The present invention relates to the development of closed loop control techniques for switched reluctance motors (SRMs) without a shaft position sensor.
A switched reluctance motor (SRM) is energized phase by phase in sequence to generate reluctance torque and enable smooth motor rotation. A schematic diagram of a three phase switched reluctance motor is shown in
N=M*P (1).
Therefore, the stroke angle(S) in mechanical degrees is defined as,
S=360°/N (2).
When the number of poles is very large and the stroke angle is very small, the SRM is typically operated in open loop as a variable reluctance stepper motor and needs no knowledge of rotor position information during running condition. On the other hand, when the number of poles is small and the stroke angle is very large, the SRM is generally operated in closed loop during running condition and hence, the knowledge of accurate rotor position information is very important to rotate the motor.
Accurate rotor position information is typically obtained from a shaft position sensor. Shaft position sensors are expensive and have reliability problems and hence, the sensorless operation of SRM is desired.
In a typical position sensorless operation of SRM, rotor position estimation is carried out either discretely i.e. once per stroke angle or continuously. Discrete rotor position estimation is ideal for applications where slow speed response is required where as, continuous rotor position estimation is carried out in applications where fast speed response is desired. Rotor position estimation of the SRM can be carried out from the pre-determined knowledge of its non-linear per phase flux-linkage/current characteristics or the inductance/current characteristics as shown in
In a first aspect of the invention, provided is a discrete rotor position estimation method for a synchronized reluctance motor. According to this estimation method, d.c.-link voltage Vdc and a phase current Iph are sensed. A flux-linkage λph of an active phase is calculated from the sensed d.c.-link voltage Vdc and the sensed phase current Iph. The calculated flux-linkage λph is compared with a reference flux-linkage λr. The reference flux-linkage λr corresponds to a reference angle θr which lies between angles corresponding to aligned rotor position and non-aligned rotor position in the synchronized reluctance motor. An estimated rotor position θcal is obtained only once based on the comparison result when the calculated flux-linkage λph is greater than the reference flux-linkage λr. From the estimated rotor position θcal, incremental rotor angle Δθ for every PWM interrupt is calculated. The knowledge of Δθ is finally used to control the motor.
In a second aspect of the invention, provided is a discrete rotor position estimation method for a synchronized reluctance motor. According to the method in the second aspect, a d.c.-link voltage Vdc and a phase current Iph are sensed. A flux-linkage λph of an active phase is calculated from the sensed d.c.-link voltage Vdc and the sensed phase current Iph. The calculated flux-linkage λph is compared with either two or three reference flux-linkages such as λr1, . . . . The reference flux-linkages λr1, . . . correspond to a reference rotor angles θr1, . . . all of them lying between angles corresponding to aligned rotor position and non-aligned rotor position in the synchronized reluctance motor. Rotor positions θcal1, . . . are obtained based on the comparison results, twice or thrice when the calculated flux-linkage λph is greater than the reference flux-linkage λr1, . . . . From the estimated rotor positions θcal1, . . . incremental rotor angles for every PWM interrupt are also calculated twice or thrice such as Δθ1, . . . . The values of the incremental rotor angles are averaged to obtain the final incremental rotor angle Δθ. The knowledge of the final incremental rotor angle Δθ is used to control the motor.
In the first aspect, the value of the estimated rotor position θcal obtained from comparison result typically equals the reference rotor angle θr. However, the estimated rotor position θcal may be further modified with an incremental angle φ corresponding to the reference rotor angle θr to obtain a more accurate estimated rotor position. This idea can also be extended to the second aspect.
In a third aspect of the invention, provided is a discrete rotor position estimation method for a synchronized reluctance motor. According to the method, a d.c.-link voltage Vdc and a phase current Iph are sensed. A flux-linkage λph of an active phase is calculated from the sensed d.c.-link voltage Vdc and the sensed phase current Iph. The calculated flux-linkage λph is compared with a reference flux-linkage λr. The reference flux-linkage λr corresponds to a reference angle θr which lies between angles corresponding to aligned rotor position and non-aligned rotor position of the synchronized reluctance motor. An estimated rotor position θcal is calculated from the calculated flux-linkage λph using either one of the inductance model or the flux linkage model of the active phase, only once when the calculated flux-linkage λph is greater than the reference flux-linkage λr. In this case, the ideal instant to estimate the rotor position may be at one PWM interrupt before the next phase is turned ON. From the estimated rotor position θcal, incremental rotor angle Δθ for every PWM interrupt is calculated. The knowledge of Δθ is finally used to control the motor.
