The present invention relates generally to facilitating the creation and analysis of microarrays, and more particularly, the present invention relates to facilitating the creation and analysis of microarrays by using a substrate holder to minimize contamination of samples contained on a substrate.
The present invention described herein is used for material handling of substrates containing biological material for sampling (the “invention”). Many areas of scientific investigation require the use of biological material analysis. For example, in the field of genomics research, microarrays of known DNA base pair sequences are used to identify and detect expressed gene sequences in biological samples, or identify polymorphisms and mutations in the DNA of biological samples. Likewise, other biological material arrays such as modified and unmodified proteins and peptides, modified and unmodified nucleic acids, antibodies, antigens, carbohydrates, and other biopolymers are used to identify biological properties of like materials.
With respect to genomics research, microarrays of known DNA are prepared as a means to match known and unknown DNA samples based on hybridization principles, for example, to identify gene sequences or to determine gene expression levels. In one method, microarrays can be made by “spotting” collections of suspended, purified DNA strands onto a substrate. The substrate can be any device known to one skilled in the art for supporting biological material, such as DNA, as one example only. In a typical production method, the substrate, such as a glass slide, is loaded into a microarray production instrument and a microarray robot places drops or aliquots of individual DNA types onto the slide in a grid design. The grid may contain thousands of DNA spots of different base pair sequences (i.e. primary sequence) that are fixed to the substrate. The slide is then moved to a hybridization instrument or chamber where samples are probed for the presence and abundance of DNA or RNA (or mRNA) by hybridizing them to the prepared DNA microarray. If an individual cDNA probe in the sample is complimentary to the sequence of DNA on a given spot, the cDNA will hybridize to the spot, and the hybridization may be detected by its fluorescence. In this manner, each spot in the microarray may act to assay the presence of a different cDNA utilizing the sequence-specific affinity inherent to the formation of double-stranded nucleic acid polymers.
After the cDNA probes have been hybridized to the microarray and any free probes have been removed, the microarray is moved to a microarray scanner to be scanned to evaluate the comparative binding levels of individual probes. cDNA probes hybridized to DNA spots in the microarray can be detected through the use of different colored fluorophores or dyes that emit light at differential, characteristic wavelengths when excited by an illumination source in the microarray analyzer.
Microarray spots with more bound probe will fluoresce more intensely. The emitted light is captured by detector, such as a charge-coupled device (CCD) or a photo multiplier Tube (PMT), which records its intensity. The recorded data is stored or processed for further analysis.
To accomplish the above-described process, the slides containing the microarray and DNA test probes must be moved through all the different stations as described above. These stations include the microarrayer where the microarray is fabricated onto the slide, the hybridization station where the cDNA is hybridized to the microarray, and the washing and drying station where excess spotted cDNA, which has not hybridized to the microarray, is washed from the slide. The slides must also be moved from the drying station to the microarray analyzer. From the microarray analyzer, the slides must be moved to a storage or disposal facility.
Conventional processing includes manual handling of the slides for movement among all the above described stations. In addition to being cumbersome and labor intensive, manual handling of slides can contaminate the slides, introduce technical error and distort the overall results of the study. Specifically, conventional slides have little auto-fluorescence to reduce background illumination. This helps ensure that the only illumination generated in the microarray analyzer comes from the hybridized DNA and cDNA, or other biomolecule under investigation. The remaining illumination is preferably reduced and filtered out. This ensures that the illumination wavelengths and intensity levels recorded by the microarray analyzer are from the hybridized DNA and cDNA.
Contamination by fingerprints or other debris caused by material handling adds to the auto-fluorescence of the slides, thereby increasing the background light and distorting the results of the biomaterial testing. The present invention was developed in light of these and other drawbacks.
To address these and other drawbacks, the present invention provides a substrate holder that allows a substrate or any other surface amenable to fluidic-based hybridization, to be transported through a biomaterial analysis with minimal handling of the substrate.
In one aspect of the present invention, a method of analyzing biomaterial includes a series of steps. At least one substrate is loaded into a substrate holder. Next, a microarray of biomaterial is deposited on the substrate in the substrate holder. The substrate holder is then moved to a hybridization station where a second biomaterial is hybridized to the biomaterial in the microarray. The substrate holder is then moved to a microarray analyzer station where the hybridized material is analyzed.
