Exemplary embodiments of the present invention relate generally to automated cutting of media such as media including units on a unit dose blister card.
In a typical hospital, nursing home, or other similar institution, doctors will visit their patients on a routine basis and prescribe various medications for each patient. In turn, each patient will likely be placed on a certain medication treatment plan that requires that he or she take one or more doses of various medications daily. Some medications may require that they be administered only at certain times of the day (e.g., after meals) and/or at intervals of one or more hours each day. In addition, patients may request certain medications on an elective basis for complaints, such as head or body aches. These requests are typically included with the doctor's medication request or prescription that he or she sends to a pharmacy of the hospital for filling.
Medication requests or prescriptions received by the pharmacy will likely be checked by a registered pharmacist and then entered into the pharmacy information system. These requests reflect not only orders that are added to a particular patient's treatment plan, but also changes in a patient's existing treatment plan. The pharmacy information system combines this information with the patient's existing medication schedule and develops a patient medication profile. Using the patient medication profile, a fill list can be created that lists all medications that must be distributed to all patients for a given time period (e.g., a day).
In some instances, this list is printed and used by a pharmacist or pharmacy technician to hand pick each of the drugs needed for each patient (in the form of unit doses) and place those drugs in corresponding patient-specific medication containers (e.g., drawers, boxes, bins or bags). A registered pharmacist then checks the accuracy of the patient order, and, assuming the order was accurate, the individual patient boxes are loaded into a large transport cart and delivered to a nursing unit.
Several drawbacks exist, however, to this method of medication retrieval and distribution. In particular, it is very time consuming and manpower intensive. As a result, systems were created for automating the process of retrieving unit dose medications and distributing them to patients according to their respective medication profiles. One example of such a system is the ROBOT-Rx® system, offered by McKesson Automation Inc. and described in U.S. Pat. Nos. 5,468,110, 5,593,267 and 5,880,443, and other examples are described in U.S. patent application Ser. Nos. 11/382,605, filed May 10, 2006, 11/611,956, filed Dec. 18, 2006 and 11/755,207, filed May 30, 2007, the contents of which are hereby incorporated herein by reference.
The ROBOT-Rx® system, like other similar systems, is a stationary robotic system that automates the drug storing, dispensing, returning, restocking and crediting process by using barcode technology. In particular, single doses of medications are re-packaged, for example in a clear plastic bag, so that each package contains a barcode corresponding to the package contents. The barcode may include the name of the medication, quantity, weight, instructions for use and/or expiration date.
The packaged medications are then stored in a storage area, such as a storage rack having a frame and a plurality of rod supports on which each package can be hung in a manner that provides each with an X, Y coordinate. Using the X, Y coordinates, packages can then be selected by an automated picking means (e.g., a robotic arm capable of moving at least in three, mutually orthogonal directions designated X, Y and Z), for distribution to individual patients.
More specifically, in one instance, a pharmacist or technician may manually enter the identification of a specific medication he or she would like the automated system to retrieve, for example, as a patient's first dose, in an emergency situation. The automated system, and, in particular, a computer associated with the automated system, would then locate the desired medication (i.e., the X, Y and Z coordinates of the medication) and instruct the picking means to retrieve the medication at that location. In another instance, the fill list created based on each patient's medication profile may be communicated to the computer associated with the automated system, providing the automated system with a current list of all patients and their individual medication needs. The computer also maintains a database of all medications stored in the storage area along with their corresponding X, Y and Z coordinates.
Patient-specific containers (e.g., drawers or bins) displaying barcodes that include the corresponding patient's unique identification code are placed on a conveyer belt associated with the automated system. At one point on the belt, a barcode reader reads the barcode displayed on the patient-specific box or container and communicates the patient's identification to the computer. The computer will then retrieve the patient's medication needs from the fill list, and determine the corresponding coordinates for each medication by accessing the database.
The computer can then guide the picking means to select the desired unit dose medications and deposit them in the patient-specific boxes or containers. In particular, the picking means, which also includes a barcode reader, moves to the designated location of a particular medication, as instructed by the computer, scans the barcode displayed on the package containing the medication to identify the medication contained in the package, and provides the identity to the computer.
After the computer confirms that the correct unit dose medication is contained in the package, the picking means will remove the package from the storage area (e.g., using a vacuum generator to produce suction to pull the package off the rod, or other holding means, and hold the package until it can be deposited) and drop it into the patient-specific container.
The process is repeated until the patient's prescription has been filled (i.e., until the patient-specific medication container contains each dose of medication to be taken by the patient in the given time period or, in the instance where the unit dose retrieved the first dose for a new patient, until that first dose has been retrieved). The conveyor belt then moves the patient-specific container to a check station where an operator can use yet another barcode reader to scan the barcode label on the patient-specific container to retrieve and display the patient's prescription, as well as to scan the barcodes on each package in the container to verify that the medications are correct.
