devergnas et al., A “Cortical potentials evoked by deep brain stimulation in the subthalamic area”, Frontiers in System Neuroscience, May 13, 2011, vol. 5, Article 30, 2011, doi: 10.3389/fnsys.2011.00030.
Dijkstra, E. A. “Ultrasonic Distance Detection for a Closed-Loop Spinal Cord Stimulation System”, Proceedings—19th International Conference—IEEE/EMBS Oct. 30-Nov. 2, 1997, Chicago, IL., 4 pgs.
Dillier, N. et al., “Measurement of the electrically evoked compound action potential via a neural response telemetry system”, Ann. Otol. Rhinol. Laryngol., vol. 111, No. 5, May 2002, pp. 407-414.
Doiron et al., “Persistent Na+ Current Modifies Burst Discharge By Regulating Conditional Backpropagation of Dendritic Spikes”, Journal of Neurophysiology 89, No. 1 (Jan. 1, 2003): 324-337, doi:10.1152/jn.00729.2002.
England et al., “Increased Numbers of Sodium Channels Form Along Demyelinated Axons”, Brain Research 548, No. 1-2 (May 10, 1991): 334-337.
Fagius, J. et al. “Sympathetic Reflex Latencies and Conduction Velocities in Normal Man”, Journal of Neurological Sciences, 1980. vol. 47, pp. 433-448.
Falowski et al., “Spinal Cord Stimulation: an update”, Neurotherapeutics: The Journal of the American Society for Experimental NeuroTherapeutics 5, No. 1, Jan. 2008, pp. 86-99.
Fisher, “F-Waves—Physiology and Clinical Uses”, TheScientificWorldJournal, (2007) 7, pp. 144-160.
Fitzpatrick et al., “A Nerve Cuff Design for the Selective Activation and Blocking of Myelinated Nerve Fibers”, IEEE Engineering in Medicine and Biology Society, vol. 13, No. 2, 1991, pp. 906-907.
Franke et al., FELIX “An Online Spike Detection and Spike Classification Algorithm Capable of Instantaneous Resolution of Overlapping Spikes”, Journal of Computational Neuroscience, 2010, vol. 29, No. 1-2, pp. 127-148.
French et al., “Information transmission at 500 bits/s by action potentials in a mechanosensory neuron of the cockroach”, Neuroscience Letters, vol. 243, No. 1-3, Feb. 1, 1998, pp. 113-116.
Fuentes et al., “Spinal Cord Stimulation Restores Locomotion in Animal Models of Parkinson's Disease”, Science, vol. 323, No. 5921, Mar. 20, 2009, pp. 1578-1582.
Gad et al., “Development of a multi-electrode array for spinal cord epidural stimulation to facilitate stepping and standing after a complete spinal cord injury in adult rats”, Journal of NeuroEngineering and Rehabilitation 2013, 10:2, 18 pgs., http://www.jneuroengrehab.com/content/10/1/2.
George et al., “Vagus nerve stimulation: a new tool for brain research and therapy”, Biological Psychiatry 47, No. 4, Feb. 15, 2000, pp. 287-295.
Gnadt et al., “Spectral Cancellation of Microstimulation Artifact for Simultaneous Neural Recording In Situ”, IEEE Transactions on Biomedical Engineering, Oct. 2003, Date of Publication: Sep. 23, 2003, vol. 50, No. 10, pp. 1129-1135, DOI: 10.1109/TBME.2003.816077.
Goodall et al., “Modeling Study of Activation and Propagation delays During Stimulation of Peripheral Nerve Fibres with a Tripolar Cuff Electrode”, IEEE Transactions on Rehabilitation Engineering, Sep. 1995, vol. 3, No. 3, pp. 272-282.
Gorman et al., “ECAP Mapping of the Spinal Cord: Influence of Electrode Position on Aβ Recruitment”, (2012)., In 16th Annual Meeting. Presented at the North American Neuromodulation Society, Las Vegas, NV, 2 pgs.
Gorman et al., “Neural Recordings for Feedback Control of Spinal Cord Stimulation: Reduction of Paresthesia Variability.”, 2013, In International Neuromodulation Society 11th World Congress, presented at the International Neuromodulation Society 11th World Congress, Berlin, Germany, 2 pgs.
Hallstrom et al., “Distribution of lumbar spinal evoked potentials and their correlation with stimulation-induced paresthesiae”, Electroencephalography and Clinical Neurophysiology, Mar.-Apr. 1991, vol. 80, No. 2, pp. 126-139, doi:10.1016/0168-5597(91)90150-V.
