The present invention relates to a journal assembly for pulverizing a solid fuel, and more particularly, to an improved journal assembly which accommodates larger capacity tapered roller bearings while maintaining an existing journal assembly envelope for a mill for pulverizing a solid fuel, such as coal, for example, in a new utility unit application or a retrofit application in an existing utility unit.
Pulverizers are well known for the reduction of the particle size of solid fuel to allow for combustion of the solid fuel in a furnace. A pulverizer employs some combination of impact, attrition and crushing to reduce a solid fuel to a particular particle size. Several types of pulverizer mills can be employed for the pulverization of the solid fuel, for example, coal, to a particulate size appropriate for firing in a furnace. These can include ball-tube mills, impact mills, attrition mills, ball race mills, and ring roll or bowl mills. Most typically, however, bowl mills with integral classification equipment are employed for the pulverization of the solid fuel to allow for transport, drying and direct firing of the pulverized fuel entrained in an air stream.
Bowl mills have a grinding ring carried by a rotating bowl. Fixed position rollers are mounted on roller journal assemblies such that the roll face of the rollers are approximately parallel to the inside surface of the grinding ring and define a very small gap therebetween. Pressure for grinding is applied through springs or hydraulic cylinders on the roller journal to crush solid fuel caught between the roll face of the roller and the grinding ring.
An air stream is typically utilized for drying, classification, and transport of the solid fuel through the pulverizer. The air stream employed is typically a portion of the combustion air referred to as the primary air. The primary air is combustion air first directed through a preheater whereby the combustion air is heated with energy recovered from the flue gas of the furnace. A portion of the primary air is then ducted to the pulverizers. In a bowl mill, the primary air is drawn through beneath the bowl of the bowl mill and up past the roller journal assemblies to collect the pulverized solid fuel. The small particles of solid fuel become entrained in the primary air. The air stream containing the solid fuel then passes through a classifier into the outlet of the pulverizer. After passing through the exhauster, the pulverized fuel can be stored, or more typically, is transported to the furnace by the air stream for direct firing.
The journal loading, which dictates the amount of grinding force that the grinding rolls exert on the coal, to crush solid fuel caught between the roll face of the roller and the grinding ring, has been provided to date either through the use of hydraulic systems or through the use of mechanical springs. One such arrangement of mechanical springs can be found depicted, for example, in U.S. Pat. No. 4,706,900 entitled “Retrofitable Coiled Spring System,” which issued on Nov. 17, 1987 and which is assigned to the same assignee as the present invention. In accord with a showing contained in this U.S. patent, each grinding roll is urged towards the surface of the grinding table by means of an adjustable spring and is rotated about a fixed shaft within the journal assembly and connected to the rotatable grinding roll. To this end, journal bearings allow rotation of the journal assembly relative to the shaft and a spring capable of urging the grinding roll toward the grinding table surface. The spring exerts a predetermined grinding force on the coal disposed on the table when the coal is of a predetermined depth on the table.
Although the journal bearings used in mill of U.S. Pat. No. 4,706,900 have demonstrated to be operative for the purpose for which they have been designed, a need still exists to improve the mill loading and roll life of the bearings. More specifically, the original roll life goal for the journal bearings was 50,000 hours which translated into a roll life of only one or two years using Ni-Hard. However, today mill loading and roll life demand has increased, with projections/demand extending to 82 months (6.8 years) in some instances. Thus, there is a need for longer bearing lives across older, as well as newer, mill lines.
Another factor which deteriorates roll life of the bearings in addition to increased mill loading includes solid fuel dust, such as coal dust, for example, which flows into the journal assembly and contaminates the bearings and lubricant therefor. An interface between the rotatable journal assembly and stationary shaft is exposed to atmospheric conditions and a differential pressure across the journal assembly allows the coal dust, for example, to flow into the journal assembly housing the bearings. The ingress of coal at this interface, which allows the shaft to extend therethrough and rotate with respect to the journal assembly, contaminates the lubricant and journal bearings thus deteriorating the roll life of the journal bearings.