As described above, unit dose medications dispensed robotically may be packaged into bags, boxes or a variety of other over-wraps prior to being stored in the storage area. This repackaging effort is performed for several reasons. First, the size and shape of the raw packages vary greatly; therefore, without some commonality in product shape, robotic handling becomes extremely difficult. Second, while robotic systems typically rely on barcodes to identify the products throughout the process, the majority of products originating from various manufacturers do not contain barcodes of any kind or are inconsistent with respect to the information they provide. Accordingly, in these instances, over-wrapping the unit dose with a package containing a barcode may be accomplished for identification purposes.
More recently, efforts have been made to reduce any need for repackaging since, for example, repackaging adds material costs to the final product and requires both additional technician time to perform the packaging as well as additional pharmacist time to validate the content of the package against the description on the label. In addition, repacking by a hospital, or similar institution, shortens the expiration date of the repackaged item based on United States Pharmacopeia/National Formulary (USP/NF) repackaging standards. Moreover, since efforts are being made to ensure that all human drug products have a barcode on the smallest container or package distributed which, in many instances, is the unit dose medication, each unit dose on a unit dose blister card will have a barcode thereon. This includes all human prescription drug products and over-the-counter drugs that are dispensed pursuant to an order in the hospital. The barcode must contain, at a minimum, a National Drug Code (NDC) in a linear barcode, in the Uniform Code Council (UCC) or Health Industry Business Communications Council (HIBCC) format. Following the effective date of this mandate, assuming that the unit dose medications are the smallest container or package used, all unit dose medications will contain barcodes that can be used by robotic dispensing systems, thus eliminating the need to overwrap or repackage merely for identification purposes.
However, even though improvements may be achieved by enhancing the utility of an automated dispensing system in relation to eliminating repackaging or over-wrapping operations, such systems still require a fair amount of manual intervention to prepare the medications for automated dispensing. Additionally, there is no standard shape or configuration for unit dose blister cards, so automatic dispensing of unit doses was a challenge. This challenge was initially met by U.S. patent application Ser. No. 11/382,605, filed May 10, 2006, which provided a robotic device capable of dispensing unit dose blisters automatically. However, a requirement still remained for each of the unit dose blisters to be singulated manually. For example, a technician must typically undertake the tedious task of manual separation of each single unit dose blister for singulation and placement of such unit dose blisters, oriented bar code up, into a dedicated tray cavity. In some cases, technicians may be required to singulate up to three to four thousand doses per day (or more). Accordingly, it may be desirable to provide a mechanism by which to automatically singulate unit doses on a blister card.
In general, exemplary embodiments of the present invention provide improvements relating to, among other things, providing a mechanism by which to singulate individual unit doses of a blister card or otherwise cut the blister card. In particular, embodiments of the present invention may enable efficient cutting of a blister card using an apparatus for sensing conditions and arranging the cutting blade appropriately prior to effectuating cutting. The blister card may then be reliably and automatically cut so that the blister card may be cut without increasing the risk of penetrating the seal on any of the unit dose blisters.
In particular, according to one example embodiment, an apparatus for facilitating cutting of unit dose blisters from a blister card is provided. The apparatus may include a platform, a clamp, a blade and a sensor. The blister card may be positionable on the platform for cutting. The clamp may be positionable to hold a portion of the blister card in contact with the platform for cutting when the clamp is seated. The clamp may be operatively coupled to a guillotine head. The blade may also be operatively coupled to the guillotine head. The guillotine head may be configured to move the blade through a range of motion that intersects a plane of the platform. The sensor may be positioned to detect a seating status of the clamp to enable control of movement of the guillotine head based on the seating status.
In another exemplary embodiment, a method for facilitating cutting of unit dose blisters from a blister card is provided. The method may include moving a clamp into contact with a portion of the blister card to press the blister card into contact with a platform, determining a seating state of the clamp with a sensor, and enabling cutting of the blister card via a blade in slidable contact with the cutting base based on the seating state.
Having thus described the invention in general terms, reference will now be made to the accompanying drawings, which are not necessarily drawn to scale, and wherein:
The present invention now will be described more fully hereinafter with reference to the accompanying drawings, in which some, but not all embodiments of the inventions are shown. Indeed, these inventions may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. Like numbers refer to like elements throughout.
