This disclosure is related to exhaust aftertreatment systems for internal combustion engines.
The statements in this section merely provide background information related to the present disclosure and may not constitute prior art.
Known combustion by-products ejected into an exhaust gas feedstream include carbon monoxide (CO), nitrides of oxygen (NOx), and particulate matter (PM), among others. Unburned hydrocarbons (HC) are also present in engine-out emissions. Operating the engine at varying air/fuel ratios including rich, lean and stoichiometric ratios produces different proportions of the by-products and the unburned HC.
Known aftertreatment systems can include multiple aftertreatment devices. Each aftertreatment device includes a coated substrate and/or particulate filter to oxidize, adsorb, desorb, reduce, and combust elements of the exhaust gas feedstream. Each aftertreatment device processes different by-products and different proportions of the by-products produced at various air/fuel ratios. Aftertreatment systems including multiple aftertreatment devices may be disadvantaged by requirements for additional space in the underbody and engine compartment devices, thermal inefficiencies associated with the additional thermal mass and surface area for thermal dissipation, and engine torque losses attributable to forcing the exhaust gas feedstream through the devices in the form of back pressure.
An exhaust gas aftertreatment device includes a single intake path for an exhaust gas feedstream from an internal combustion engine and a coated substrate including a first substrate portion fluidly in parallel with a second substrate portion. A flow modification device selectively restricts flow of the exhaust gas feedstream exclusively to the first substrate portion, exclusively to the second substrate portion, and concurrently to the first substrate portion and the second substrate portion in controllably variable proportions.
One or more embodiments will now be described, by way of example, with reference to the accompanying drawings, in which:
Referring now to the drawings, wherein the showings are for the purpose of illustrating certain exemplary embodiments only and not for the purpose of limiting the same,
The exemplary engine 10 includes a multi-cylinder direct-injection four-stroke internal combustion engine having reciprocating pistons slidably movable in cylinders which define variable volume combustion chambers. Each piston is connected to a rotating crankshaft by which their linear reciprocating motion is translated to rotational motion. An air intake system provides intake air to an intake manifold which directs and distributes air into an intake runner to each combustion chamber. The air intake system includes airflow ductwork and devices for monitoring and controlling the air flow. The air intake devices preferably include a mass airflow sensor for monitoring mass airflow and intake air temperature. A throttle valve preferably includes an electronically controlled device which controls air flow to the engine in response to a control signal from the control module 5. A pressure sensor in the manifold is adapted to monitor manifold absolute pressure and barometric pressure. An external flow passage recirculates exhaust gases from engine exhaust to the intake manifold, having a flow control valve, referred to as an exhaust gas recirculation valve. The control module 5 is operative to control mass flow of exhaust gas to the intake manifold by controlling opening of the exhaust gas recirculation valve.
At least one intake valve and one exhaust valve corresponds to each cylinder and combustion chamber. There is preferably one valve actuator for each one of the intake and exhaust valves. Each intake valve can allow inflow of air and fuel to the corresponding combustion chamber when open. Each exhaust valve can allow flow combustion by-products out of the corresponding combustion chamber to the aftertreatment system 70 when open.
The engine can include a fuel injection system, including a plurality of high-pressure fuel injectors each adapted to directly inject a mass of fuel into one of the combustion chambers, in response to a signal from the control module 5. The fuel injectors are supplied pressurized fuel from a fuel distribution system. The engine can include a spark-ignition system by which spark energy is provided to a spark plug for igniting or assisting in igniting cylinder charges in each of the combustion chambers in response to a signal from the control module 5.
The exemplary engine 10 is preferably equipped with various sensing devices for monitoring engine operation and exhaust gases, e.g., air/fuel ratio sensor. An exhaust gas sensor monitors the exhaust gas feedstream, and can include an air/fuel ratio sensor in one embodiment.
The control module 5 executes algorithmic code stored therein to control actuators to control engine operation, including throttle position, spark timing, fuel injection mass and timing, intake and/or exhaust valve timing and phasing, and exhaust gas recirculation valve position to control flow of recirculated exhaust gases. Valve timing and phasing may include negative valve overlap and lift of exhaust valve reopening (in an exhaust re-breathing strategy). The control module 5 is configured to receive input signals from an operator (e.g., a throttle pedal position and a brake pedal position) to determine an operator torque request and input from the sensors indicating the engine speed and intake air temperature, and coolant temperature and other ambient conditions.