Harper et al., “Conduction Velocity is Related to Morphological Cell Type in Rat Dorsal Root Ganglion Neurones”, J. Physiol, (1985), vol. 359, pp. 31-46.
He et al., “Perception threshold and electrode position for spinal cord stimulation”, Pain, vol. 59, (1994), pp. 55-63.
Herreras, “Local Field Potentials: Myths and Misunderstandings”, Frontiers in Neural Circuits, Dec. 15, 2016, vol. 10, Article 1101, 16 pgs., doi: 10.3389/fncir.2016.00101.
Holsheimer et al., “Optimum Electrode Geometry for Spinal Cord Stimulation: the Narrow Bipole and Tripole”, Medical and Biological Engineering and Computing, 1997, vol. 35, No. 5, pp. 493-497.
Holsheimer et al., “Significance of the Spinal Cord Position in Spinal Cord Stimulation”, Acta Neurochir (1995) [Suppl] 64, pp. 119-124.
Holsheimer et al., “Spinal Geometry and Paresthesia Coverage in Spinal Cord Stimulation”, Neuromodulation, 1998, vol. 1, No. 3, pp. 129-136.
Howell et al., “Evaluation of Intradural Stimulation Efficiency and Selectivity in a Computational Model of Spinal Cord Stimulation”, PLOS ONE, DOI:10.1371/journal.pone.0114938, Dec. 23, 2014.
Huff, Terry B. et al., “Real-Time CARS Imaging Reveals a Calpain-Dependent Pathway for Paranodal Myelin Retraction during High-Frequency Stimulation”, PLoS ONE, vol. 6, Issue 3 (Mar. 3, 2011): e17176, 11 pgs., doi:10.1371/journal.pone.0017176.
Jang et al., “Single Channel Signal Separation Using Time-Domain Basis Functions”, IEEE Signal Processing Letters, Jun. 2003, vol. 10, No. 6, 13 pgs.
Jang et al., “A Maximum Likelihood Approach to Single-channel Source Separation”, Journal of Machine Learning Research, Dec. 2003, vol. 4, pp. 1365-1392.
Jeffrey et al., “A reliable method for intracranial electrode implantation and chronic electrical stimulation in the mouse brain”, BMC Neuroscience. Biomed Central. London, GB. vol. 14. No. 1, Aug. 6, 2013 (Aug. 6, 2013), pp. 1-8.
Jones et al., “Scaling of Electrode—Electrolyte Interface Model Parameters In Phosphate Buffered Saline”, IEEE Transactions on Biomedical Circuits and Systems, 2015, vol. 9, No. 3, pp. 441-448, DOI: 10.1109/TBCAS.2014.4223759.
Kent, “Characterization of Evoked Potentials During Deep Brain Stimulation in the Thalamus”, Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/8195, 2013. https://dukespace.lib.duke.edu/dspace/handle/10161/8195.
Kent et al., “Instrumentation to Record Evoked Potentials for Closed-Loop Control of Deep Brain Stimulation”, Conf. Proc. IEEE Eng. Med Biol. Sol, Aug. 2012, pp. 6777-6780, doi:10.1109/IEMBS.20113.6091671.
Kent et al., AR “Recording evoked potentials during deep brain stimulation: development and validation of instrumentation to suppress the stimulus artefact”, J Neural Eng., Jun. 2012, vol. 9, No. 3, 036004, doi: 10.1088/1741-2560/9/3/036004.
Kim et al., “A Wavelet-Based Method for Action Potential Detection From Extracellular Neural Signal Recording With Low Signal-to-Noise Ratio”, IEEE Transactions on Biomedical Engineering, Aug. 2003, vol. 50. No. 8, pp. 999-1011.
Kim et al., “Cell Type-specific Changes of the Membrane Properties of Peripherally-axotomized Dorsal Root Ganglion Neurons in a Rat Model of Neuropathic Pain”, Neuroscience, vol. 86, No. 1, May 21, 1998, pp. 301-309, doi: 10.1016/50306-4522(98)00022-0.
Kopelman et al., “Attempted Reversible Sympathetic Ganglion Block by an Implantable Neurostimulator”, Interactive CardioVascular and Thoracic Surgery, Feb. 7, 2012, vol. 14, Issue 5, pp. 605-609, doi: 10.1093/icvts/ivr137.
Krames et al., “Neuromodulation”, 1st Edition, Academic Press, 2009, pp. 540-541.
