Method and apparatus for fastening steel framing members

Information

  • Patent Grant
  • 6862864
  • Patent Number
    6,862,864
  • Date Filed
    Friday, June 21, 2002
    22 years ago
  • Date Issued
    Tuesday, March 8, 2005
    19 years ago
Abstract
Various improved methods are provided for fastening two of more steel framing members together with a fastener. In one aspect, the fastening technique employs a fastener having a tip section such that a portion of the tip section extending beyond the underside of the framing members may be outwardly flared, thereby inhibiting removal of the fastener from the framing members In another aspect, the fastening technique employs a fastener having a steel tip nose for piercing the framing members and a plastic stem section, such that a portion of the stem section extending beyond the underside of the framing members expands, thereby inhibiting removal of the fastener from the framing members. In yet another aspect, the fastening technique employs a fastener having a coil section with an elastic characteristic.
Description
BACKGROUND OF THE INVENTION

The present invention relates generally to steel framing and, more particularly, to an improved cost-effective method for fastening steel framing.


Steel framing is revolutionizing the construction industry. Steel is a high quality framing material that will not shrink, warp, or attract termites and other wood boring insects. In recent years, the price of steel has become more competitive with wood and other construction materials. However, despite its advantages, steel framing has not become prevalent in the residential construction industry. The lack of a quick and cost effective technique for fastening steel members has prevented steel framing from emerging as the predominant building material in residential construction.


Therefore, it is desirable to provide a quick and cost-effective technique for fastening steel members. It is envisioned that the steel fastening technique will be comparable in speed to an air nailer used to fasten wood materials. It is further envisioned that the steel fastening technique will provide a minimal gap between steel members, a pullout force of at least 216 lb., a shear force of at least 164 lb., as well as cause minimal destruction of any galvanize coating on the steel members.


SUMMARY OF THE INVENTION

In accordance with the present invention, various improved methods are provided for fastening two of more steel framing members together with a fastener. In one aspect of the invention, the fastening technique employs a fastener having a tip section such that a portion of the tip section extending beyond the underside of the framing members may be outwardly flared, thereby inhibiting removal of the fastener from the framing members In another aspect of the present invention, the fastening technique employs a fastener having a steel tip nose for piercing the framing members and a plastic stem section, such that a portion of the stem section extending beyond the underside of the framing members expands, thereby inhibiting removal of the fastener from the framing members. In yet another aspect of the present invention, the fastening technique employs a fastener having a coil section with an elastic characteristic.


Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating the preferred embodiment of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a fragmentary prospective view of a steel framing member having two additional steel framing members fastened thereto in accordance with the present invention;



FIG. 2 is a side view of a first preferred embodiment of an outwardly expanding fastener in accordance with the present invention;



FIG. 3 is a bottom view of the outwardly expanding fastener illustrating fracture lines in accordance with the present invention;



FIG. 4 is a cross-sectional view, taken along line 55 of FIG. 1, illustrating the first preferred embodiment of an outwardly expanding fastener penetrating partially through the steel members in accordance with the present invention;



FIG. 5 is a cross-sectional view, taken along line 55 of FIG. 1, illustrating the outwardly expanding fastener being driven against the outer surface of the steel members in accordance with the present invention;



FIG. 6 is a cross-sectional view, taken along line 55 of FIG. 1, illustrating a pin being driven into a bottom portion of the outwardly expanding fastener in accordance with the present invention;



FIG. 7 is a cross-sectional view, taken along line 55 of FIG. 1, illustrating the radially outwardly flaring of the tip section of the fastener in accordance with the present invention;



FIG. 8 is a side view of a second preferred embodiment of an outwardly expanding fastener in accordance with the present invention;



FIG. 9 is a cross-sectional view, taken along line 55 of FIG. 1, illustrating the radially outwardly flaring of the tip section of the second preferred embodiment of an outwardly expanding fastener in accordance with the present invention;



FIG. 10 is a side view of a third preferred embodiment of an outwardly expanding fastener in accordance with the present invention;



