The present invention relates to fetal stimulation and testing devices, and more specifically to an ultrasound device for stimulating a fetus in utero and for monitoring movement of the fetus as a result of the stimulation
Audio fetal stimulators are commonly used in clinics to evaluate both the general health and hearing of fetuses in utero. Audio stimulation devices can include both artificial larynxes and devices which employ speakers to “communicate” with the fetus, such as those described in U.S. Pat. Nos. 6,169,814 and 5,913,834. In each of these devices, an audio sound source is generated externally and is transmitted into the abdominal cavity of the mother to stimulate the fetus. Movement of the fetus can be monitored to track reaction to the audio stimulation, and therefore to verify general hearing, assess fetal health based on response to the stimulation, and to analyze other parameters.
While these audio stimulation devices are useful for general testing of both the overall hearing and response of the fetus, there are certain limitations associated with audio stimulation devices of the type described above. These devices, for example, produce sound which is transmitted to the abdominal cavity with little or no directivity. Because the audible sound has very long wavelengths, it tends to spread equally in all directions in the abdomen. Therefore, when audio stimulation is applied to test hearing, the sound is transmitted simultaneously to both fetal ears. It is not possible to test each of the ears individually. Furthermore, although the sound stimulation causes the fetus to move, prior art methods are not designed to cause the fetus to move to a particular position or location in the uterus. Because the sound is almost non-directional, there is no “quiet” place in the uterus at which the fetus would feel less stressed. Hence the fetus moves almost randomly to the audio stimulation.
The present invention is a method and apparatus for audio stimulation of a fetus in utero. The fetal stimulator of the present invention produces fetal auditory stimulation by direct conversion of ultrasound energy to audible sound waves. Hence the fetal simulator of the present invention can be used to stimulate the fetus in a very specific region.
In the present invention, a focused ultrasound transducer is driven by an amplitude-modulated signal to provide localized, directed energy to the fetus. An RF generator provides a carrier signal at the ultrasound frequency, between 1 and 10 MHz, and an audio generator provides an audio signal. An amplitude modulator modules the carrier signal with the audio signal to produce a modulated signal. The resultant modulated signal is used to drive the ultrasound transducer. The transducer, which is positioned on the abdomen of the mother, produces a single focused beam which can be aimed at the fetal head, the ear, or other selected location.
Movement of the fetus can be monitored in a number of known ways, movement can be monitored, by the mother, which provides an indication when she senses fetal movement. Alternatively, fetal movement can be monitored by a Doppler fetal monitor, through analysis of Doppler shift data from applied and received signals, and by synchronization to a heart beat of the fetus. The fetal stimulator described above can be applied in a number of different clinical applications, and is particularly suited for use in assessment of the hearing and general health of a fetus.
It is an object of the invention to provide a method and apparatus for selectively applying a highly localized, highly directive, and calibrated energy beam to a fetus.
It is another object of the invention to provide a method and apparatus for monitoring motion of a fetus in conjunction with the application of a highly localized, highly directive ultrasound beam.
It is yet another object of the invention to provide a method and apparatus for individually testing the hearing in each of the ears of a fetus in utero.
It is still another object of the invention to provide a method and apparatus for repositioning a fetus in the womb.
It is yet again another object of the invention to provide a method and apparatus for testing the general health of a fetus.
The foregoing and other objects and advantages of the invention will appear from the following description. In the description, reference is made to the accompanying drawings which form a part hereof, and in which there is shown by way of illustration a preferred embodiment of the invention. Such embodiment does not necessarily represent the full scope of the invention, however, and reference is made therefore to the claims herein for interpreting the scope of the invention.
When ultrasound interacts with an object, a small radiation force is exerted on that object as a result of momentum change by such interaction. For an ultrasound beam with the total power of P, this force is given by F=P/c, where c is the speed of sound in the medium. For an amplitude modulated ultrasound beam with the amplitude U(t)=U0Cos(Δωt2)Cos(ω0t), the resulting force will be in the form of F(t)=F0+F0Cos(Δωt)/4. This force vibrates the object at frequency Δω. If the frequency ω is selected to be in the audio range, and the beam is directed to the structures in the middle ear, for example, a sound at this frequency is heard. When the beam is directed at a fetus in utero, the beam can be used to stimulate the fetus and cause the fetus to move. Furthermore, the motion of the fetus can be monitored to test hearing and to provide a general health assessment of the fetus.