In general, exemplary embodiments of the present invention provide a mechanism by which unit dose blisters may be separated either automatically or with minimal manual assistance. Moreover, embodiments of the present invention may provide a mechanism by which to accurately and reliably cut blister cards to separate each unit dose blister in a manner that guards against inadvertent cutting of the pills of each blister card or the sealed containment volumes that hold the pills. As such, some example embodiments relate to a clamp to hold a blister card being cut and prevent cutting of pills and corresponding containment volumes while a blade cuts the blister card to singulate unit dose blisters. Some embodiments may also relate to a self aligned blade that maintains its position relative to the cutting base to provide a relatively clean and consistent cut. Accordingly, singulation may be accomplished with respect to unit dose blisters on blister cards having various different shapes and/or configurations in a manner that reduces the likelihood of cutting into the seal around each unit dose blister or the barcode or human readable text that identifies the medication in the unit dose blister. For example, the blister card itself may experience alignment irregularities that place the perforations (and therefore also the sealed portions of each unit dose blister on the blister card) in positions that are not consistent relative to the edges of the blister cards when compared to other blister cards among a plurality of blister cards for different or even in some cases the same type of product. Thus, embodiments of the present invention may provide a mechanism for singulating unit dose packages in their natural, raw state in a repeatable fashion so that they can be selectively retrieved and delivered, for example by one of the automatic retrieval systems discussed above (e.g., the ROBOT-Rx® system or a robot system able to handle blister dispensing such as that described in U.S. patent application Ser. No. 11/382,605, filed May 10, 2006).
The term “unit dose blister” refers to a unit dose medication, or one or more oral solids of the same or different strength, form or type, that has been sealed in a package, such as a vinyl and foil package in which the vinyl conforms to the shape of the medication. The vinyl is typically sealed to a foil that offers a flat surface with medication information printed on the opposite side from the vinyl cavity.
When unit dose medications are packaged into a blister, they are typically packaged with several medications per blister card. Thus, there are a corresponding number of equally-spaced vinyl formed cavities per blister card. These cavities are typically separated by a perforation. During formation of a blister card, several manufacturing stations are encountered, but there is no correlation between the handling techniques employed at each station. Accordingly, a blister card that passes through a station for forming a cavity, labeling of the blister, punching of the blister receptacle, punching out of the card, etc., may not be handled in the same manner at each station as the previous or subsequent blister card. Accordingly, inconsistencies may be created between different blister cards. A singulated blister is one that has been separated from a blister card typically along its perforation.
As indicated above, the distance from the vinyl cavity 80 to the edge of the blister card 50 may vary from card to card. However, the distance between perforations 70 may be consistent within a given blister card. Thus, it may be expected that a distance between perforations 70 is relatively constant along a given direction.
The blister card 50 may include a first edge 82 and a second edge 84, respectively, positioned at opposite longitudinal ends of the blister card 50. According to some embodiments, the location of the perforations and/or the edges of the blister card 50 may be used as a reference for which to make cuts of the blister card 50 to effectuate unit dose blister singulation. As such, the blister card 50 may be manually and/or automatically positioned (e.g., based on edge and/or perforation location) in order to align the blister card 50 for cutting. Thereafter, the blister card 50 may be cut (e.g., along or near the perforations) in order to singulate unit does blisters 60.
As one of ordinary skill in the art will recognize, while reference is made throughout to unit dose blisters of the form described above, these unit dose blisters provide just one form in which unit dose medications may be packaged. Use of unit dose blisters in the description of exemplary embodiments included herein should not, therefore, be taken as limiting the scope of the present invention to use with such unit dose packages. In contrast, other unit dose packages may similarly be used in connection with exemplary embodiments without departing from the spirit and scope of the present invention. Furthermore, it should be noted that although the blister card 50 of
Reference is now made to
The system 100 of exemplary embodiments may include a means for storing a plurality of unit dose blisters of various shapes and sizes, referred to herein as a “storage system” 102. As shown, the storage system 102 of one exemplary embodiment, which is also illustrated in
In this regard, the blister mount receptacles 150 of one embodiment shown in
In an exemplary embodiment, the system of
As shown in
In an exemplary embodiment, one or both of the perforation determiner 170 and the blister card cutter 180 may include or otherwise operate under the control of processing circuitry. Moreover, in some embodiments the processing circuitry of
An exemplary embodiment will now be described referring to
The processor 200 may be embodied as various processing means such as a processing element, a coprocessor, a controller or various other processing devices including integrated circuits such as, for example, an ASIC (application specific integrated circuit), an FPGA (field programmable gate array), a PLC (programmable logic controller), a hardware accelerator, or the like. The processor 200 may be configured (e.g., via hardcoded instructions or via execution of software instructions) to perform or control the various functions of the processing circuitry. The memory 210 may include volatile and/or non-volatile memory, and typically stores content, data or the like. For example, the memory 210 may be non-transitory memory capable of storing content transmitted from, and/or received by, the processing circuitry. Also for example, the memory 210 may store software applications, instructions or the like for enabling the processor 200 to perform steps associated with operation of the processing circuitry in accordance with embodiments of the present invention.