FIG. 11 is a bottom view of the third preferred embodiment of the outwardly expanding fastener in accordance with the present invention;



FIG. 12 is a cross-sectional view, taken along line 55 of FIG. 1, illustrating the third preferred embodiment of an outwardly expanding fastener penetrating partially through the steel members in accordance with the present invention;



FIG. 13 is a cross-sectional view, taken along line 55 of FIG. 1, illustrating the third preferred embodiment of an outwardly expanding fastener being driven against the outer surface of the steel members in accordance with the present invention;



FIG. 14 is a cross-sectional view, taken along line 55 of FIG. 1, illustrating the radially outwardly flaring of the tip section of the third preferred embodiment of an outwardly expanding fastener in accordance with the present invention;



FIG. 15 is a side view of an exemplary steel tip fastener in accordance with another aspect of the present invention;



FIGS. 16 and 17 are cross-sectional views, taken along line 55 of FIG. 15, illustrating the steel tip fastener partially penetrating through the steel members in accordance with the present invention;



FIG. 18 is a cross-sectional view, taken along line 55 of FIG. 15, illustrating an enlarged stem portion of the steel tip fastener engaging the underside of the steel member in accordance with the present invention;



FIG. 19 is a top view of an exemplary twisted spring fastener in accordance with another aspect of the present invention;



FIG. 20 is a side view of the twisted spring fastener in accordance with the present invention;



FIGS. 21 and 22 are cross-sectional views, taken along line 55 of FIG. 1, illustrating the twisted spring fastener being screwed through two steel members in accordance with the present invention;



FIG. 23 is a side view of a fourth preferred embodiment of an outwardly expanding fastener in accordance with the present invention;



FIG. 24 is a cross-sectional view, taken along line 55 of FIG. 1, illustrating the fourth preferred embodiment of an outwardly expanding fastener being driven against the outer surface of the steel members in accordance with the present invention; and



FIG. 25 is a cross-sectional view, taken along line 55 of FIG. 1, illustrating the radially outwardly flaring of the tip section of the fourth preferred embodiment of an outwardly expanding fastener in accordance with the present invention.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Referring to FIG. 1, a fragmentary prospective view of a longitudinal steel framing member 12 having two upright steel framing members 14 and 16 fastened thereto. Each c-shaped framing member includes a bottom wall and two side walls having a thickness in the range from 0.018″ to 0.071″. Additionally, each steel member may range from 33 ksi to 80 ksi as is well known in the art. As will be more fully described below, one or more fasteners 20 may be used to join the upright steel framing members 14 and 16 to the longitudinal steel framing member 12. While the following description is provided with reference to this particular configuration, it is readily understood that the fastening technique of the present invention is applicable to any two or more adjacent members made of steel (e.g., carbon steel, hardened steel, stainless steel, tool steel, etc.) or other material having similar attributes to those of steel (e.g., nonferrous metals, including nickel, alloys, titanium, copper and aluminum).


In accordance with one aspect of the present invention, one or more outwardly expanding fasteners 20 may be used to join the steel members. A first exemplary embodiment of an outwardly expanding fastener 20 is depicted in FIG. 2. The fastener 20 is comprised of an integrally formed member having a head section 22, a stem section 24 and a tip section 26. The fastener 20 further includes a bore 28 which is formed into the head section 22 of the fastener. The bore 28 extends downwardly through the stem section 24 and into the tip section 26 of the fastener. As further described below, the bore 28 is adapted to receive a pin 30 therein. The fastener 20 is preferably comprised of a harden steel material or, alternatively, a softer steel material having a tip section formed of a hardened material such as carbide, ceramic, or a harden steel.