In another aspect, a substrate holder is provided that includes a support structure having a substrate aperture recessed into a face of the support structure. The substrate aperture is sized to accommodate a substrate. A plurality of locking devices is disposed around the periphery of the substrate aperture to lock the substrate into place.
In another aspect of the present invention, a substrate loading kit is provided including a plurality of components. The substrate holder is provided having a substrate aperture for receiving a substrate. The substrate holder has a plurality of locking devices disposed around the periphery of the substrate aperture for locking the substrate into position. A substrate loader is provided that has members adapted to engage and open locking devices when the substrate holder is moved with respect to the substrate loader.
In another aspect of the present invention, a method for loading substrates into the substrate holder is provided. The substrate holder has a substrate aperture for accommodating a substrate. A plurality of spring apertures is disposed around the periphery of the substrate aperture. Each spring aperture contains a respective spring that extends through the aperture and into the substrate aperture. The substrate loader includes a base portion and a plurality of pins extending from the base portion. The substrate holder is placed on the substrate loader such that each of the pins extends through a respective one of the spring apertures. The substrate holder is then moved with respect to the substrate loader such that each of the pins abuts a respective one of the springs to thereby move the springs out of the substrate aperture. The substrate is then placed into the substrate aperture and the substrate holder is removed from the substrate loader. Once the substrate holder is removed from the substrate loader, the springs clamp against edge portions of the substrate to hold it into place.
Other objects and features of the present invention will become more readily apparent from a better understanding of the preferred embodiments described below with reference to the following drawings.
The features and inventive aspects of the present invention will become more apparent upon reading the following detailed description, claims and drawings, of which the following is a brief description:
Referring now to
Step 18 extends around the periphery of each aperture 16 and is recessed from first side 12. Step 18 is preferably recessed from first side 12 to a depth that allows a substrate such as a slide, as one example only, to sit on step 18 while being about flush with the surface of first side 12. Inner walls of step 18 define a smaller aperture 16B, while the portion of aperture 16 meeting first side 12 defines larger aperture 16A.
A match corner 22 is provided at a corner area of the larger aperture 16A. Match corner 22 opens into a radius to ensure that a corner of a slide resting in aperture 16 does not abut the structure of substrate holder 10. Additionally, match corner 22 acts as a reference point for orienting the substrate holder during processing and orienting the slides in the substrate holder.
Spring loaders 24A are disposed along the lengthwise portion of larger aperture 16A. Likewise, spring loaders 24B are disposed along the widthwise portion of larger aperture 16A. Referring to
Spring 30 includes substrate holder portion 32 and seating portion 34. A latch 36 is provided with spring 30 that is biased toward an open position. To assemble, the latch is moved to a closed position, and spring 30 is positioned into aperture 26. When released, latch 36 biases against inside walls of spring aperture 26 to grip thereagainst for support. Preferably, the portion of spring aperture 26, not including groove 28, is recessed to a depth that allows spring 30 to sit therein without projecting above the face of first side 12.
Referring now to
Referring now to
Referring now to
Next, substrate holder 10 is pulled in the direction of arrow 58 which causes pins 50A to flex substrate holder portion 32A of spring 30A in a direction toward the outer periphery of substrate holder 10. Likewise, movement of substrate holder 10 in the direction of arrow 58 causes spring loader pins 50 to move substrate holder portion 32 in a direction toward the outer periphery of substrate holder 10. This moves substrate holder portions 32 and 32A of respective springs 30 and 30A out of the way of larger aperture 16A to allow slides 54 to be loaded therein. Slides 54 are dropped into larger apertures 16A of substrate holder 10. The face of step 18 is recessed from first side 12 to allow slides 54 to sit approximately flush with the surface of first side 12. As is noted, step 18 extends around the entire periphery of larger aperture 16A such that each slide 54 is supported around its periphery by step 18.
Once the slides are positioned in larger aperture 16A, substrate holder 10 is removed from loading side 44. This removal causes spring loader pins 50 and 50A to move out of contact with substrate holder portions 32 and 32A. As such, substrate holder portions 32 and 32A bias against the outer periphery of slide 54 to thereby grip and drive slides 54 toward match corner 22.
Referring now to
It is noted that other configurations of the substrate holder 10 may be used. Such configurations need not include the specific locking or support mechanisms disclosed herein and merely need to provide a support structure that allows slide handling without contamination. Moreover, although substrate holder 10 is shown accommodating four slides, other variations of the number of slides accommodated may be used. Specifically, substrate holder 10 may accommodate only one slide or may accommodate a large number of slides and the present invention is not limited to that disclosed herein.