In one exemplary embodiment, the memory 210 stores instructions for directing the processor 200 to control the perforation determiner 170 (or other blister card position determiner) in relation to determining perforation locations for the blister card 50. In an exemplary embodiment, in order to determine positioning information (e.g., perforation or edge location), the perforation determiner 170 may include a table 250 and an alignment device 252. However, any other automatic or manually employed devices may alternatively be employed. Meanwhile, in order to singulate each unit dose blister 60 of the blister card 50, the blister card cutter 180 may include a cutting device 270 (or blade), a card holder 272, and a positioning device 274.
In operation, the blister card 50 may be positioned on the table 250 to accurately identify (e.g., via the alignment device 252) positioning information to be used by the blister card cutter (e.g., the positioning device 274) to enable accurate cutting of the blister card 50 based on the positioning information. The positioning information may then be communicated to the processor 200, which may control the blister card cutter 180 to cut the blister card 50 at various locations (e.g., along each perforation 70 and along the centerline perforation 72) to singulate each unit dose blister 60. In this regard, the blister card cutter 180 may employ the positioning device 274 to grip the blister card 50 and position the blister card 50 relative to the cutting device 270 to initiate an initial cut along a respective one of the perforations 70. The card holder 272 may be employed to hold the blister card 50 in place during the cutting along the perforation 70 so that the as yet uncut portion of the blister card 50 is held in place while the positioning device 274 proceeds to operate on the unit dose blisters that have been separated from the blister card 50 by the cutting of the cutting device 270. In some cases, a second blade may be employed to cut along the centerline perforation 72 or a separate operation may be employed as appropriate to cut along the centerline perforation 72. As can be appreciated from
The positioning device 274 may then advance the two unit dose blisters to contact the second cutting device (if employed), which may be positioned to cut along a direction substantially parallel to the longitudinal axis of the blister card 50 in order to cut along the centerline perforation 72. After cutting along the centerline perforation 72, the two unit dose blisters may be separated into two singulated unit dose blisters 60. Alternatively, the positioning device may advance the cut unit dose blisters to another location or allow the cut unit dose blisters to fall into a chute or other receptacle for further processing.
In an exemplary embodiment, the positioning device 274 may be configured to then grip the remainder of the blister card 50 (e.g., disengage the cut blister card portion and move to grip the remainder of the blister card 50) and, subsequent to a release of the card holder 272, advance the remainder of the blister card 50 such that the next perforation 70 is enabled to be cut by the cutting device 270 in the same manner described above. In some cases, the next perforation 70 may be detected using some type of perforation detection means. However, in an exemplary embodiment, the processor 200 may determine the location of each perforation 70 based on other position information. In this regard, for example, the processor 200 may receive information (e.g., via the user input interface 240) regarding the configuration of the blister card 50. As such, the processor 200 may be made aware of the number of perforations 70 that lie perpendicular to the longitudinal axis of the blister card 50 (e.g., four perforations for a 2×5 blister card). Knowing that a total of four perforations are positioned equidistant from each other, the processor 200 may be enabled to determine the locations of each intermediate perforation. Thus, the processor 200 may be configured to determine the distance from one cut made by the cutting device 270 to the next in order to accurately cut the blister card 50 along each perforation that lies perpendicular to the longitudinal axis of the blister card 50.
In some embodiments, after cutting, the positioning device 274 may move further away from the table 250 before releasing the cut portion of the blister card 50, or may immediately release the cut portion of the blister card 50 without further movement away from the table 250. Following release of the cut portion of the blister card 50, the positioning device 274 may again advance toward the table 250 to grip a next portion of the blister card 50 for cutting or at least advancing through the blister card cutter 180 until the blister card 50 is passed completely through the blister card cutter 180 at which time a next blister card may be engaged to repeat the process described above. In other embodiments, the positioning device 274 may release the blister card 50 responsive to seating of the card holder 272 as described in greater detail below. Thus, in some cases, as, shown in the example of
In some alternative embodiments, instead of a robot arm, the positioning device 274 may include a roller assembly configured to engage a top, bottom and/or side portion of the blister card 50 on the table 250 in order to advance the blister card 50 relative to a surface of the table 250. A conveyer belt may alternatively be used in other cases. Still other mechanisms for movement of the blister card 50 may also be employed for the positioning device 274 in other alternative exemplary embodiments.
In an exemplary embodiment, the cutting device 270 and the card holder 272 may each be mounted to a cutting assembly 284 that may further include a guillotine head 290. The cutting assembly 284 may be moved downward (e.g., toward the table 250 in the y-direction) to effectuate clamping of the blister card 50 by the card holder 272 and subsequent cutting of the blister card 50 by the cutting device 270. The cutting assembly 284 may then be moved upward (e.g., away from the table 250 in the y-direction) to reset the cutting assembly for a next cutting operation. In some embodiments, the cutting assembly 284 may be mounted to move linearly up and down in the y-direction to drive force from an electric or other drive motor. In some cases, the drive motor may be coupled to a cam to convert the rotational force produced by the drive motor to a linear force to move the cutting assembly 284 up and down in the y-direction.
