None.
1. Field of the Invention
The present invention relates to long distance quantum communication.
2. Brief Description Of The Related Art
Quantum communication holds promise for transmitting secure messages via quantum cryptography, and for distributing quantum information. See N. Gisin, G. Riborty, W. Tittel, and H. Zbinden, Rev. Mod. Phys 74, 145 (2002). However, attenuation in optical fibers fundamentally limits the range of direct quantum communication techniques, and extending them to long distances remains a conceptual and technological challenge. See G. Brassard, N. Lutkenhaus, T. Mor, and B. C. Sanders, Phys. Rev. Lett. 85, 1330 (2000). In principle, photon losses due, e.g., to attenuation, can be overcome by introducing intermediate quantum nodes and utilizing a so-called quantum repeater protocol. See H. J. Briegel, W. Dur, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 81, 5932 (1998). A repeater creates entanglement over long distances by building a backbone of entangled pairs between closely-spaced nodes. Performing an entanglement swap at each intermediate node (see M. Zukowski et al., Phys. Rev. Lett. 71, 4287 (1993)) leaves the outer two nodes entangled, and this long-distance entanglement can be used to teleport quantum information (see C. H. Bennett et al, Phys. Rev. Lett. 70, 1895 (1993) and D. Bouwmeester et al., Nature 390, 575 (1997)) or transmit secret messages via quantum key distribution (see A. Ekert, Phys. Rev. Lett. 67, 661 (1991)). Even though quantum operations are subject to errors, by incorporating entanglement purification (see C. Bennett et al., Phys. Rev. Lett. 76, 722 (1996) and D. Deutsch et al., Phys. Rev. Lett. 77, 2818 (1996)) at each step, one can extend entanglement generation to arbitrary distances without loss of fidelity in a time that scales polynomially with distance. For comparison, direct communication scales exponentially, making it impractical for long distances. While approaches to quantum repeaters based on many quantum bits (qubits) at each node (see B. B. Blinov et al., Nature 428, 153 (2004) and S. J. van Enk, J. I. Cirac, and P. Zoller, Science 279, 205 (1998)) or on photon storage in atomic ensembles (see L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, Nature 414, 413 (2001)) are now being explored, realization of a robust, practical, system that can tolerate all expected errors remains a difficult task.
The present invention comprises a quantum repeater in which each node is formed by a single quantum emitter with two internal degrees of freedom. The present invention further comprises a novel protocol which achieves scalable quantum communication in the presence of arbitrary errors using fixed, minimal physical resources of just four states (two effective qubits) per node. In a preferred embodiment, the two qubits correspond to a pair of electronic spin sublevels (|0,|1) that allows for spin-selective optical excitation (see inset in
The present invention is a method for producing entangled pairs of quantum bits (“qubits”) at long distances, using physical systems with two qubits per system. In general, the present invention will yield non-classical correlations (e.g., violations of Bell's inequality) between two quantum systems at arbitrarily large distances. To do this, the present invention starts with a method (see below) for generating short distance entangled pairs. The method than proceeds with entanglement connection, a technique for taking two entangled pairs at short distance, and by local operations on one element of each pair, obtaining to a single entangled pair at a longer distance.
After connection, the present invention may use a novel form of entanglement purification to improve the entanglement of the longer distance pair. This purification approach, which uses only two qubits at each physical location, is distinct in its efficiency in terms of number of qubits necessary. All prior art uses a number of qubits per physical location that increases as the final, desired distance increases. The present invention removes this physical resource requirement by utilizing un-used, non-local qubits to improve the entanglement of the final pair.
The present invention further is a system for generating entanglement between two solid-state single photon emitters. Unlike previous proposals, the present invention is largely insensitive to spectral diffusion and homogeneous broadening of the solid-state emitters. Instead, the present invention utilize elastic scattering of a coherent light source (e.g., a laser). By using single photon emitters with several levels, each with different probabilities for scattering of the coherent light source, the present invention can generate entanglement by interference of the scattered light at a beam splitter. The quality of the entanglement (its “fidelity”) is largely unaffected by the solid-state environment of the single photon emitter as the invention works in the elastic scattering regime. This procedure may or may not use techniques to enhance the scattering onto the beam splitter, such as Purcell effect enhancement in a photonic cavity.
In a preferred embodiment, the present invention is a method for producing entangled pairs of quantum bits (“qubits”) at long distances, using physical systems with two qubits per system, where the method comprises the steps of generating short distance entangled pairs and generating an entanglement connection, wherein said step of generating an entanglement connection comprises a technique for taking two entangled pairs at short distance, and by local operations on one element of each pair, obtaining to a single entangled pair at a longer distance.