Referring now to the figures and more particularly to
Referring now to
Referring now to
Referring now specifically to
The event tracker or monitoring device 40 is a mother-controlled monitor. The monitoring device 40 comprises an envelope detecting demodulation circuit 42 for demodulating the amplitude modulated signal provided to the ultrasound transducer 20, thereby recovering the audio sound generated by the radiation force of ultrasound, i.e., the selected frequency Δf. The demodulated signal is provided to an earphone 44 which can be worn by the mother to detect when a beam 27 has been applied to the head 24 of the fetus. A strip chart recorder 46 records an event when a mother or other user detects motion of the fetus and activates a first marker switch 48, and also by the marker switch 50 when the gate-controlled switch 32 is activated by the physician to apply the amplitude modulated signal to the ultrasound transducer 20. Therefore, the chart records each application of sound to the fetus (marker switch 50) and any subsequent fetal movements as recorded by the mother (marker switch 48).
Referring now to
Referring now to
The monitoring device 70 comprises a downmixer 72 and associated receiving transducer 78, which receives reflected ultrasound signals 79 from the fetal head 24. The ultrasound transducer 20 and receiving transducer 78 are located in proximity to each other and are each directed at the same region of the head 24 of the fetus. Furthermore, the center frequency receiving transducer 78 is selected to be substantially the same as that of the ultrasound transducer 70. The mixer circuit 72 receives an amplitude modulate signal from the amplitude modulator 16, and a reflected signal from the receiving transducer 78, and downmixes these two signals. The output of the mixer circuit 72 is coupled to a low pass filter 74 which receives and filters the down-mixed signal to detect a Doppler shift in the frequency of the reflected ultrasound field indicative of whether fetal motion has occurred. From the low pass filter this signal is passed to an audio-video monitor 76 which produces a signal indicative of the Doppler shift described above. This unit can display the Doppler shift by a video (CRT) monitor, or can use an audio device such as a speaker. In this application, the monitoring device 70 can detect motion when the switch 71 is in the On or Off position. However, because the Doppler shift is different when the switch 71 is at On or Off position, the resultant signals can be differentiated.
Referring now to
In the embodiment of
The length of the arm 81 is approximately equal to the typical distance from the fetal heart 83 to its head. To operate this device, the physician first searches for the fetal heart by aiming the receiving transducer 86 at the fetus and receiving a response from the fetal monitor 88, for example through a set of earphones 90. Once the fetal heart has been identified by the fetal monitor 88, the physician orients the arm 81 in the direction of fetal head. Then, the ultrasound transducer 20 is oriented at an angle selected such that the distance between the focal points of the receiving transducer 86 and ultrasound transducer 20 is approximately equal to the heart-to-ear distance of an average fetus, at the age of the fetus being tested. Referring now to
Each of the fetal audio stimulators 10 and 11 and associated monitoring devices described above can be used for stimulating and monitoring a fetus in clinical applications. In particular, the present invention can be used as a positioning device for positioning the fetus in the womb, or as an analysis device for assessing general health or hearing of the fetus.
One application for the fetal audio stimulators 10 and 11 is in fetal positioning. In this application, the localized source of fetal auditory stimulation is directed at the head 24 of the fetus to produce a stress to the fetus. The stressed fetus tries to avoid the stimulation by moving its head out of the stressful region, and hence assumes a new position. By moving the ultrasound transducer 20 or successively directing the ultrasound transducer 20 at selected locations on the fetus, a physician or other user can guide the fetus to a desired location in the uterus. Because fetal position before and during labor is critical, one clinical application of this device is to drive the fetus to the proper position in the uterus before labor. Another application is to use the fetal stimulation device 10 or 11 to position the fetus in a selected position before performing a diagnostic procedure on the fetus. For example, physicians can use the fetal audio stimulator 10 or 11 to move the fetus to a proper position before sonography or a maternal examination. Motion of the fetus can be monitored using any of the techniques described above, through imaging techniques, or in other ways known to those of skill in the art.