The above idea can be also extended to estimate the rotor position either twice or thrice such as θcal1, . . . from the calculated flux-linkage λph using either one of the inductance model or the flux linkage model of the active phase, at every consecutive PWM interrupt when the calculated flux-linkage λph is greater than the reference flux-linkage λr. From the estimated rotor positions θcal1, . . . incremental rotor angles for every PWM interrupt are also calculated twice or thrice such as Δθ1, . . . . The values of the incremental rotor angles are averaged to obtain the final incremental rotor angle Δθ. The knowledge of the final incremental rotor angle Δθ is used to control the motor.
In a fourth aspect of the invention, provided is a discrete rotor position estimation method for a synchronized reluctance motor. According to the method, a phase inductance of the synchronized reluctance motor is detected. A minimum region of the phase inductance during turn-on of an active phase is identified. An approximate rotor position θapp is determined from the identified minimum inductance region. From the approximate rotor position θapp, incremental rotor angle Δθ for every PWM interrupt is calculated. The knowledge of Δθ is finally used to control the motor.
In a fifth aspect of the invention, provided is a control method of a synchronized reluctance motor and a technique to obtain the incremental rotor angle Δθ for every PWM interrupt. According to the control method, the estimated rotor position θcal is obtained by the previously described estimation methods. An absolute rotor position θabs is calculated from the estimated rotor position θcal by adding a stroke angle of the motor. The incremental rotor angle Δθ is determined by processing an error between the absolute rotor position θabs and a finally estimated rotor position θest through either one of a proportional-integral (PI) control and a proportional control. The finally estimated rotor position θest in every predetermined period is generated by adding the incremental rotor angle Δθ to the finally estimated rotor position θest in the previous cycle. Turn-on and turn-off angles of each phase is controlled based on the finally estimated rotor position θest.
In a sixth aspect of the invention, provided is a control method of a synchronized reluctance motor and a technique to obtain the incremental rotor angle Δθ for every PWM interrupt. According to the control method, an incremental rotor angle Δθ is calculated by counting the number of PWM interrupts between two consecutive instants when the estimated rotor position θcal is obtained by the estimation method according to the invention. Delays to turn-off an active phase and turn-on the next phase is generated, in which the delays are normally defined with respect to the reference rotor position θr. The delays are adjusted with the estimated rotor position θcal to turn-off the active phase and turn-on the next phase. A turn-on angle θon and a turn-off angle θoff of each phase of the motor are controlled based on the adjusted delays decided by the incremental rotor angle Δθ.
In the above control methods, a speed ω of the motor may be calculated from the incremental rotor angle Δθ in a relatively slower timer interrupt compared to a PWM interrupt, and a turn-on angle θon and a turn-off angle θoff of each phase of the motor may be varied continuously based on the speed ω and the torque demand of the motor.
In a seventh aspect of the invention, provided is a control method of a synchronized reluctance motor. According to the control method, a peak of a phase current and a negative change rate of phase current in each phase are continuously monitored. Turn-off angle is kept fixed and turn-on angle is advanced so that a pre-determined peak phase current and a negative rate of change of phase current corresponding to the maximum torque are achieved.
In the control method, instead of monitoring the negative rate of change of phase current, a lead angle φ between the peak current and the peak flux in each phase may be detected to judge the maximum torque at the rated speed condition.
The present invention relates to the closed loop control techniques of switched reluctance motors (SRM) without a shaft position sensor where the discrete rotor position estimation techniques are followed. Three typical discrete rotor estimation techniques I, II and III are described briefly below.
(Discrete Rotor Position Estimation Technique I)
In the discrete rotor position estimation technique I, the per phase flux-linkage at rotor position θr as shown in
λr=ΣAnIphn (3).
θr is defined as any rotor position near the mid-position between the aligned and the non-aligned rotor position which is shown by the shaded area in
θr=θm±α (4)
where, θm is the exact middle position between the aligned and the non-aligned rotor position and α is the deviation angle whose maximum value αmax is equal to 30° electrical from the middle position θm and αmax are expressed in mechanical degrees as follows,
θm=(θa+θn)/2 (5)
and
αmax=30°/P (6).