Therefore, there remains a need for a method and apparatus for increasing bearing roll life in a journal assembly, which facilitates increased mill loading and prevents contamination of the bearings, while using as much of the existing journal assembly envelope to reduce costs.
According to the aspects illustrated herein, there is provided a method of extending the life of a journal bearing assembly in a solid fuel pulverizer. The method includes: removing a first lower journal bearing from a journal shaft and a lower bearing seat of a lower bearing housing configured to support a grinding roll in the pulverizer; removing a first upper journal bearing from the shaft and an upper bearing seat of an upper bearing housing configured to be coupled to the lower bearing housing; modifying the lower and upper bearing seats to provide modified lower and upper bearing seats; modifying bearing seats in lower and upper bearing housings defining the journal assembly to receive the larger capacity lower and upper journal bearings; modifying lower and upper shoulders on the journal shaft to receive the larger capacity second lower and upper journal bearings, respectively, while retaining an original diameter of the journal shaft under the second larger capacity lower and upper journal bearings; disposing the second lower and upper journal bearings on the modified lower and upper bearing seats, the second lower and upper journal bearings having at least one of an increased diameter and width than the first lower and upper journal bearings; disposing a new journal bearing spacer between the second lower and upper journal bearings; disposing a new journal bearing collar between the upper shoulder and the second upper journal bearing; filling a cavity defined by the lower and upper journal housings with grease; and disposing a seal assembly between the shaft and one end of the upper journal housing opposite the lower journal housing to prevent the ingress of solid fuel into the cavity of the journal assembly.
The above described and other features are exemplified by the following figures and detailed description.
Referring now to the figures, which are exemplary embodiments, and wherein the like elements are numbered alike:
Referring now to the drawings, and more particularly to
Still referring to
A plurality of grinding rolls 18, preferably three in number in accord with conventional practice, are suitably supported within the interior of the separator body 12 so as to be equidistantly spaced one from another around the circumference of the separator body 12. In the interest of maintaining clarity of illustration in the drawing, only one grinding roll 18 is shown in
The solid fuel material, e.g., coal, which is pulverized in the bowl mill 10 is fed thereto through the use of any suitable conventional type of feeding means such as a belt feeder (not shown). Upon falling free of the belt feeder (not shown), the coal enters the bowl mill 10 from a coal supply means, generally designated by reference numeral 22. The coal supply means 22 includes a suitably dimensioned duct 24 having one end thereof which extends outwardly of the separator body 12 and preferably terminates in a funnel-like member (not shown). The latter funnel-like member (not shown) is shaped to facilitate the collection of the coal particles leaving the belt feeder (not shown), and to guide the coal particles into the duct 24. The other end 26 of the duct 24 of the coal supply means 22 is operative to effect the discharge of the coal onto the surface of the grinding table 14. As shown in
A gas such as air is used to convey the finer ground coal from the grinding table 14 through the interior of the separator body 12 for discharge from the pulverizing bowl mill 10. The air enters the separator body 12 through a suitable opening (not shown) provided therein for this purpose. The air flows to a plurality of annular spaces 32 from the aforesaid opening (not shown) in the separator body 12. The plurality of annular spaces 32 are formed between the circumference of the grinding table 14 and the inner wall surface of the separator body 12. The air upon exiting from the annular spaces 32 is deflected over the grinding table 14 by means of suitably positioned deflector means (not shown). One such form of deflector means (not shown), which is suitable for this purpose in the bowl mill 10 of
While the air is flowing along the path described above, the coal disposed on the surface of the grinding table 14 is pulverized by the grinding rolls 18. As the coal becomes pulverized, the particles are thrown outwardly by centrifugal force away from the center of the grinding table 14. Upon reaching the peripheral circumferential area of the grinding table 14, the coal particles are picked up by the air exiting from the annular spaces 32 and are carried along therewith. The combined flow of air and coal particles is thereafter captured by the deflector means (not shown). The deflector means causes the combined flow of air and coal particles to be deflected over the grinding table 14. In the course of effecting a change in direction in the path of flow of this combined stream of air and coal particles to be deflected over the grinding table 14, the heaviest coal particles, because they have more inertia, become separated from the airstream and fall back onto the grinding table 14 whereupon they undergo further pulverization. The lighter coal particles, on the other hand, because they have less inertia continue to be carried along in the airstream.