In an exemplary embodiment, the clamp 300 may include a slot 302 formed to at least permit movement of the positioning device 274 (or more specifically the upper arm 280) to reach past the card holder 272 (e.g., through the slot 302 formed in the clamp 300) to grip remaining portions of the blister card 50 after a portion of the blister card 50 has been removed by operation of the cutting device 270. The table 250 may have a slot arranged to coincide with the slot 302 on the clamp 300 so the positioning device 274 (or more specifically the lower arm 281) may reach substantially into the table 250 to grab a portion of the blister card 50 remaining after cutting since no portion of the blister card 50 may extend past an edge of the table 250 at that point. In some embodiments, verification of proper positioning of the clamp 300 relative to the blister card 50 (and more specifically relative to the unit dose medication 30 and/or the vinyl cavity 80) may be required prior to enabling the cutting device 270 to cut the blister card 50. In this regard, for example, a sensor 306 may be employed to determine whether the clamp 300 is fully seated prior to operation of the cutting device 270.
In an example embodiment, the sensor 306 may be positioned at a position along the linear path traveled by the guillotine head 290 at a point that enables confirmation of full seating of the clamp 300 relative to the table 250. As such, for example, if the clamp 300 fails to seat properly with respect to the table 250 and the blister card 50 disposed on the table 250, the sensor 306 may detect the failure to seat condition. In some embodiments, a position of the clamp 300 itself may be detected (e.g., either a top or bottom most position of the clamp 300 in reference to the y-direction) by the sensor 306 to determine whether the clamp 300 is seated. However, in other embodiments, a position of the guillotine head 290 itself or another portion of the card holder 272 may be detected. Thus, for example, the sensor 306 may employ physical contact-based detection (e.g., sensing contact or pressure exerted by the clamp 300), optical-based detection, detection based on a proximity switch or contact being triggered when a portion of the guillotine head 290 or clamp 300 reaches a particular position, and/or other like detection mechanisms.
The sensor 306 may be configured to provide a signal to the processor 200 regarding the seat condition of the clamp 300 to enable the processor 200 to control operation of the cutting process based on the seat condition of the clamp 300 as indicated by the sensor 306. Accordingly, for example, responsive to downward movement of the guillotine head 290, the sensor 306 may detect the seat condition of the clamp 300 and enable or interrupt completion of movement of the guillotine head 290 through the full range of motion required to affect cutting of the blister card 50. In this regard, as the card holder 272 moves downward the compression springs 296 are not initially compressed. However, the card holder 272 is attached to the guillotine head 290 such that some level of compression of the compression springs 296 is to occur prior to the cutting device 270 reaching the blister card 50. As such, when the clamp 300 stops its downward motion due to encountering an object blocking further downward movement (e.g., the table 250 or a unit dose medication 30 and/or the vinyl cavity 80), the compression springs 296 may begin to compress. At some point between the position at which the commencement of compression of the compression springs 296 begins and downward motion of the guillotine head 290 initiates cutting of the blister card 50 via the cutting device 270, a signal from the sensor 306 may be required to continue the downward motion of the guillotine head 290 to commence cutting of the blister card 50 with the cutting device 270.
In some embodiments, the drive motor may employ an encoder or other position tracking mechanism so that the position of the drive motor can be tracked. As the drive motor turns, the sensor 306 may provide feedback to the drive motor regarding the position of the clamp 300. As such, under normal operating conditions, the clamp 300 may be expected to fully seat at a corresponding drive motor position. When the drive motor position corresponding to clamp seating is reached, if the sensor 306 has not yet detected clamp seating, the drive motor (e.g., via the processor (200) may be made aware that the clamp 300 is not in the correct position so that the drive motor can either stop turning or reverse direction to avoid cutting any medication that may be blocking the clamp 300 from seating properly. As an example, if the drive motor knows that when it rotates the cam sixty degrees, the clamp 300 should be seated, the drive motor 300 may turn to sixty degrees and expect a signal from the sensor 306 indicating seating of the clamp 300. If the signal is not received at sixty degrees, as expected, a fault may be detected and the cycle may be stopped. As an alternative to an actual position sensor, timing measurements could be employed. For example, the motor may turn a set amount of time and expect an input from the sensor 306 to indicate that the clamp 300 has seated. In the absence of receiving the input when the set amount of time is reached, a fault may be detected as described above.