In operation, a two-step process is used to set the fastener 20 into the framing members. First, the expanding fastener 20 is driven into the steel members until the head of the fastener seats against the outer surface of the steel members as shown in FIGS. 4 and 5. It is readily understood that the driving device is configured to engage the head section 22 of the fastener and may provide a backplate to prevent unwanted deformation of the steel at the point at which the fastener pierces the steel members. In one embodiment, the driving device drives the fasteners at relatively high speeds (e.g., greater than 50 feet per second). In an alternative embodiment, the driving device may drive the fastener at lower speeds, but apply a relatively high force. One skilled in the art will readily recognize that an air nailer or other known driving devices may be configured to drive the fasteners 20 of the present invention into the steel members.


Once the fastener 20 has been driven into place, a pin 30 is then driven through the bore 28 and into contact with the inner surface of the tip section 26 of the fastener. Upon impact, the pin 30 forces a portion of the fastener extending beyond the underside of the steel members to project radially outward as shown in FIGS. 6 and 7. The radially flared portions of the tip section 26 prevents removal of the fastener from the steel members. To facilitate the separation of the tip section 26, it is envisioned that one or more fracture lines 32 may be formed in the tip section 26 of the fastener 20 as depicted in FIG. 3. It is further envisioned that the fracture lines may not extend to the distal end of the tip section 26, thereby maintaining the structural integrity of the tip section 26 as it is driven into the framing members. Alternatively, separation of tip section 26 can be facilitated by forming the tip section 26 from two or more segmented members. The segmented members are not connected to one another at tip section 26 and, therefore, do not require fracture lines 32 to facilitate the separation of tip section 26.


In one embodiment, the pin 30 resides in the bore 28 of the fastener as shown in FIG. 2. In this case, the driving device may be configured to provide a two-step actuation mechanism: a first step for driving the fastener into the steel members, and a second step for driving the pin 30 into the bore of the fastener. In an alternative embodiment, it is envisioned that the pin 30 may be integrated into the driving device that drives the fastener 20 into the steel members.


A second exemplary embodiment of the expanding fastener 20′ is depicted in FIG. 8. As described above, the expanding fastener 20 is comprised of an integrally formed member having a head section 22′, a stem section 24′, and a tip section 26′. However, in this embodiment, the tip section 26′ of the fastener 20′ is designed to project radially outward into a butterfly position as shown in FIG. 9; otherwise the expanding fastener 20′ is set using the two step process described above.


A third exemplary embodiment of the expanding fastener 20″ is depicted in FIG. 10. Likewise, the expanding fastener 20″ is primarily comprised of an integrally formed member having a head section 22″, a stem section 24″ and a tip section 26″. However, an annular groove 32″ may be formed along the outer surface of the stem section 24″. As further described below, the annular groove 32″ of the fastener 20″ is designed to curl the inner surface of the hole made in the steel members. In addition, the fastener 20″ may be configured with different fracture lines as shown in FIG. 11, or alternatively, configured with two or more segmented members.


Referring to FIGS. 12-14, the fastener 20″ is again driven into the steel members until the head section 22″ of the fastener seats against the outer surface of the steel members as shown in FIG. 13. As the fastener passes through the steel members, the annular groove 32″ crimps together the portion of the steel members extending below the underside of the steel members, thereby preventing separation of the two steel members. Once the fastener 20″ has been driven into place, a pin 30″ is then driven into the bore 28″ of the fastener, thereby radially expanding the tip section 26″ of the fastener as described above.


In another aspect of the present invention, one or more steel tip fasteners 40 may be used to join the steel members. An exemplary steel tip fastener 40 is shown in FIG. 15. The steel tip fastener 40 is primarily comprised of an integrally formed member having a head section 42 and a stem section 44. The member is preferably formed of a plastic material. In addition, the fastener 40 further includes a piercing nose 46 formed at the tip of the fastener, such that the steel nose 42 has a radial dimension slightly less than the radial dimension of the stem section 44 of the fastener 40. The piercing nose 46 is preferably formed of steel or other materials having similar attributes to those of steel.