Referring now to
Referring now to
In step 72, the biomaterial, which is to be tested, is deposited on each slide as a microarray. The biomaterial may be protein to conduct a protein study, carbohydrate material to conduct a carbohydrate study, DNA strands to conduct a DNA study or any other biological material for a similar study. By way of non-limiting example, the microarray in step 72 includes strands of DNA used to conduct a DNA study for genomic research.
The microarrays in step 72 are fabricated by “spotting” collections of suspended, purified DNA strands onto the slide contained in the substrate holder. A microarray robot places drops of individual DNA types onto the slide. Each slide is spotted with thousands of DNA spots of different base pair sequences that affix to the slide. To accomplish the microarray fabrication, the substrate holder is loaded into a microarrayer to allow the microarray robot to conduct spotting. Multiple substrate holders 10 can be loaded into the microarrayer to allow the microarray robot to spot numerous slides at one time. Or, few substrate holders can be loaded into the microarrayer. Match corner 22 provides a reference from which to orient the substrate holder 10 throughout the entire DNA study process.
Once the microarray is fabricated, the substrate holder 10 is transported to a hybridization station in step 74. The method of transport is preferably accomplished by gripping the substrate holder 10, not the actual slides themselves. This limits the amount of contamination on the slides. The transport may be accomplished by use of human hands or robotics.
The substrate holders 10 are loaded into a hybridization machine to conduct hybridization. Here, a cDNA probe is washed over the spotted slide and cooked under a specific temperature and mixing conditions. If the individual cDNA probe is complimentary to the sequence of the DNA on a given spot, the cDNA will hybridize to the spot. The cDNA from each and any given probe is treated with colored fluorophores or dyes that emit light at a differential, characteristic wavelength excited by an illumination source such as a microarray analyzer.
In step 76, non-hybridized DNA material is washed clean from the slide and the remaining hybridized material is dried. To accomplish this, the slide is transported from the hybridization station in step 74 to a washing and drying station in step 76. Again, the slide is preferably transported by handling the substrate holder, not the slides themselves. This process may also be accomplished by automation or robotics or by human hands. As the method of transportation need not grip the slides, contamination is reduced.
In step 78, the substrate holder 10 is loaded into a microarray scanner. The cDNA probes have been treated with colored fluorophores or dyes that emit that differential, characteristic wavelength when excited by an illumination source. As such, the microarray scanner emits the characteristic wavelengths to illuminate the fluorophores. The illumination of the microarray spots is captured by detector, such as a charged-coupled device (CCD) or a photo-multiplier tube (PMT), which records the intensity of the illuminated spots. The recorded data is stored or processed for further analysis.
A portion of the substrate holder 10, not including the slides 54, is once again handled to transport the substrate holder 10 from the washing and drying station in step 76 to the microarray analyzer in step 78. The orientation of the slides is maintained in the microarray analyzer by using the match corner 22 as a reference point for the slides. Moreover, slide loading into the microarray analyzer in step 78 can be conducted by automation. This automation is facilitated by the stacking ability described above. Specifically, the substrate holders 10 can be stacked next to a robotic arm or other automated machine and loaded into an analyzer such as the microarray analyzer.
In step 80, the slides are removed from the substrate holder according to the discussion set out above. The slides are then stored or disposed and the substrate holder 10 is recirculated for reloading in step 70.
It will be understood by one skilled in the art that the present invention may be used in conjunction with other substrates in addition to slides, which include any medium or device for supporting an array of biological material understood to one skilled in the art, and the present invention is in no way limited to the description disclosed herein.
Preferred embodiments of the present Invention have been disclosed. A person of ordinary skill in the art would realize, however, that certain modifications would come within the teachings of this Invention, and the following claims should be studied to determine the true scope and content of the invention. In addition, the methods and structures of the present invention can be incorporated in the form of a variety of embodiments, only a few of which are described herein. It will be apparent to the artisan that other embodiments exist that does not depart from the spirit of the invention. Thus, the described embodiments are illustrative and should not be construed as restrictive.
Number | Date | Country | |
---|---|---|---|
60293934 | May 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10479258 | US | |
Child | 11320051 | Dec 2005 | US |