The method of a preferred embodiment may further comprise the step of performing entanglement purification to improve the entanglement of a longer distance pair. Still further, the step of performing entanglement purification may use only two qubits at each physical location. The step of performing entanglement purification may use un-used, non-local qubits to improve the entanglement of a final pair.
In another preferred embodiment, the invention is a system for generating entanglement between two solid-state single photon emitters. The system comprises a coherent light source and a plurality of nodes, each node comprising a single photon emitter with several levels, each with different probabilities for scattering of the coherent light source. The present invention can generate entanglement by interference of the scattered light at a beam splitter. A system may further comprise a photonic cavity.
In another preferred embodiment, the present invention is a method of quantum communication in a system comprising a plurality of nodes, wherein the method comprises the steps of generating entanglement between optically-active qubits in a first node and a second node adjacent said first node, mapping an optically-active qubit onto a memory qubit, leaving an optically-active qubit available to generate entanglement between unconnected nodes, projectively measuring from a third node adjacent said second node four Bell states in a manifold involving both the optically-active qubit and the memory qubit associated with an emitter at said second node and using the outcomes of the measurements of the four Bell states to obtain a singlet state in a remaining pair of memory qubits and implementing a deterministic entanglement swap to produce a memory qubit entanglement between said second and third nodes approximately mirroring said optically-active qubit entanglement between said first and second nodes.
Still other aspects, features, and advantages of the present invention are readily apparent from the following detailed description, simply by illustrating a preferable embodiments and implementations. The present invention is also capable of other and different embodiments and its several details can be modified in various obvious respects, all without departing from the spirit and scope of the present invention. Accordingly, the drawings and descriptions are to be regarded as illustrative in nature, and not as restrictive. Additional objects and advantages of the invention will be set forth in part in the description which follows and in part will be obvious from the description, or may be learned by practice of the invention.
For a more complete understanding of the present invention and the advantages thereof, reference is now made to the following description and the accompanying drawings, in which:
a)-(c) depict a protocol for fault-tolerant quantum communication in accordance with a preferred embodiment of the present invention.
a)-(d) are a series of graphs relating to a preferred embodiment of the present invention.
The initial step in a preferred embodiment of the present invention is entanglement generation between two emitters separated by a distance L0. In principle, entanglement can be generated probabilistically by a variety of means, e.g., Raman scattering (see C. Cabrillo, J. I. Cirac, P. Garcia-Fernandez, and P. Zoller, Phys. Rev. A 59, 1025 (1999)) or polarization-dependent fluorescence (see B. B. Blinov et al., Nature 428, 153 (2004). However, solid-state emitters often do not exhibit appropriate selection rules, and for our repeater protocol it is essential that the optical transition be independent of the nuclear spin state. We thus present an entanglement mechanism based on state-selective elastic light scattering (see
As an example, consider the situation in which each emitter is placed inside a photonic cavity, whose output is coupled to a photonic fiber. The cavity is not essential for the present invention, but it enhances collection efficiency and frequency selection. The optical transition frequencies in each node are matched by careful selection or tuning of the emitters. Each node scatters light only if its electron spin is in state|0, such that two adjacent repeater nodes form state-selective mirrors in an interferometer (see
Initially each node is prepared in a superposition state (|0+|1)/√{square root over (2)}, and state |0 is coupled to an excited level that decays radiatively at a rate γ. In the weak excitation limit, we can adiabatically eliminate the excited state, and the light scattered off state |0 is well described as a coherent state. The combined state of node i and the scattered light field is then given by |ψi≈(|1+Ti|0)/√{square root over (2)} with
T
i=exp[−√{square root over (Pem)}(√{square root over (1−ε)}{circumflex over (b)}i+√{square root over (ε)}âi)−Pem/2] (1)
where Pem is the total emission probability, ε comprises the net collection, propagation, and detection efficiency, and âi, {circumflex over (b)}i are the annihilation operators for the field reaching the beam splitter and other (loss) fields, respectively. Provided that Pem<<1, a detection event in detector D− (mode {circumflex over (d)}_αâ1-â2) projects the system onto a maximally entangled state {circumflex over (d)}_(T1|01+T2|10)/2α(|01−|10)/√{square root over (2)}=|Ψ−. For finite Pem, there is a chance ˜Pem that, during a successful D− detection event, an additional photon was emitted into the environment. Since the |00 and |11 states do not produce clicks in D−, this will mainly result in some admixture of the state |Ψ+=(|01+|10)/√{square root over (2)}, which we refer to as a phase error. Another source of error is the homogeneous broadening typically found in solid-state emitters. We model this dephasing by a random energy shift of the excited state |E with white-noise characteristics (Δ(t)Δ(t′)=Γδ(t−t′)). Solving the Heisenberg equations for an emitter coupled to a cavity with vacuum Rabi coupling g and linewidth κ, and averaging over the noise, we obtain the fidelity loss associated with homogeneous broadening (see L. Childress et al., quant-ph/0502112). Putting these considerations together, we find that the scheme succeeds with probability P=(½)(1−e−P
Here, the first term can be derived from Eq. (1); the second term accounts for electron spin dephasing (at rate γe) during the excitation time t0 and classical communication time tc; the last term arises from homogeneous broadening. For realistic emitters placed into a cavity with a narrow linewidth, γ>>κ or a large Purcell factor 4 g2/(κ(γ+Γ))>>1, the first two terms should dominate the error. Both of these terms introduce phase errors.