The control module 5 is preferably a general-purpose digital computer generally including a microprocessor or central processing unit, storage mediums including non-volatile memory including read only memory and electrically programmable read only memory, random access memory, a high speed clock, analog to digital and digital to analog circuitry, and input/output circuitry and devices and appropriate signal conditioning and buffer circuitry. The control module 5 has a set of control algorithms, including resident program instructions and calibrations stored in the non-volatile memory and executed to provide desired functions. The algorithms are preferably executed during preset loop cycles. Algorithms are executed by the central processing unit and are operable to monitor inputs from the aforementioned sensing devices and execute control and diagnostic routines to control operation of the actuators, using preset calibrations. Loop cycles may be executed at regular intervals, for example each 3.125, 6.25, 12.5, 25 and 100 milliseconds during ongoing engine and vehicle operation. Alternatively, algorithms may be executed in response to occurrence of an event.
The exhaust aftertreatment system 70 is fluidly connected to the exhaust manifold 39 and includes catalytic and/or trap substrates operative to oxidize, adsorb, desorb, reduce, and combust elements of the exhaust gas feedstream. The exhaust aftertreatment system 70 includes one or more exhaust aftertreatment device(s) 48 that are preferably closely coupled to the exhaust manifold 39 of the exemplary engine 10.
The exhaust aftertreatment device 48 includes the substrate device 145 including the first and second substrate portions 140 and 150. The first and second substrate portions 140 and 150 are fluidly parallel in relationship to the exhaust gas feedstream, and each has a multiplicity of parallel flow passages through which exhaust gas can flow. Fluidly parallel portions are understood to mean that an exhaust gas flowing through one portion does not also flow through the other portion. In one embodiment, the substrate 145 is formed from ceramic material, e.g., cordierite, and having flow-through passages at a density of about 62 to 96 cells per square centimeter (400-600 cells per square inch), and a wall thickness between the flow passages of about three to seven mils. In one embodiment, the substrate 145 is formed from corrugated stainless steel. The flow passages for the first and second substrate portions 140 and 150 of the substrate 145 can be individually coated with differing washcoat materials, e.g., alumina and zeolite, and differing densities and masses of active materials, i.e., platinum-group metals and other metals. Exemplary catalytically active metals can include platinum group metals including platinum (Pt), palladium (Pd), and rhodium (Rh) and non-platinum group metals including iron (Fe), copper (Cu) thallium (Tl) and vanadium (Va). In one embodiment, one of the first and second substrate portions 140 and 150 includes a washcoat and catalytically active materials to process oxygen-rich exhaust gas at lower temperatures and the other includes a washcoat and catalytically active materials to process exhaust gas at higher temperatures.
The control valve 102 is positioned in the single intake end 100 of the exhaust aftertreatment device 48, although the control valve 102 may alternatively be suitably positioned elsewhere within the exhaust aftertreatment device 48, e.g., in the outlet end 200. The control valve 102 includes a flow control valve configured to direct flow of the exhaust gas feedstream via flow diffusing, flow diverting and/or flow blocking mechanisms or devices. The control valve 102 is preferably centrally positioned within the exhaust aftertreatment device 48. The control valve 102 is configured to prohibit exhaust gas flow through one of the first and second substrate portions 140 and 150. The control valve 102 may be actuated or otherwise controlled by, for example, a solenoid or other actuation device known in the art configured to receive actuation commands from the control module 5. As one skilled in the art will recognize, the control valve 102 may be implemented in the exhaust aftertreatment device 48 using any one of multiple flow modification devices and this disclosure is not limited thereby.
The control valve 102 is controllable to any one of a first position, a second position and a third position to effect a desired exhaust gas flow. The first position permits exhaust gas flow through the first substrate portion 140 while prohibiting exhaust gas flow through the second substrate portion 150. The second position permits exhaust gas flow through the second substrate portion 150 while prohibiting exhaust gas flow through the first substrate portion 140. The third position permits simultaneous exhaust gas flow through both the first and second substrate portions 140 and 150.
Engine operation can include transitions between combustion modes and variations in engine-out air/fuel ratios. The control valve 102 can direct the exhaust gas feedstream to flow to one of the first exhaust gas path 110, the second exhaust gas path 120, and both the first and second exhaust gas paths 110 and 120 concurrently. For example, the exhaust gas feedstream may be directed through the second exhaust path 120 during lean engine operation and directed through the first exhaust path 110 during stoichiometric or rich engine operation.
The disclosure has described certain preferred embodiments and modifications thereto. Further modifications and alterations may occur to others upon reading and understanding the specification. Therefore, it is intended that the disclosure not be limited to the particular embodiment(s) disclosed as the best mode contemplated for carrying out this disclosure, but that the disclosure will include all embodiments falling within the scope of the appended claims.