To the contrary, however, if the clamp 300 encounters an obstruction that prevents full seating of the clamp 300 (e.g., due to encountering a unit dose medication 30 and/or the vinyl cavity 80) as the guillotine head 290 descends to initiate cutting of the blister card 50, the failure of the clamp 300 to properly seat (or fully seat) with respect to the table 250 and/or the blister card 50 may cause the cutting process to be aborted.
In an example embodiment, the blade 310 may be mounted to a shaft 316 that is rotatably mounted to the blade carriage 314. The blade 310 may be substantially rectangular when viewed from a perspective that presents the widest and longest dimensions of the blade 310. However, other blade shapes are also possible so long as the blade edge is parallel to the axis of rotation of the blade 310. A depth of the blade 310 may be relatively small as compared to the length and width dimensions. The blade 310 may have a cutting end 318 running substantially the length of one of the longitudinal edges of the blade 310 and a fastening end 320 positioned at an edge opposite of the cutting end 318.
Because the blade 310 is mounted to the shaft 316 (e.g., via blade mount 319), the blade 310 may be enabled to rotate with respect to the shaft 316. The blade carriage 314 may then be affixed to the guillotine head 290 via fasteners 322. The fasteners 322, which may be embodied as rivets, screws, weld joints, or any other suitable fastening device, may hold the blade carriage 314 in contact with the guillotine head 290. In some cases, the blade 310 may be mounted to the blade carriage 314 via the shaft 316 such that the blade 310 extends substantially at a tangent to the surface of the shaft 316. Moreover, the blade carriage 314 may be constructed such that when the blade carriage 314 is mounted to the guillotine head 290 with the card holder 272 installed, a portion of the blade 310 between the cutting end 318 and the fastening end 320 may lie substantially adjacent to and substantially in a parallel plane to a plane in which a face of the card holder 272 lies.
In an example embodiment, the card holder 272 may move within a channel (shown generally at 321) of the cutting base 317 that is attached to an end portion of the table 250 and attaches to guillotine assembly 315 within which the guillotine head 290 moves via linear bearings. The cutting base 317 may be aligned with an edge of the table 250 to provide a self alignment surface for the blade 310. As such, the torsion springs 312 may be affixed to the shaft 316 and biased to provide a force to a side of the blade 310 that is opposite with respect to the side of the blade 310 that faces the card holder 272 and the cutting base 317. The torsion springs 312 may therefore bias the blade 310 for contact with the cutting base 317 during the cutting process. As such, the blade 310 may slide along shoulder portions of the cutting base 317 that define the channel 321 until the blade 310 completes the cut. Accordingly, since the card holder 272 actually stops moving when the clamp 300 is seated and compresses the compression springs 296 while the guillotine head 290 continues downward motion, the blade 310 may slide along the cutting base 317 proximate to the card holder 272, which travels in the channel 321, as it approaches the blister card 50. By holding the blade 310 in contact with the cutting base 317 using the torsion springs 312, even if there is wear of components over time, the torsion springs 312 dynamically accommodate for any gaps that would otherwise be created to maintain close tolerances for a clean and efficient cut of the blister card 50.
In an example embodiment, to improve cutting performance, the blade 310 may also be mounted such that the cutting end 318 of the blade 310 lies at an angle relative to the surface of the blister card 50 (or the plane in which the table 250 lies). By mounting the blade 310 at an angle, as described above, the cutting end 318 may only be in contact with the blister card 50 at a single point at any instant in time thereby requiring a lower force to execute the cutting of the blister card 50. For example, the portion of the cutting end 318 that is mounted lower (in the y-direction) may initially engage an end of the blister card 50 and commence cutting. The portion of the cutting end 318 that is in contact with the blister card 50 (and therefore cutting the blister card 50) may then shift across the length of the blade 310 until the portion of the cutting end 318 that is mounted higher completes the cut as the cutting end 318 passes from initially being adjacent to the face of the card holder 272 to being adjacent to the edge of the table 250. Accordingly, the blade 310 is enabled to cut the blister card 50 with a scissor action.
To mount the blade 310 such that the cutting end 318 lies at an angle relative to the surface of the blister card 50 during cutting, several different options may be employed. For example, in some cases, the blade carriage 314 may be constructed to hold the shaft 316 at an angle relative to the surface of the table 250. As yet another alternative, the blade carriage 314 may be mounted to the guillotine head 290 at an angle or, as is shown in
Accordingly, embodiments of the present invention may provide a blister singulator (an example of which is shown as the blister singulator 160 of
In this regard, a method of facilitating cutting unit dose blisters from a blister card may include moving a clamp into contact with a portion of the blister card to press the blister card into contact with a platform at operation 400, determining a seating state of the clamp with a sensor at operation 410, and enabling cutting of the blister card via a blade in slidable contact with cutting base based on the seating state at operation 420.