Using this procedure, electron spin entanglement can be generated between pairs of nodes. The electron spin state is then mapped onto the nuclear spin qubit for long-term storage using the hyperfine interaction, leaving the electronic degree of freedom available to generate entanglement between unconnected nodes, as illustrated in
To extend entanglement to long distances in the presence of errors, active purification is required at each level of the repeater scheme. In
The fidelity obtained at the end of this nested purification procedure, F(m, L, F0, p, η), depends on the number of purification steps m, the distance L between the outer nodes, the initial fidelity F0 between adjacent nodes, and the reliability of measurements η≦1 and local two-qubit operations p≦1 required for entanglement purification and connection (see W. Dur, H. J. Briegel, J. I. Cirac, and P. Zoller, Phys. Rev. A. 59, 169 (1999). As the number of purification steps increases m→∞, the fidelity at a given distance L approaches a fixed point F→FFP (L, F0, p, η) at which additional purification steps yield no further benefit (see W. Dur, H. J. Briegel, J. I. Cirac, and P. Zoller, Phys. Rev. A. 59, 169 (1999)). Finally, as L increases, the fidelity may approach an asymptotic value FFP→F∞(F0, p, η), which is independent of distance (see L. Childress et al., quant-ph/0502112). This analysis neglects the long but finite coherence time of the nuclear spin, which will determine the ultimate distance over which the scheme may function.
b demonstrates that our scheme operates in polynomial time. Because solid-state devices allow fast operations and measurements, the overall time scale is set by the classical communication time between nodes. As an example, using a collection efficiency set by a photon loss rate of ˜0.2 dB/km and spacing L0˜20 km, a fidelity set by an emission probability Pem˜8%, local errors η=p=0.5%, and just one purification step at each nesting level, our scheme could potentially produce entangled pairs with fidelity F˜0.8 sufficient to violate Bell's inequalities over 1000 km in a few seconds. Moreover, the bit-rate could likely be significantly improved by employing optimal control theory to tailor the details of the repeater protocol to the parameters of a desired implementation. Further speed-up may be possible when collection efficiency is very high, e.g., by using coincidence detection in combination with time-bin encoding (see N. Gisin, G. Riborty, W. Tittel, and H. Zbinden, Rev. Mod. Phys 74, 145 (2002)). This approach also has advantages in terms of interferometric stability (see S. D. Barrett and P. Kok (2004), quant-ph/0408040 and C. Simon and W. T. M. Irvine, Phys. Rev. Lett. 91, 110405 (2004)).
We conclude with two specific examples for potential implementation of the presented method. The nitrogen vacancy (NV) center in diamond has a strong, state-selective optical transition (
Semiconductor quantum dots (see C. Santori et al., Nature 419, 594 (2002)) represent another promising physical implementation (
In conclusion, we have shown that by combining state-of-the-art solid state quantum optical emitters with techniques for electron and nuclear spin manipulation, quantum communication over long distances can be achieved. Potential applications may include secure transmission of secret messages over intercontinental distances.
The foregoing description of the preferred embodiment of the invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed, and modifications and variations are possible in light of the above teachings or may be acquired from practice of the invention. The embodiment was chosen and described in order to explain the principles of the invention and its practical application to enable one skilled in the art to utilize the invention in various embodiments as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the claims appended hereto, and their equivalents. The entirety of each of the aforementioned documents is incorporated by reference herein.
The present application claims the benefit of the filing date of U.S. Provisional Application Ser. No. 60/725,414 entitled “Method and Apparatus for Fault-tolerant Quantum Communications Based On Solid-State Photon Emitters,” and filed on Oct. 11, 2006. The above cross-referenced related application is hereby incorporated by reference herein in its entirety.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US06/39632 | 10/11/2006 | WO | 00 | 9/8/2008 |
Number | Date | Country | |
---|---|---|---|
60725414 | Oct 2005 | US |