When the steel tip fastener 40 is driven into the steel members, the piercing nose 46 punches a hole clean through the steel members as shown in FIGS. 16 and 17. The plastic stem portion of the fastener then press fits into the hole as shown in FIG. 18. Once the fastener has been driven into place, a portion of the plastic stem will extend past the underside of the steel members. It is envisioned that the friction of the plastic being forced though the hole at a high velocity will cause the portion of the stem extending past the underside of the steel members to expand as shown at 48 of FIG. 18. In this way, the expanded plastic portion will prevent removal of the fastener from the steel members.


In another aspect of the present invention, one or more twisted spring fasteners 60 may be used to join the steel members. An exemplary spring fastener 60 is depicted in FIGS. 19 and 20. The spring fastener 60 is comprised of an integrally formed member having a head section 62 and a coil section 64. The fastener is preferably comprised of a steel material, but may be comprised of other materials having an elastic characteristic, such as some plastic materials reinforced with glass, kevlar or graphite fibers.


A two-step process may be used to set the fastener 60. First, a pilot hole is drilled or punched into the steel members. Second, the spring fastener 60 is screwed into the pre-drilled hole until the steel members are secured together as shown in FIGS. 21 and 22. It is envisioned that the head section 62 of the spring fastener 60 is adapted to receive one or more types of torque transmitting devices. One skilled in the art will readily recognize that various well known torque transmitting devices (such as a drill) may be used to apply the appropriate rotational torque and downward force to drive the fastener 60 into the steel members.


A fourth exemplary embodiment of the expanding fastener 20′″ is depicted in FIG. 23. Likewise, the expanding fastener 20′″ is primarily comprised of an integrally formed member having a head section 22′″, a stem section 24′″ and a tip section 26′″. However, teeth 35′″ may extend along the outer surface of the stem section 24′″. As further described below, the teeth 35′″ of the fastener 20′″ are designed to engage with an outer surface of the steel members to further inhibit removal of expanding fastener 20′″. In addition, the fastener 20′″ may be configured with different fracture lines or alternatively, configured with two or more segmented members.


Referring to FIGS. 23-24, the fastener 20′″ is again driven into the steel members until the head section 22′″ of the fastener seats against the outer surface of the steel members as shown in FIG. 24. Once the fastener 20′″ has been driven into place, a pin 30′″ is then driven into the bore 28′″ of the fastener, thereby radially expanding the tip section 26′″ of the fastener as described above. The teeth 35′″ engage with the outer surface of the framing members, thereby further inhibiting removal of the fastener 20′″.


While the invention has been described in its presently preferred form, it will be understood that the invention is capable of modification without departing from the spirit of the invention as set forth herein.

Claims
  • 1. A method of fastening two of more steel framing members together with an outwardly expanding fastener, comprising: (a) providing an integrally formed fastener having a head section, a stem section, and a tip section, wherein the fastener further includes a bore formed into the head section and extending downwardly though the stem section into the tip section; (b) positioning the tip section of the fastener adjacent two or more adjacent steel framing members; (c) applying an axial force to the head section of the fastener, thereby forming an opening in such framing member with the tip section and driving the fastener through said framing members until the head section of the fastener is in contact with an outer surface of one of said framing members; and (d) driving a pin through the bore and into contact with an inner surface of the tip section of the fastener, thereby causing outward flaring of a portion of the tip section that extends beyond an underside surface of said framing members such that the outwardly flared portion of the tip section inhibits removal of the fastener from the framing members.
  • 2. The method of claim 1 wherein (a) further comprises placing one or more fracture points in the tip section of the fastener, thereby facilitating outward flaring of the tip section.
  • 3. The method of claim 1 wherein (a) further comprises forming an external annular groove in the stem section of the fastener.
  • 4. The method of claim 1 wherein (a) further comprises providing a tip section having at least two segmented members.
  • 5. The method of claim 1 wherein (a) further comprises providing a fastener with a plurality of teeth spaced axially along a portion of a periphery of said fastener.
  • 6. A method of fastening two of more steel framing members together with a steel tip fastener, comprising: (a) providing a fastener having a head section, a stem section and a piercing nose, where the head section and stem section are integrally formed of a plastic material and the piercing nose is coupled to the stem section at an end opposite the head section; (b) positioning the piercing nose of the fastener adjacent two or more adjacent steel framing members; (c) applying an axially force to the head section of the fastener, such that the fastener forms an opening in such framing member, the fastener is driven through said framing members until the head section of the fastener is in contact with an outer surface of one of said framing members and a portion of the stem section extends beyond an underside surface of said framing members; and (d) expanding the portion the stem section that extends beyond the underside surface of said framing members, thereby inhibiting removal of the fastener from the framing members.
  • 7. The method of claim 6 wherein (a) further comprises the piercing nose formed of a steel material.
  • 8. The method of claim 6 wherein (a) further comprises the piercing nose having a maximum radial dimension less than a maximum radial dimension of the stem section of the fastener.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application Nos. 60/299,994, 60/299,929, and 60/299,951 each of which were filed on Jun. 21, 2001.