θa is defined as the aligned position i.e. when a rotor pole aligns with a stator pole. θn is defined as the non-aligned position i.e. when a rotor pole is in between two stator poles as shown in
Use of fast processors will enable to calculate polynomial expressions easily. The reference flux-linkage value λr with respect to phase current Iph is pre-determined off-line by locking the rotor at position θr and carrying out standard experiments. During motor rotation, the flux-linkage per phase λph is calculated on-line at every PWM interrupt or at every half-cycle PWM interrupt of the processor by sensing the d.c.-link voltage Vdc and the phase current Iph of the inverter circuit as shown in
λph=(Vdc−Iph*R−Vp)*dt (7)
where R is the phase resistance of the SRM in the high frequency mode and Vp is the voltage drop across the power devices. An average value of mutual flux (maximum 10% of the maximum per phase flux) should be considered for more accurate calculation of the per phase flux-linkage λph. The on-line calculated per phase flux-linkage λph is continuously compared with the reference flux-linkage λr in the processor. At the instant when λph is equal to λr, the absolute discrete rotor position θabs in mechanical degrees is determined or estimated as given below
θabs=K*360°/N+θcal (8)
where, θcal=θr and K=(N−1).
From the information of θabs, closed loop control techniques are generated to rotate the motor.
(Discrete Rotor Position Estimation Technique II)
In the discrete rotor position estimation technique II, similarly the d.c.-link voltage Vdc and the phase current Iph are sensed and the flux-linkage per phase λph is calculated on-line from equation (7) at every PWM interrupt of the processor. From the knowledge of λph the exact rotor position θcal is calculated only once either from the flux-linkage model or the inductance model of the active phase when the calculated flux-linkage λph is greater than the reference flux-linkage λr. The ideal instant to estimate the rotor position may be at one PWM interrupt before the next phase is turned ON. This is shown in
(Discrete Rotor Position Estimation Technique III)
The discrete rotor position estimation technique III is very simple and does not involve any exact rotor position estimation θcal as described in techniques I and II. This scheme includes identifying the minimum inductance region during the turn-on of a new phase so that the turn-on angle always lies in the minimum inductance region. This has been made possible by comparing the measured actual phase current Iph with an estimated phase current Is after a finite time interval to from the turn-on of a new phase as shown in
Is=(Vdc−IphR−Vp)*t0/Lmin (9).
The value of minimum inductance Lmin is constant for a particular motor and does not vary with the phase current Iph as shown in
In the discrete rotor position estimation techniques of I, II and III, a rotor position estimation error less than one mechanical degree is difficult to achieve. A small error in rotor position estimation at a particular speed can decrease the motoring torque i.e. the motor performance to a large extent. Hence, optimum control techniques are invented to minimize rotor position estimation error so that high performance is always achieved for the sensorless drive of SRM's. In addition, control techniques are invented to obtain the high torque even if there is a rotor position estimation error.
In the discrete rotor position estimation technique I, the per phase flux-linkage λph is calculated on-line in every PWM interrupt or every PWM half-cycle interrupt by sensing the d.c.-link voltage Vdc and the phase current Iph and is defined by the equation (7) above. The incremental change of per phase flux-linkage λph at the valley of every PWM interrupt of the processor is shown in
θabs=K*360°/N+(θr+φ) (10).
The combined angle (↓r+φ) now defines the exact rotor position θcal. The angle φ can be obtained from a pre-determined two dimensional look-up table in which Δλ and phase current Iph are the variable parameters. Δλ is defined as the difference between λph and λr.
Alternatively, by the discrete rotor position estimation technique II, exact rotor position θcal should be calculated at the instant when the per phase flux-linkage λph is greater than the reference flux-linkage λr. Exact rotor position estimation can be carried out by analytical methods based on the flux-linkage model or the inductance model of the SRM. The absolute discrete rotor position θabs in one mechanical cycle is always calculated from the information of the exact rotor position θcal and is expressed by equation (8). The value of θabs which is defined in mechanical degrees in equation (8) can also be expressed in electrical degrees by considering the number of rotor poles (P).