After leaving the influence of the aforesaid deflector means (not shown) the combined stream of air and remaining coal particles flow to the classifier 30. The classifier 30, in accord with conventional practice and well-known to those skilled in the art, further sorts the coal particles that remain in the airstream. Namely, those particles of pulverized coal, which are of the desired particle size, pass through the classifier 30 and along with the air are discharged from the bowl mill 10 through the outlets 34. However, the coal particles having a size larger than desired are returned to the surface of the grinding table 14 whereupon they undergo further pulverization. Thereafter, these coal particles are subject to repetition of the process described above. That is, the particles are thrown radially outwardly of the grinding table 14, are picked up by the air exiting from the annular spaces 32, are carried along with the air to the deflector means (not shown), are deflected back over the grinding table 14 by the deflector means (not shown), the heavier particles drop back on the grinding table 14, the lighter particles are carried along to the classifier 30, those particles which are of the proper size pass through the classifier 30 and exit from the bowl mill 10 through the outlets 34.
The amount of force that must be exerted by the grinding rolls 18 in order to effect the desired degree of pulverization of the coal will vary depending on a number of factors. In other words, the amount of force that the grinding rolls 18 must exert in order to accomplish the desired pulverization of the coal is principally a function of the amount, e.g., depth, of coal present on the grinding table 14. In turn, the amount of coal which is disposed on the grinding table 14 is a function of the output rate at which the bowl mill 10 is being operated to produce pulverized coal.
The amount of grinding force which the grinding rolls 18 apply to the coal on the grinding table 14 is a function of the amount of force with which the grinding rolls 18 are biased into engagement with the coal on the table 14 via the biasing system 20. The grinding roll 18 is supported so as to be pivotable about a pivot pin 36 into and out of engagement with the coal disposed on the grinding table 14. Although only one grinding roll 18 is shown in
The grinding roll 18 is designed to be biased by a force into and out of engagement with the coal on the grinding table 14. More specifically, the force applied to the grinding roll 18 is a spring force applied by the mechanical coiled spring system 20, which produces an axial force applied to the grinding roll 18.
To this end, the bowl mill 10 embodies a plurality of new and improved journal assemblies 190, as partially illustrated in
Turning now to consideration in further detail of the nature of the construction of the exemplary journal assembly 190, general reference will be made first to
Still referring to
Therefore, a ratio of new/original Dynamic Radial Capacities shows a calculated increase in L10 bearing life of over 2.5 times. Thus, reference to larger “capacity” with respect to journal bearings 206 and 208 means the increased dynamic radial capacity which translates into an increased L10 bearing life over the original journal bearings 106 and 108. In particular, the dynamic radial capacity increases at least 25% for both the new upper and lower tapered roller bearings 206, 208. In exemplary embodiments and from Table 1 above, it can been seen that the dynamic radial capacity of the upper tapered roller bearing 208 increases about 29.61%, while the dynamic radial capacity of the lower tapered roller bearing 206 increases about 37.33%. The larger capacity tapered roller bearings 206, 208 are also lubricated with grease instead of oil and the seal assembly 220 prevents contamination of the grease lubricant and journal assembly tapered roller bearings 206, 208. Furthermore, the use of the seal assembly 220 allowing the use of grease, rather than oil, to lubricate the bearings 206, 208 has also been discovered to increase bearing life.