Krarup, Christian “Compound sensory action potential in normal and pathological human nerves”, Muscle & Nerve, Apr. 2004, vol. 29, No. 4, pp. 465-483.
Krishnan et al., “Excitability Differences in Lower-Limb Motor Axons During and After Ischemia”, Muscle & nerve, vol. 31, No. 2 (2005), pp. 205-213.
Kumar et al., “Deep Brain Stimulation for Intractable Pain: a 15-year Experience”, Neurosurgery, Issue 40, No. 4, Apr. 1997, pp. 736-747.
Kumar et al., “Double-blind evaluation of subthalamic nucleus deep brain stimulation in advanced Parkinson's disease”, by the American Academy of Neurology, 51, No. 3, Sep. 1, 1998, pp. 850-855.
Kumar et al., “Globus Pallidus Deep Brain Stimulation for Generalized Dystonia: Clinical and PET Investigation”, Sep. 11, 1999, vol. 53, No. 4, pp. 871-874, doi:10.1212/WNL.53.4.871.
Laird et al., “A Model of Evoked Potentials in Spinal Cord Stimulation”, IEEE Engineering in Medicine & Biology Society, 35th Annual Conference. Osaka, Japan: Jul. 3-7, 2013, pp. 6555-6558.
Laird-Wah, “Improving Spinal Cord Stimulation: Model-Based Approaches to Evoked Response Telemetry”, UNSW Thesis, Aug. 2015, 279 pgs.
Lempka, Scott “The Electrode-Tissue Interface During Recording and Stimulation in The Central Nervous System”, Thesis, 155 pgs., published May 2010.
Levy et al., “Incidence and Avoidance of Neurologic Complications with Paddle Type Spinal Cord Stimulation Leads”, Neuromodulation, Sep. 2011, vol. 14, No. 15, pp. 412-422, https://doi.org/10.1111/j. 1525-1403.2011.00395.x.
Li, S. et al., “Resonant antidromic cortical circuit activation as a consequence of high-frequency subthalamic deep-brain stimulation”, J Neurophysiol. Dec. 2007; 98(6): 3525-37. First published Oct. 10, 2007. doi:10.1152/jn.00808.2007.
Ma et al., “Similar Electrophysiological Changes in Axotomized and Neighboring Intact Dorsal Root Ganglion Neurons”, Journal of Neurophysiology 89, No. 3 (Mar. 1, 2003): 1588-1602, doi:10.1152/jn.00855.2002.
Macefield, “Spontaneous and Evoked Ectopic Discharges Recorded from Single Human Axons”, Muscle & Nerve 21, No. 4, Apr. 1998, pp. 461-468.
Mahnam et al., “Measurement of the current-distance relationship using a novel refractory interaction technique”, J. Neural Eng. 6(2) 036005, published May 20, 2009, 22 pgs.
Mannan et al., “Identification and Removal of Physiological Artifacts From Electroencephalogram Signals: A Review”, IEEE Access, May 31, 2018 , vol. 6, pp. 30630-30652, https://doi.org/10.1109/ACCESS.2018.2842082.
Markandey, Vishal “ECG Implementation on the TMS320C5515 DSP Medical Development Kit (MDK)”, Texas Instruments Application Report Jun. 2010, 35 pgs.
Matzner et al., “Na+ Conductance and the Threshold for Repetitive Neuronal Firing”, Brain Research 597, No. 1 (Nov. 27, 1992): 92-98, doi: 10.1016/0006-8993(92)91509-D.
McGill, Kevin et al., “On the Nature and Elimination of Stimulus Artifact in Nerve Signals Evoked and Recorded Using Surface Electrodes”, IEEE Transactions on Biomedical Engineering, vol. BME-29, No. 2, Feb. 1982, pp. 129-137.
Melzack et al., “Pain mechanisms: a new theory”, Science, New York, New York, vol. 150, No. 3699, Nov. 19, 1965, pp. 971-979.
Miles et al., “An Electrode for Prolonged Stimulation of the Brain”, Proc. 8th Meeting World Soc. Stereotactic and Functional Neurosurgery, Part III, Zurich, 1981, Appl. Neurophysiol, 45, 1982, pp. 449-445.
Misawa et al., “Neuropathic Pain is Associated with Increased Nodal Persistent Na(+) Currents in Human Diabetic Neuropathy”, Journal of the Peripheral Nervous System: JPNS, 14, No. 4 (Dec. 2009): 279-284.