In some embodiments, optional operations may be provided in addition to the operations described above. It should be appreciated that each of the optional operations described below may be included with the operations above either alone or in combination with any others among the features described herein. Accordingly, in some embodiments, the method may further include providing an interrupt signal from the sensor in response to the clamp failing to fully seat prior to the blade reaching a plane of the platform at operation 430. In some embodiments, the operations described above may be modified. The modifications may be included in any combination and in any order. As such, in some cases, determining the seating state may include determining whether the clamp is fully seated with respect to the blister card and the platform. In some embodiments, enabling cutting may include enabling movement of the blade through a plane of the platform in response to the clamp being fully seated.
Many modifications and other embodiments of the inventions set forth herein will come to mind to one skilled in the art to which these inventions pertain having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the inventions are not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. Moreover, although the foregoing descriptions and the associated drawings describe exemplary embodiments in the context of certain exemplary combinations of elements and/or functions, it should be appreciated that different combinations of elements and/or functions may be provided by alternative embodiments without departing from the scope of the appended claims. In this regard, for example, different combinations of elements and/or functions other than those explicitly described above are also contemplated as may be set forth in some of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.
Number | Name | Date | Kind |
---|---|---|---|
635457 | Yandall | Oct 1899 | A |
678441 | Stevens | Jul 1901 | A |
2270473 | Porcelli | Jan 1942 | A |
3160048 | Barley | Dec 1964 | A |
3182542 | Cochran | May 1965 | A |
3656391 | Von Arx | Apr 1972 | A |
4253364 | Kiefer et al. | Mar 1981 | A |
4337679 | Krylov et al. | Jul 1982 | A |
4679473 | Hirata et al. | Jul 1987 | A |
4716799 | Hartmann | Jan 1988 | A |
4717042 | McLaughlin | Jan 1988 | A |
4785969 | McLaughlin | Nov 1988 | A |
4847764 | Halvorson | Jul 1989 | A |
4932301 | Buck | Jun 1990 | A |
5014875 | McLaughlin et al. | May 1991 | A |
5048816 | Chun et al. | Sep 1991 | A |
5131301 | Gergek | Jul 1992 | A |
5190185 | Blechl | Mar 1993 | A |
5314243 | McDonald et al. | May 1994 | A |
5346297 | Colson, Jr. et al. | Sep 1994 | A |
5377572 | Sonobe et al. | Jan 1995 | A |
5377864 | Blechl et al. | Jan 1995 | A |
5405048 | Rogers et al. | Apr 1995 | A |
5431299 | Brewer et al. | Jul 1995 | A |
5460294 | Williams | Oct 1995 | A |
5468110 | McDonald et al. | Nov 1995 | A |
5480062 | Rogers et al. | Jan 1996 | A |
5520450 | Colson, Jr. et al. | May 1996 | A |
5564803 | McDonald et al. | Oct 1996 | A |
5593267 | McDonald et al. | Jan 1997 | A |
5630347 | Elvio | May 1997 | A |
5661978 | Holmes et al. | Sep 1997 | A |
D384578 | Wangu et al. | Oct 1997 | S |
5713485 | Liff et al. | Feb 1998 | A |
5716114 | Holmes et al. | Feb 1998 | A |
5745366 | Higham et al. | Apr 1998 | A |
5761877 | Quandt | Jun 1998 | A |
5797515 | Liff et al. | Aug 1998 | A |
5805456 | Higham et al. | Sep 1998 | A |
5807222 | Totani | Sep 1998 | A |
5842976 | Williamson | Dec 1998 | A |
5878885 | Wangu et al. | Mar 1999 | A |
5880443 | McDonald et al. | Mar 1999 | A |
5883806 | Meador et al. | Mar 1999 | A |
5893697 | Zini et al. | Apr 1999 | A |
5905653 | Higham et al. | May 1999 | A |
5912818 | McGrady et al. | Jun 1999 | A |
