Referring now to the drawings in more detail,
In a similar manner, a junction 30 connected to the output of check valve 16 allows a third compressed air storage cylinder 32 to be filled with additional compressed air, as monitored by pressure gauge 34. A pressure relief valve 36 will relieve the air pressure from junction 30 once such pressure reaches a pre-determined level, thereby preventing the over-pressuring of the storage cylinders 20, 26 and 32.
In the operation of the system of
It should be appreciated that although there are three storage cylinders 20, 26 and 32 illustrated and described in
Moreover, the check valves 12, 14 and 16 prevent a higher pressure storage cylinder from equalizing its pressure down to that of a lower pressure storage cylinder. Thus, for example, if storage cylinder 20 has an air pressure of 1000 psi and storage cylinder 26 has an air pressure of 4000 psi, the omission, or bypass of the check valve 14 would allow the equalization of the air pressure in cylinders 20 and 26 at a level below the 4000 psi figure. This equalization of pressure is generally undesirable, because it is known in this art that most air compressors have CFM (cubic feet per minute) recovery rates which are higher at lower pressures.
Referring again to
The junction 62 is connected through a pressure regulator 70 and a pressure relief valve 72 to a bleed and block valve 74, which in turn allows an individual user's tank to be filled at 76, or which allows the bleed down of the air thorough the bleed valve 78 to cause the air to be released through an air silencer 80, filled with sound absorbing/deadening materials. A pair of pressure gauges 92, for monitoring SCBA/SCUBA pressure, and 94, for monitoring regulated pressure, can be used on opposite sides of block bleed valve 74.
A differential valve open sensing line is connected between each of the differential valves 42 and 52, and the junction 93 between the bleed and block valve 74 and the individual air tanks 76.
In the operation of this system above-described, the differential pressure valve 42 is connected between the pressure in line 40 and the pressure in line 90. When the pressure in line 40 is approximately 80 psi greater than the pressure in line 90, a piston in valve 42 will move down, which causes the toggle valve 44 to close. In a similar manner, if the pressure in line 50 is approximately 80 psi greater than the pressure in line 90, the toggle valve 54 will close.
In using the cascade system described herein to refill one or more individual tanks, the air stored in cylinder 20 is present along line 40, and because line 90 has zero pressure, the toggle valve 44 will close and not allow the stored air in cylinder 26 to be used. Likewise, the toggle valve 54 will be closed, and thus will not allow the air stored in cylinder 32 to be used. Because valves 44 and 54 are closed, the storage cylinder 20 is thus automatically used to refill an individual tank at location 76. Once the air in storage cylinder 20 is depleted to a pressure approximately 80 psi higher than the pressure on line 90, the valve 44 is no longer closed, allowing the storage cylinder 26 to be used to fill up the individual tanks at location 76.
In a similar manner, once the air in cylinder 26 is depleted to a pressure approximately 80 psi higher than the pressure of line 90, the valve 54 is no longer closed allowing the cylinder 32 to be used to fill up the individual tanks at location 76.
It should be appreciated that the back-filling of the storage cylinders 20, 26 and 32 can be done simultaneously with the refilling of individual user tanks at location 76, in accord with the present invention.
When recharge SCBA/SCUBA cylinder is attached to the fill whip 76 and SCBA/SCUBA cylinder valve is opened, pressure (1000 psi) from the SCBA/SCUBA cylinder is transferred to line 90 which in turn applies this pressure to the lower section of valves 42 and 52. Pressure from cylinder 20 (1800 psi) is transferred to the upper section of valve 42 and pressure from cylinder 26 (3000 psi) is transferred to the upper section of valve 52.
Since the pressures on the upper sections of valves 42 and 52 are greater than the pressure on the lower sections of these valves, the internal pistons of these valves are forced downward holding toggle valves 44 and 54 in the closed position. This will permit compressed air from cylinder 20 only to flow into the SCBA/SCUBA recharge cylinder at location 76.
The pressure in cylinder 20 and the recharge SCBA/SCUBA at location 76 begins to equalize. When these pressure come to approx 80 psi of equalization (Approx 1720 psi), valve 42 is forced upward (with the assistance of a 60 to 80 psi spring) and toggle valve 44 is forced open. This will permit air from cylinder 26 to flow into the SCBA/SCUBA recharge cylinder at location 76. Check valve 60 will keep higher pressure air from cylinder 26 or the SCBA/SCUBA recharge cylinder at location 76 from flowing back into cylinder 20.