Niazy et al., “Removal of FMRI environment artifacts from EEG data using optimal basis sets”, NeuroImage, 2005, vol. 28, pp. 720-737, available online Sep. 16, 2005, doi: 10.1016/j.neuroimage.2005.06.0607.
Nordin et al., “Ectopic Sensory Discharges and Paresthesiae in Patients with Disorders of Peripheral Nerves, Dorsal Roots and Dorsal Columns”, Pain 20, No. 3 (Nov. 1984): 231-245, doi:10.1016/0304-3959(84)90013-7.
North et al., “Prognostic value of psychological testing in patients undergoing spinal cord stimulation: a prospective study”, Neurosurgery, Aug. 1, 1996, vol. 39, Issue 2, pp. 301-311. https://doi.org/10.1097/00006123-199608000-00013.
Oakley et al., “Spinal Cord Stimulation: Mechanisms of Action”, Spine 27, No. 22, Nov. 15, 2002, pp. 2574-2583.
Oakley et al., “Transverse Tripolar Spinal Cord Stimulation: Results of an International Multicenter Study”, Neuromodulation, vol. 9, No. 3, 2006, pp. 192-203.
Obradovic et al., “Effect of pressure on the spinal cord during spinal cord stimulation in an animal model”, Poster, 18th Annual Meeting of the North American Neuromodulation Society, Dec. 11-14, 2014, Las Vegas.
Oh et al., “Long-term hardware-related complications of deep brain stimulation”, Neurosurgery, vol. 50, No. 6, Jun. 2002, pp. 1268-1274, discussion pp. 1274-1276.
Olin et al., “Postural Changes in Spinal Cord Stimulation Perceptual Thresholds”, Neuromodulation, vol. 1 , No. 4, 1998, pp. 171-175.
Opsommer, E. et al. “Determination of Nerve Conduction Velocity of C-fibres in Humans from Thermal Thresholds to Contact Heat (Thermode) and from Evoked Brain Potentials to Radiant Heat (CO2 Laser)”, Neurophysiologie Clinique 1999, vol. 29, pp. 411-422.
Orstavik et al., “Pathological C-fibres in patients with a chronic painful condition”, Brain (2003), 126, 567-578.
Ouyang et al., “Compression Induces Acute Demyelination and Potassium Channel Exposure in Spinal Cord”, Journal of Neurotrauma 27, No. 6, Jun. 2010, 1109-1120, doi:10.1089/neu.2010.1271.
Parker et al., “Closing the Loop in Neuromodulation Therapies Spinal Cord Evoked Compound Action Potentials During Stimulation for Pain Management (230).”, 2011, In 15th Annual Meeting, North American Neuromodulation Society (p. 48). Presented at the North American Neuromodulation Society, Las Vegas.
Parker et al., “Compound Action Potentials Recorded in the Human Spinal Cord During Neurostimulation for Pain Relief”, Pain, vol. 153, 2012, pp. 593-601.
Parker et al., “Electrically Evoked Compound Action Potentials Recorded From the Sheep Spinal Cord”, Neuromodulation, vol. 16, 2013, pp. 295-303.
Penar et al., “Cortical Evoked Potentials Used for Placement of a Laminotomy Lead Array: A Case Report”, Neuromodulation: Technology at the Neural Interface, accessed Apr. 19, 2011, doi: 10.1111/j.1525-1403.2011.00352.x.
Peterson et al., “Stimulation artifact rejection in closed-loop, distributed neural interfaces”, ESSCIRC, 42nd European Solid-State Circuits Conference, Lausanne, 2016, pp. 233-235.
Rattay, “Analysis of Models for External Stimulation of Axons”, IEEE Transactions on Biomedical Engineering, vol. BME-33, No. 10, Oct. 1986, pp. 974-977.
Richter et al., “EMG and SSEP Monitoring During Cervical Spinal Cord Stimulation”, Journal of Neurosurgical Review 2011, Southern Academic Press, 1(S1), 2011, pp. 61-63.
Ridder et al., “Burst Spinal Cord Stimulation for Limb and Back Pain”, World Neurosurgery, 2013, 9 pgs.
Rijkhoff et al., “Acute Animal Studies on the Use of Anodal Block to Reduce Urethral Resistance in Sacral Root Stimulation”, IEEE Transactions on Rehabilitation Engineering, 1994, vol. 2, No. 2, pp. 92-99.