The SRM 1 is driven by the inverter 2 which includes switching devices T1 to T6 as shown in
In the control strategy I involving the discrete rotor position estimation technique I, phase current Iph and d.c.-link voltage Vdc are sensed to calculate the per phase flux-linkage λph (by block 11). The flux-linkage λph is compared with the reference flux-linkage λr (by block 11a). Referring to the comparison result, when the phase flux-linkage λph is greater than the reference flux-linkage row the rotor position θcal is once calculated (by block 12). The absolute discrete rotor position θabs is calculated (by block 13) and continuous rotor position θest is estimated from the absolute discrete rotor position θabs in the following way (by block 14). At the instant when the exact rotor position θcal is calculated (by block 12), the error between the absolute rotor position θabs and the estimated rotor position θest is calculated and processed in a proportional-integral (PI) control method (by block 15) to give the incremental rotor angle Δθ in every PWM interrupt. Δθ is expressed as
Δθ=Kp*θerr+ΣKI*θerr (11)
where, θerr=(θabs−θest). At the start of rotor position estimation, θest is initialized as θabs and then calculated as follows
θest(n)=θest(n−1)+Δθ (12).
Instead of a proportional-integral control method, a proportional control method can also be used.
The turn-on angle θon and turn-off angle θoff of each phase is controlled by θest which can be expressed either in mechanical or electrical degrees (by block 18). For achieving the turn-on and the turn-off of each phase at any point in between two PWM interrupts, a very fast timer interrupt compared to the PWM interrupt has been defined.
The speed (ω) of the motor is calculated (by block 16) from the incremental rotor angle Δθ in a relatively slow timer interrupt compared to the PWM interrupt. It is given by,
ω=Δθ*fs (13)
where, fs is the PWM carrier frequency. The speed ripple is filtered by processing it through a low-pass filter (LPF) 17. If the per phase flux-linkage λph is calculated in every half-cycle PWM interrupt, the incremental rotor displacement Δθ has to be defined for every half-cycle PWM interrupt and the speed (ω) of the motor is expressed as,
ω=2*Δθ*fs (14).
The turn-on and the turn-off angle together with the phase voltage reference (Vph*) or phase current reference (Iph*) are continuously calculated within the processor and are varied depending on the speed (ω) and the torque demand of the motor (by blocks 18-20). In closed loop control, the difference between the commanded speed (ω*) and the calculated speed (ω) is processed through a proportional-integral (PI) control block 20 to generate either the phase voltage reference (Vph*) or the phase current reference (Iph*). Either the phase voltage reference (Vph*) is compared with the PWM carrier waveform or the phase current reference (Iph*) is compared with the original phase current Iph to finally generate the pulse-width modulated (PWM) base drive waveforms (by block 21).
A gate drive circuit 22 controls an inverter 2 using the pulse-width modulated (PWM) waveforms and turn-on and turn-off angles from the turn-on and turn-off controller 18 to drive the SRM 1.
In the control strategy II involving the discrete rotor position estimation technique I, instead of calculating θest continuously to control the turn-on and turn-off angle the incremental rotor displacement Δθ in every PWM interrupt can be calculated in an alternative way which can generate appropriate delays to turn-off the active phase and turn-on the next phase. The speed (ω) of the motor is also calculated from the incremental rotor angle Δθ (by block 16), and the closed loop control can be executed in the similar manner described in the first exemplary embodiment. In the control strategy II, Δθ can be calculated by counting the number of PWM interrupts between two consecutive instants when the per phase flux-linkage λph is greater than the reference flux-linkage λr (by blocks 13a and 15a), that is, between the instants of θcal(n) and θcal(n−1). It is given by,
Δθ=stroke angle(S)/number of PWM interrupts (15).
In equation (15), Δθ is expressed in mechanical degrees but also can be expressed in electrical degrees by considering the number of rotor poles. The exact rotor position θcal at the instant when the per phase flux-linkage λph is greater than the reference flux-linkage λr is calculated in a similar way as described in the first exemplary embodiment. Calculation of θcal helps to adjust the turn-on and the turn-off delay and this is explained as follows. The turn-off delay (x°) of the active phase and the turn-on delay (y°) of the next phase are always defined with respect to the reference rotor position θr as shown in
X1°=x°−φ (16) and
Y1°=y°−φ (17).
For achieving the turn-on and the turn-off of each phase at any point in between two PWM interrupts, a very fast timer interrupt compared to the PWM interrupt has been defined as explained in the first exemplary embodiment. In addition, if the per phase flux-linkage λph is calculated in every half-cycle PWM interrupt, the incremental rotor displacement Δθ has to be defined for every half-cycle PWM interrupt.