Next the pressure in cylinder 26 and the recharge SCBA/SCUBA at location 76 begins to equalize. When these pressures come to approx 80 psi of equalization (Approx 2220 psi), valve 52 is forced upward (with the assistance of a 60 to 80 psi spring) and toggle valve 54 is forced open. This will permit air from cylinder 32 to flow into the SCBA/SCUBA recharge cylinder at location 76. Check valves 60 and 61 will keep higher pressure air from cylinder 26 or the SCBA/SCUBA recharge cylinder at location 76 from flowing back into cylinder 20 or cylinder 26.
NOTE 1: Check valve 63 keeps pressure from the recharge SCBA/SCUBA cylinder at location 76 from back flowing/equalizing with cylinder 32 should the pressure in the recharge cylinder at location 76 be greater then that of cylinder 32.
NOTE 2: Since line 90 transfers pressure from downstream of the regulator 70, valves 44 and 54 can open only if the pressure on line 90 and 40 or 50 is/are below the pressure setting of the regulator 70. Basically, this means that valves 44 and 54 will remain closed if the SCBA/SCUBA recharge cylinder at location 76 reaches the regulator 70 set recharge pressure using only cylinder 20. Valve 54 will remain closed if the SCBA/SCUBA recharge cylinder at location 76 reaches the regulator 70 set recharge pressure using only cylinder 26.
NOTE 3: Manual/Emergency By-pass Valve 33, is to be used in the event of an internal valve failure or for air sampling purposes. Opening this valve converts the cascade system to bulk storage. This means that pressure in all storage cylinders 20, 26 and 32 will equalize with that of the recharge SCBA/SCUBA cylinder at location 76 beginning with the highest pressure storage cylinder
NOTE 4: These pressure are used for examples only. Actual pressures will decrease as the recharge SCBA/SCUBA cylinders at location 76 are filled. The amount of decrease will depend on storage cylinders and recharge cylinder volume. Example: A 30 minute high pressure SCBA cylinder being filled using the above pressures may result in the following pressures. Cylinder 20 may drop to approx. 1300 psi. Cylinder 26 may drop to 2700 psi. Cylinder 32 may drop to 5800 psi.
Referring now to
The switch 108 is normally open, and will not close until the pressure is 100 psi or greater. When closed, switch 108 arms the low pressure alarm system which opens the switch 110. When the pressure out of regulator 102 drops below 800 psi, the switch 110 closes and the low pressure warning device 120 will sound. The low pressure warning device 120 can be electrically, pneumatically, hydraulically, or mechanically operated, or a combination thereof.
In operation of the system according to
When storage cylinder 20 pressure reaches 1580 psi, valve 44 opens. Since the pressure in cylinder 26 is higher then that of cylinder 20, check valve 60 will close and cause only the compressed air from cylinder 26 to flow downstream through the pressure tubing and supply pressure for the reserve pressure regulator 100.
When the storage cylinder 26 pressure reaches 1580 psi, valve 54 opens. Since the pressure in cylinder 32 is higher than that of cylinders 20 and 26, check valves 60 and 61 will close and permit only gas/pressure from cylinder 32 to flow downstream through the pressure tubing and supply pressure for the reserve pressure regulator 100.
NOTE #2: All pressure in storage cylinders that is below the reserve pressure regulator 100 is available for use by the system if:
1—Adjusting the CAMS Reserve Pressure Regulator 100, to 1000 psi. (or minimum reserve psi required/desired).
Referring now to
The first rescue air storage cylinder 20 is connected through a universal CGA fitting 200, an inline bleed valve 202, a female RIT fitting 204, and a male RIT fitting 206, to a one-way check valve 60, as monitored by a pressure gauge 208. A differential valve close sensing line 40 is connected between the outlet of male RIT fitting 206 and a differential pressure valve 42 whose outlet is connected to the outlets, respectively, of the check valves 60 and 61, and also to the input of pressure regulator 70. The output of regulator 70 is connected through a restrictive orifice 71, as monitored by a pressure gauge 92, and then through an elongated flexible line 73 to a SCBA at location 76, which can be easily and safely connected/disconnected. A differential valve open sensing line 90 is connected downstream of restrictive orifice 71.
The second storage cylinder 26 is connected through the elements 300,302,304 and 306 to the inlet of the air toggle switch 44. Elements 300, 302, 304 and 306 correspond to elements 200, 202, 204 and 206, respectively, both as to construction and function.
In the operation of the system illustrated in
When personnel on SCBA is trapped, the RIT goes into operation to perform Stabilization/Rescue of the trapped individual. Since Technical Rescue of trapped individuals usually requires extended periods of time, proper air management is necessary. Also, in these high stress and possibly low visibility situations, special adoptions to the standard CAMS auto cascade is required. While some RIT members are working to free the trapped individual, others members are taking control of the air management situation. The following is a brief description of how the CAMS RIT Rescue Cascade would be used by RIT in this situation.
Referring now to