Rijkhoff et al., “Orderly Recruitment of Motoneurons in an Acute Rabbit Model”, Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1998, vol. 20, No. 5, pp. 2564-2565.
Ross et al., “Improving Patient Experience with Spinal Cord Stimulation: Implications of Position-Related Changes in Neurostimulation”, Neuromodulation 2011; e-pub ahead of print. DOI: 10.1111/j.1525-1403.2011.00407.x 6 pages.
Roy et al., “Effects of Electrode Location on Myoelectric Conduction Velocity and Median Frequency Estimates”, J. Appl. Physiol. 61 (4), 1986, pp. 1510-1517.
Sayenko et al., “Neuromodulation of evoked muscle potentials induced by epidural spinal-cord stimulation in paralyzed individuals”, Journal of Neurophysiology, vol. 111, No. 5, 2014, pp. 1088-1099, First published Dec. 11, 2013.
Schmidt et al., “Gating of tactile input from the hand”, Exp Brain Res, 1990, 79, pp. 97-102.
Scott et al., “Compact Nonlinear Model of an Implantable Electrode Array for Spinal Cord Stimulation (SCS)”, IEEE Transactions on Biomedical Circuits and Systems, 2014, vol. 8, No. 3, pp. 382-390.
Siegfried et al., “Bilateral Chronic Electrostimulation of Ventroposterolateral Pallidum: A New Therapeutic Approach for Alleviating all Parkinsonian Symptoms”, Neurosurgery, 35, No. 6, Dec. 1994, pp. 1126-1130.
Siegfried et al., “Bilateral Chronic Electrostimulation of Ventroposterolateral Pallidum: A New Therapeutic Approach for Alleviating All Parkinsonian Symptoms”, Issue: vol. 35(6), Dec. 1994, p. 1126-1130; Copyright: Copyright © by the Congress of Neurological Surgeons; Publication Type: [Technique and Application, ISSN: 0148-396X; Accession: 00006123-199412000-00016; Keywords: Chronic deep brain stimulation, Pallidum, Parkinson's disease, Stereotactic operation.
Siegfried et al., “Intracerebral Electrode Implantation System”, Journal of Neurosurgery, vol. 59, No. 2, Aug. 1983, pp. 356-359.
Srinivasan, S “Electrode/Electrolyte Interfaces: Structure and Kinetics of Charge Transfer”, Fuel Cells, 2006, Chapter 2, 67 Pages.
Stanslaski et al., “Design and Validation of a Fully Implantable, Chronic, Closed-Loop Neuromodulation Device with Concurrent Sensing and Stimulation”, IEEE Transactions on Neural Systems and Rehabilitation Engineering, Jul. 2012, Date of Publication: Jan. 23, 2012, vol. 20, No. 4, pp. 410-421, DOI: 10.1109/TNSRE.2012.2183617.
Struijk, “The Extracellular Potential of a Myelinated Nerve Fiber in an Unbounded Medium and in Nerve Cuff Models”, Biophysical Journal vol. 72 Jun. 1997 2457-2469.
Struijk et al., “Paresthesia Thresholds in Spinal Cord Stimulation: A Comparison of Theoretical Results with Clinical Data”, IEEE Transactions on Rehabilitation Engineering, vol. 1, No. 2, Jun. 1993, pp. 101-108.
Struijk et al., “Excitation of Dorsal Root Fibers in Spinal Cord Stimulation: a Theoretical Study”, IEEE Transactions on Biomedical Engineering, Jul. 1993, vol. 40, No. 7, pp. 632-639.
Sufka et al., “Gate Control Theory Reconsidered”, Brain and Mind, 3, No. 2, 2002, pp. 277-290.
Takahashi et al, “Classification on neuronal activities from tetrode recordings using independent component analysis”, Neurocomputing, (2002), vol. 49, Issues 1-4, pp. 289-298.
Tamura et al., “Increased Nodal Persistent Na+ Currents in Human Neuropathy and Motor Neuron Disease Estimated by Latent Addition”, Clinical Neurophysiology 117, No. 11 (Nov. 2006): 2451-2458, doi:10.1016/j.clinph.2006.07.309.
Tasker, “Deep Brain Stimulation is Preferable to Thalamotomy for Tremor Suppression”, Surgical Neurology, 49, No. 2, 1998, pp. 145-153.
Taylor et al., “Spinal Cord Stimulation for Chronic Back and Leg Pain and Failed Back Surgery Syndrome: A Systematic Review and Analysis of Prognostic Factors”, SPINE, vol. 30, No. 1, 2004, pp. 152-160.