The above control technique will help to achieve both high performance as well as maximum torque of the motor at the rated speed.
The discrete rotor position estimation technique I described in the first and the second exemplary embodiment includes comparing the per phase flux-linkage λph with only one reference flux-linkage λr defined for a rotor position θr. Hence, in both cases, exact rotor position θcal and incremental rotor angle Δθ are calculated only once at the instant when the per phase flux-linkage λph is greater than the reference flux-linkage λr during the conduction of each active phase. The discrete rotor position estimation technique I can be extended by defining two reference flux-linkages λr1 and λr2 at rotor positions θr1 and θr2 respectively as shown in
Alternatively, the discrete rotor position estimation technique II can be extended by calculating the exact rotor positions either twice (θcal1 and θcal2) or thrice (θcal1, θcal2 and θcal3) from the calculated flux-linkage θph by using either one of the inductance model or the flux linkage model of the active phase, at every consecutive PWM interrupt when the calculated flux-linkage λph is greater than the reference flux-linkage λr corresponding to reference rotor angle θr.
Now from θcal1, . . . by following either the control strategy I or the control strategy II, incremental rotor angle for every PWM interrupt is also calculated twice (Δθ1 and Δθ2) or thrice (Δθ1, Δθ2 and Δθ3) during the active conduction of each phase. The final incremental rotor angle Δθ for every PWM interrupt is the average of all the calculated incremental rotor angle. The final incremental rotor angle Δθ is used for the estimation of rotor position θest in control strategy I or providing the necessary delay for the turn-on or the turn-off a phase as described in control strategy II. The speed (ω) of the motor is also calculated from the final incremental rotor angle Δθ. A control block diagram using the control strategy I and calculating the incremental rotor angle for every PWM interrupt twice is shown in
In the discrete rotor position estimation technique II, the d.c-link voltage Vdc and the phase current Iph are sensed and the flux-linkage per phase λph is calculated on-line from equation (7) at every PWM interrupt of the processor. From the knowledge of λph, the exact rotor position θcal is calculated either from the flux-linkage model or the inductance model of the active phase at one PWM interrupt before the next phase is turned ON. This is shown in
From the knowledge of θabs, control strategies I and II are again applied in the discrete rotor position estimation technique II to rotate the motor in closed loop.
There exist many industrial applications which require motor operation only at the rated speed and the maximum torque condition instead of the continuous variable speed-torque operation. For such applications, the discrete rotor position estimation technique III is proposed.
The discrete rotor position technique III is very simple and does not involve any exact rotor position estimation θcal from the flux-linkage model or the inductance model as described in techniques I and II. The discrete rotor position technique III includes identifying the minimum inductance region during the turn-on of a new phase so that the turn-on angle always lies in the minimum inductance region. This has been made possible by comparing the measured actual phase current Iph with the estimated phase current Is after a finite time interval t0 from the turn-on of a new phase as shown in
The locking of a particular phase and open loop starting technique with a forced drive always ensures that the turn-on angle is initially synchronized with the minimum inductance region. Coinciding the turn-on angle always with the minimum inductance region also guarantees perfect synchronous operation of the motor. Initially the turn-on angle can be anywhere between θ1 and θ2 as shown in
In the discrete rotor position estimation techniques of I, II and III, a rotor position estimation error less than one mechanical degree is difficult to achieve. At the rated speed and the maximum torque condition, the SRM operates in the single pulse mode. Typical per phase current waveforms with a variable turn-on angle and a fixed turn-off angle at the rated speed are shown in
The proposed discrete position sensorless estimation schemes for the switched reluctance motors are ideal for several automotive applications such as the compressor drive in car air-conditioners for a conventional gasoline vehicle, an electric vehicle and a hybrid electric vehicle.
Examples of applications using the proposed rotor position estimation schemes and control strategies for the switched reluctance motor are shown in
However, the proposed discrete position sensorless estimation techniques can be extended to any industrial applications involving these types of motors where the speed response required is low.
Although the present invention has been described in connection with specified embodiments thereof, many other modifications, corrections and applications are apparent to those skilled in the art. Therefore, the present invention is not limited by the disclosure provided herein but limited only to the scope of the appended claims.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP02/12412 | 11/28/2002 | WO | 11/2/2005 |