However, with the goal of using larger capacity tapered roller bearings 206, 208 to increase roll life between journal assembly rebuilds, it is also desired to maintain an existing journal assembly envelope. In order to accommodate larger capacity tapered roller bearings 206, 208 in the exemplary journal assembly 190 without changing the outside boundary dimensions thereof, it will be recognized by those skilled in the pertinent art that respective bearing seats 207, 209 (
Since the bearings 206, 208 in
In addition, the new or modified shaft 204 includes a seal land with an appropriate finish for the seal assembly 220, discussed more fully below with respect to
Incorporation of the larger lower tapered roller bearing 206 in the new or modified lower journal housing 200 includes the lower bearing cup seat 207 corresponding to an outer race 224 of the lower bearing 206 to receive the outer race 224 of the lower bearing 206. The lower bearing cup seat 207 is larger in diameter than in the conventional lower journal housing 100. The lower journal housing 200 also includes a housing bore diameter larger than the upper journal housing OD 202 at the diameter generally indicated at 225 of the upper journal housing 202. The upper journal housing OD 202 is configured for installation with an O-ring oil seal 227 disposed between the two diameters 225 and thus between the lower and upper journal housings 200, 202.
Likewise, incorporation of a larger upper tapered roller bearing 208 in the new or modified upper journal housing 202 includes the upper bearing cup seat 209 at one end of the upper journal housing 202 that is both wider and larger in diameter than in the conventional upper journal housing 102. A counter bore 226 and a snap ring groove 228 are configured at an opposite end of the new or modified upper journal housing 202 to receive a snap ring 230 and the seal assembly 220, as best seen with reference to
Referring now to
Assembly of the journal shaft 204, bearings 206, 208 and upper and lower journal housings 202, 200 is substantially the same as for assembly of the conventional journal assembly 19 with a few differences. These differences primarily include installing the wear sleeve 234 on the shaft 204, packing the seal assembly 220 with grease and installing the seal 232 and retaining ring 230. In addition, as alluded to before, the shaft 204, housings 200, 202 (e.g., cavity 218), tapered roller bearing 206, 208 are filled with grease as a lubricant during the assembly to ensure the final grease fill.
Referring again to
The bearing voids of bearings 206, 208 are also packed with grease before final assembly. The lower journal housing 200 defining the cavity 218 is filled approximately ⅔ full of grease. Then the seal 232 is installed into the counterbore 226 of the upper journal housing 202. The remaining cavity 218 defined by the upper journal housing 202 is filled with grease before installing the retaining ring 230 in the groove 228 of the upper journal housing 202.
After the lower journal bearing 206 is installed with the shaft 204, a roller bearing keeper 244 and lock plate 246 are fastened to a bottom of the shaft 204 using mechanical fasteners 248, such as threaded bolts, for example, but is not limited thereto. A journal bearing shim 250 may be used to properly space the lower journal bearing 206 and keeper 244.
The lower portion of the shaft 204, as illustrated in
It should be noted that due to the hardness of the grinding roll 180 in exemplary embodiments, the grinding roll 180 is spot drilled through set screw holes in a locknut 254 prior to installing set screws 256 in the set screw holes. It should also be noted that this final assembly uses a standard lock tab application 260 as in the conventional journal assembly 19 in
The journal assembly 190 of
While the invention has been described with reference to various exemplary embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
2415324 | Wilson | Feb 1947 | A |
2532092 | Frangquist | Nov 1950 | A |
2587405 | Stevens et al. | Feb 1952 | A |
3376630 | Lempka | Apr 1968 | A |
3465971 | Dalenberg et al. | Sep 1969 | A |
4002299 | Skalka | Jan 1977 | A |
4050140 | Newell | Sep 1977 | A |
4234132 | Maliszewski, Jr. | Nov 1980 | A |
4529136 | Gelbar | Jul 1985 | A |
4538768 | Paskowski et al. | Sep 1985 | A |
4703690 | Prairie et al. | Nov 1987 | A |
4706900 | Prairie et al. | Nov 1987 | A |
4759509 | Prairie | Jul 1988 | A |
5452504 | Tatro et al. | Sep 1995 | A |
6061908 | DeMarey et al. | May 2000 | A |
6484403 | Macklin et al. | Nov 2002 | B1 |
6564727 | Kmiotek et al. | May 2003 | B1 |
7267293 | Chen et al. | Sep 2007 | B2 |
Number | Date | Country | |
---|---|---|---|
20100077616 A1 | Apr 2010 | US |