Texas Instruments, “Precision, Low Power Instrumentation Amplifiers”, Texas Instruments SBOS051B Oct. 1995, Revised Feb. 2005, 20 pgs.
Tomas et al., “Dorsal Root Entry Zone (DREZ) Localization Using Direct Spinal Cord Stimulation Can Improve Results of the DREZ Thermocoagulation Procedure for Intractable Pain Relief”, Pain, 2005, vol. 116, pp. 159-163.
Tronnier et al., “Magnetic Resonance Imaging with Implanted Neurostimulators: An In Vitro and In Vivo Study”, Jan. 1999, Neurosurgery, vol. 44(1), pp. 118-125 (Year: 1999).
Tscherter et al., “Spatiotemporal Characterization of Rhythmic Activity in Rat Spinal Cord Slice Cultures”, European Journal of Neuroscience 14, No. 2 (2001), pp. 179-190.
Van Den Berg et al., “Nerve fiber size-related block of action currents by phenytoin in mammalian nerve”, Epilepsia, Nov. 1994, 35(6), pp. 1279-1288.
Villavicencio, Alan T. “Laminectomy versus Percutaneous Electrode Placement for Spinal Cord Stimulation,” Neurosurgery, vol. 46 (2), Feb. 2000, pp. 399-405.
Vleggeert et al., LANKAMP “Electrophysiology and morphometry of the Aalpha- and Abeta-fiber populations in the normal and regenerating rat sciatic nerve”, Experimental Neurology, vol. 187, No. 2, Jun. 1, 2004, Available online Apr. 2, 2004, pp. 337-349.
Woessner, “Blocking Out the Pain, Electric Nerve Block Treatments for Sciatic Neuritis”, Retrieved from: http://www.practicalpainmanagement.com/pain/spine/radiculopathy/blocking-out-pain, Last updated Jan. 10, 2012.
Wolter et al., “Effects of sub-perception threshold spinal cord stimulation in neuropathic pain: A randomized controlled double-blind crossover study”, European Federation of International Association for the Study of Pain Chapters, 2012, pp. 648-655.
Wu et al., “Changes in Aβ Non-nociceptive Primary Sensory Neurons in a Rat Model of Osteoarthritis Pain”, Molecular Pain 6, No. 1 (Jul. 1, 2010): 37, doi: 10.1186/1744-8069-6-37.
Wulfhorst et al., Textile Technology, Carl Hanser Verlag Munich 2006.
Xie et al., “Functional Changes in Dorsal Root Ganglion Cells after Chronic Nerve Constriction in the Rat”, Journal of Neurophysiology, vol. 73, No. 5 (May 1, 1995): 1811-1820.
Xie et al., “Sinusoidal Time-Frequency Wavelet Family and its Application in Electrograstrographic Signal Analysis”, Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 20, No. 3, Oct. 29, 1998, pp. 1450-1453.
Yamada et al., “Extraction and Analysis of the Single Motor Unit F-Wave of the Median Nerve”, EMG Methods for Evaluating Muscle and Nerve Function, InTech, 2012, 15 pgs.
Yearwood, T. L. “Pulse Width Programming in Spinal Cord Stimulation: a Clinical Study”, Pain Physician. 2010. vol. 13, pp. 321-335.
Yingling et al., “Use of Antidromic Evoked Potentials in Placement of Dorsal Cord Disc Electrodes”, Applied Neurophysiology, 1986, vol. 49, pp. 36-41.
Yuan, S. et al. “Recording monophasic action potentials using a platinum-electrode ablation catheter”, Europace. Oct. 2000; 2(4):312-319.
Zhang et al., “Automatic Artifact Removal from Electroencephalogram Data Based on A Priori Artifact Information”, BioMed Research International, Aug. 25, 2015, Article ID 720450, 8 pgs., DOI: https://doi.org/10.1155/2015/720450.
Zhou et al., “A High Input Impedance Low Noise Integrated Front-End Amplifier for Neural Monitoring”, IEEE Transactions on Biomedical Circuits and Systems, 2016, vol. 10, No. 6, pp. 1079-1086.
Extended European Search Report in European Appln No. 19793420.1, dated Dec. 17, 2021, 9 pages.
Related Publications (1)
Number Date Country
20210315502 A1 Oct 2021 US
Continuations (2)
Number Date Country
Parent 15928040 Mar 2018 US
Child 17355036 US
Parent 14117152 US
Child 15928040 US