A second application of the fetal audio stimulators 10 and 11 is in assessing fetal health. The fetal audio stimulators 10 and 11 described above may be used to assess fetal health by stimulating the fetus and evaluating its response to the stimulation. Fetal response again may be detected and recorded in a number of ways, including any of the methods described above and through ultrasound imaging device. The fetal audio stimulators 10 and 11 presented here may also be integrated as a part of a fetal assessment test, such as the Biophysical Profile Test.
Another application of the fetal audio stimulators 10 and 11 is to increase fetal heart rate. Fetal heart rate can be detected and monitored by a number of methods such as Doppler fetal heart rate monitor, a stethoscope, an ECG recording device, or ultrasound imaging.
The fetal audio stimulators 10 and 11 and associated motion detection devices 40, 60, and 80 can also be applied in fetal hearing tests. The fetal audio stimulators 10 and 11 of the present invention are particularly suited for fetal hearing testing, in that they provide the opportunity to test fetal hearing at each ear separately. The directed beam 26 produced by the ultrasound transducer 20 is effective on strong reflectors such as the middle ear bones, and can therefore be directed to the middle ears of a fetus bypassing the external ear and the eardrum. Fetal movements in reaction to the stimulation, as detected in any of the ways described above or through ultrasound imaging, or in other ways known to those of skill in the art, provides an indication of the hearing capabilities of the fetus. During these tests, the frequency selector 26 can be used to vary the audio level, thereby providing testing of the hearing range.
Fetal hearing of each individual ear of a fetus can also be tested at different audio frequencies by changing the frequency of the audio generator 14 using the frequency selector switch 26, and then evaluating the lowest sound intensity to which the fetus responds. By this method it is possible to produce an audiogram, for individual ears of the fetus, similar to the conventional audiograms that are obtained in audiology clinics for adult patients. An illustration of the results of a typical test is shown in
Although preferred embodiments of the present invention have been shown and described, it will be apparent to those of ordinary skill in the art that the present invention can be implemented in various ways. For example the excitation signal for the ear stimulation transducer can be in the form of a pulse train instead of an amplitude modulated sine wave. In this case, the modulation unit can be deleted. The resulting sound would not be single tone in this case, and would have harmonics that are multiples of pulse repetition frequency. Furthermore, although various combinations of fetal audio stimulation devices and associated monitoring methods have been shown, it will be apparent that various features of each of these embodiments can be combined to provide variations of the embodiments shown. Furthermore, although specific applications have been described, it will be apparent that fetal audio stimulation devices can be applied in a number of applications in which it is desirable to stimulate a fetus or to cause a fetus to move or increase its heart rate.
It should be understood, therefore, that the methods and apparatuses described above are only exemplary and do not limit the scope of the invention, and that various modifications could be made by those skilled in the art that would fall under the scope of the invention. To appraise the public of the scope of this invention, the following claims are made.
This application is a continuation of U.S. patent application Ser. No. 10/016,250, filed Oct. 30, 2001, now U.S. Pat. No. 6,709,407, incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4413629 | Durley, III | Nov 1983 | A |
4798539 | Henry et al. | Jan 1989 | A |
5033968 | Hecht | Jul 1991 | A |
5420581 | Peters et al. | May 1995 | A |
5491756 | Francais | Feb 1996 | A |
5764776 | Francais | Jun 1998 | A |
5873736 | Harrison | Feb 1999 | A |
5885225 | Keefe et al. | Mar 1999 | A |
5913834 | Francais | Jun 1999 | A |
5921928 | Greenleaf et al. | Jul 1999 | A |
5991239 | Fatemi-Booshehri et al. | Nov 1999 | A |
6169814 | Johnson | Jan 2001 | B1 |
6556861 | Prichep | Apr 2003 | B1 |
6631197 | Taenzer | Oct 2003 | B1 |
6709407 | Fatemi | Mar 2004 | B2 |
6718044 | Alleyne | Apr 2004 | B1 |
Number | Date | Country | |
---|---|---|---|
20040162504 A1 | Aug 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10016250 | Oct 2001 | US |
Child | 10782567 | US |