US Referenced Citations (48)
Number Name Date Kind
1444618 Levingston Feb 1923 A
1912222 Heyman May 1933 A
2006813 Norwood Jul 1935 A
2178187 Sake Oct 1939 A
2410047 Burrows et al. Oct 1946 A
2429239 Rogers Oct 1947 A
2944262 Richman et al. Jul 1960 A
2994243 Langstroth Aug 1961 A
3322017 Dufficy May 1967 A
3332311 Schultz Jul 1967 A
3722280 Van Greuingen Mar 1973 A
3882755 Enstrom May 1975 A
3925875 Doke Dec 1975 A
4025029 Kotas et al. May 1977 A
4094054 Fischer Jun 1978 A
4183239 Stubbings Jan 1980 A
4218953 Haytayan Aug 1980 A
4402641 Arff Sep 1983 A
4511296 Stol Apr 1985 A
4601625 Ernst et al. Jul 1986 A
4708552 Bustos et al. Nov 1987 A
4787795 Kraus Nov 1988 A
4810150 Matsukane et al. Mar 1989 A
4840523 Oshida Jun 1989 A
4902182 Lewis Feb 1990 A
5030051 Kaneko et al. Jul 1991 A
5207750 Rapata May 1993 A
5240361 Armstrong et al. Aug 1993 A
5253965 Angel Oct 1993 A
5259689 Arand et al. Nov 1993 A
5286151 Eshraghi Feb 1994 A
5323632 Shirasaka et al. Jun 1994 A
5333483 Smith Aug 1994 A
5375957 Golledge Dec 1994 A
5376097 Phillips Dec 1994 A
5567101 Martin Oct 1996 A
5658110 Kraus Aug 1997 A
5718142 Ferraro Feb 1998 A
5741099 Aasgaard Apr 1998 A
5775860 Meyer Jul 1998 A
5829817 Ge Nov 1998 A
5855099 Hoffman Jan 1999 A
5987718 Kelly Nov 1999 A
6023898 Josey Feb 2000 A
6273656 Cleland et al. Aug 2001 B1
6276644 Jennings et al. Aug 2001 B1
6354683 Benbow Mar 2002 B1
20020071741 Oswald Jun 2002 A1
Foreign Referenced Citations (15)
Number Date Country
155 135 Oct 1904 DE
308 681 Oct 1918 DE
369 395 Feb 1923 DE
2557845 Jun 1977 DE
31 47 430 Jun 1983 DE
199 34 998 Feb 2001 DE
2 595 609 Sep 1987 FR
2651283 Aug 1989 FR
2745863 Mar 1996 FR
608 373 Sep 1948 GB
59 185529 Oct 1984 JP
WO 92 03664 Mar 1992 WO
WO 01 38746 May 2001 WO
WO 01 65125 Sep 2001 WO
WO 03001075 Jan 2003 WO
Related Publications (1)
Number Date Country
20030009958 A1 Jan 2003 US
Provisional Applications (3)
Number Date Country
60299994 Jun 2001 US
60299929 Jun 2001 US
60299951 Jun 2001 US