5927540 | Godlewski | Jul 1999 | A |
5940306 | Gardner et al. | Aug 1999 | A |
5971593 | McGrady | Oct 1999 | A |
6003006 | Colella et al. | Dec 1999 | A |
6011999 | Holmes | Jan 2000 | A |
6021392 | Lester et al. | Feb 2000 | A |
6035610 | Vonderhorst et al. | Mar 2000 | A |
6039467 | Holmes | Mar 2000 | A |
6065819 | Holmes et al. | May 2000 | A |
6068156 | Liff et al. | May 2000 | A |
6109774 | Holmes et al. | Aug 2000 | A |
6112502 | Frederick et al. | Sep 2000 | A |
6116461 | Broadfield et al. | Sep 2000 | A |
6151536 | Arnold et al. | Nov 2000 | A |
6170230 | Chudy et al. | Jan 2001 | B1 |
6176392 | William et al. | Jan 2001 | B1 |
6189727 | Shoenfeld | Feb 2001 | B1 |
6223934 | Shoenfeld | May 2001 | B1 |
6256967 | Hebron et al. | Jul 2001 | B1 |
6283322 | Liff et al. | Sep 2001 | B1 |
6289656 | Wangu et al. | Sep 2001 | B1 |
6338007 | Broadfield et al. | Jan 2002 | B1 |
6339732 | Phoon et al. | Jan 2002 | B1 |
6361263 | Dewey et al. | Mar 2002 | B1 |
6370841 | Chudy et al. | Apr 2002 | B1 |
6449927 | Hebron et al. | Sep 2002 | B2 |
6471089 | Liff et al. | Oct 2002 | B2 |
6497342 | Zhang et al. | Dec 2002 | B2 |
6499270 | Peroni et al. | Dec 2002 | B2 |
6532399 | Mase | Mar 2003 | B2 |
6564121 | Wallace et al. | May 2003 | B1 |
6581798 | Liff et al. | Jun 2003 | B2 |
6609047 | Lipps | Aug 2003 | B1 |
6611733 | De La Huerga | Aug 2003 | B1 |
6625952 | Chudy et al. | Sep 2003 | B1 |
6640159 | Holmes et al. | Oct 2003 | B2 |
6650964 | Spano, Jr. et al. | Nov 2003 | B2 |
6671579 | Spano, Jr. et al. | Dec 2003 | B2 |
6681149 | William et al. | Jan 2004 | B2 |
6742671 | Hebron et al. | Jun 2004 | B2 |
6755931 | Vollm et al. | Jun 2004 | B2 |
6760643 | Lipps | Jul 2004 | B2 |
6776304 | Liff et al. | Aug 2004 | B2 |
6785589 | Eggenberger et al. | Aug 2004 | B2 |
6790198 | White et al. | Sep 2004 | B1 |
6793424 | Yamada et al. | Sep 2004 | B2 |
6814254 | Liff et al. | Nov 2004 | B2 |
6814255 | Liff et al. | Nov 2004 | B2 |
6847861 | Lunak et al. | Jan 2005 | B2 |
6874684 | Denenberg et al. | Apr 2005 | B1 |
6892780 | Vollm et al. | May 2005 | B2 |
6895304 | Spano, Jr. et al. | May 2005 | B2 |
6975922 | Duncan et al. | Dec 2005 | B2 |
6985797 | Spano, Jr. et al. | Jan 2006 | B2 |
6996455 | Eggenberger et al. | Feb 2006 | B2 |
7010389 | Lunak et al. | Mar 2006 | B2 |
7014063 | Shows et al. | Mar 2006 | B2 |
7016766 | William et al. | Mar 2006 | B2 |
7040504 | Broadfield et al. | May 2006 | B2 |
7052097 | Meek, Jr. et al. | May 2006 | B2 |
7072737 | Lunak et al. | Jul 2006 | B2 |
7072855 | Godlewski et al. | Jul 2006 | B1 |
7077286 | Shows et al. | Jul 2006 | B2 |
7085621 | Spano, Jr. et al. | Aug 2006 | B2 |
7092796 | Vanderveen | Aug 2006 | B2 |
7093755 | Jordan et al. | Aug 2006 | B2 |
7100792 | Hunter et al. | Sep 2006 | B2 |
7103419 | Engleson et al. | Sep 2006 | B2 |
7111780 | Broussard et al. | Sep 2006 | B2 |
7139639 | Broussard et al. | Nov 2006 | B2 |
7150724 | Morris et al. | Dec 2006 | B2 |
7171277 | Engleson et al. | Jan 2007 | B2 |
7218231 | Higham | May 2007 | B2 |
7228198 | Vollm et al. | Jun 2007 | B2 |
7249688 | Hunter et al. | Jul 2007 | B2 |
7348884 | Higham | Mar 2008 | B2 |
7417729 | Greenwald | Aug 2008 | B2 |
7419133 | Clarke et al. | Sep 2008 | B2 |
7426425 | Meek, Jr. et al. | Sep 2008 | B2 |
7428859 | Fujita et al. | Sep 2008 | B2 |
7540222 | Kim | Jun 2009 | B2 |
7554449 | Higham | Jun 2009 | B2 |
7571024 | Duncan et al. | Aug 2009 | B2 |
7588167 | Hunter et al. | Sep 2009 | B2 |
7748628 | Greyshock | Jul 2010 | B2 |
8036773 | Braun et al. | Oct 2011 | B2 |
20060123969 | Fujita et al. | Jun 2006 | A1 |
20070261525 | Yamaguchi et al. | Nov 2007 | A1 |
20070265730 | Greyshock | Nov 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20110232435 A1 | Sep 2011 | US |