Any and all applications for which a foreign or domestic priority claim is identified in the Application Data Sheet as filed with the present application are hereby incorporated by reference under 37 CFR 1.57.
The present invention relates to a method and apparatus for the preparation and implantation of a bone graft to lateralize the glenoid component of an inverted or an anatomical shoulder prosthesis.
In the field of total shoulder prostheses, prostheses are commonly said to be inverted when they comprise, on the one hand, a glenoid part integral with the glenoid surface of a scapula of a patient's shoulder and delimiting a convex articular surface and, on the other hand, a humeral part integral with the humerus of the shoulder and delimiting a concave articular surface, the cooperation of these articular surfaces allowing an articulated connection to be reproduced at the shoulder. With this type of prosthesis, it is common, during adduction movement of the shoulder, for the lower portion of the humeral prosthetic part to strike the pillar of the scapula, i.e. the lower portion of the bone glenoid surface located, when the patient stands upright, just below the glenoid prosthetic part. This interference between the humeral prosthetic part and the scapula limits the range of the adduction movement and may cause pain to the patient or even lead to the prosthesis becoming dislodged, in particular by osteolysis of the scapula.
The present invention is directed to a surgical method and a corresponding set of surgical instruments allowing the risks of interference between the scapula and the humeral part of an inverted or an anatomical shoulder prosthesis to be limited without having recourse to complex configurations of this prosthesis and, indeed, using for the most part existing inverted prostheses. All references to a shoulder prosthesis should be interpreted to include a total shoulder prosthesis with a humeral component and a glenoid component (including anatomical, inverted, or interpositional configurations), or a partial shoulder prosthesis with a glenoid component with an anatomical or resurface humeral head.
One embodiment of this invention relates to a surgical method for fitting an inverted shoulder prosthesis, the prosthesis including a glenoid component having a convex articular surface and an opposing face, this fitting method including successive preoperative steps in which:
i) there is provided a bone graft,
ii) the graft is placed on the previously prepared glenoid surface of a scapula of a patient's shoulder, and
iii) the glenoid component is implanted so as to cover the graft positioned on the glenoid surface with the opposing face of the glenoid component and to anchor the glenoid component in the glenoid surface through the graft.
Thus, the basic idea of the invention is to “lateralize” the glenoid component relative to the patient's scapula, i.e. to withdraw it from the patient's scapula in a plane frontal to this patient, by interposing the bone graft between this glenoid component and the glenoid surface. In other words, this bone graft forms an outer lateral extension of the glenoid surface, extending the scapula, whereas the combination of this graft and the prosthetic glenoid component forms a composite prosthetic unit. It will be understood that a glenoid component of a current prosthesis, of which the design has been tried and tested, can thus be implanted so as to cover the side of the graft opposing the glenoid surface, wherein it will be noted that, for purposes of secure fixing, this component must have bone anchoring structure, such as a central tail, sufficiently elongate to pass straight through the graft and be secured in the bone of the scapula delimiting the glenoid surface. Once the bone graft has fused with the glenoid surface, the distal surface of the bone graft becomes the effective glenoid surface. References to glenoid surface should be interpreted to include a prepare or an unprepared exposed surface of a glenoid cavity.
As the articular face of the glenoid component occupies, relative to the scapula, a position laterally more remote than the position that this face would occupy were the graft omitted, there is a significantly reduced risk of interference between the pillar of the scapula and the lower portion of the humeral prosthetic part cooperating with the glenoid articular face. The lateralization of the prosthetic glenoid component also leads to an increase in the tension in the rotator muscles of the shoulder and an increase in the co-adaptation vector of the deltoid muscle. The prosthetic glenoid and humeral components are thereby stabilized and thus benefit from better mobility in relative rotation, without running the risk of dislocation of the shoulder.
In the preferred embodiment, the geometric centre of articulation of the prosthesis is situated at the bone face in the glenoid surface. The radius of curvature of convex articular surface of the glenoid component is preferably selected so the center of rotation is in or behind a plane comprising distal surface of the bone graft.
Furthermore, compared to an inverted shoulder prosthesis from the prior art and which can thus be described as a “medialized prosthesis”, the “lateralized” prosthesis according to the invention restores some of the curved surface of the patient's shoulder, thus giving it a more pleasing appearance than the “coat hanger” appearance conferred by medialized prostheses.
The surgical method according to the invention is simple, quick, easy and reproducible. In practice it has the advantage of not having to completely expose the patient's glenoid surface, exposure actually being able to be limited to the positioning of the graft. In the preferred embodiment, the bone graft is taken from the patient so as to minimize the risk of contamination, although allografts, xenografts, natural or synthetic materials may be used.
According to a particularly advantageous implementation of the method according to the invention, in order to provide the bone graft in preferably taken from the upper epiphysis of the humerus of the patient's shoulder. In this way, the graft used originates from the patient, and this limits the risk of rejection, poor biological compatibility, transmission of disease or infection. Furthermore, advantageous use is made of the fact that, in order to implant the humeral prosthetic part, it is necessary to prepare the epiphysis of the patient's humerus, by withdrawing a substantial part of the cancellous bone matter forming this epiphysis which, in accordance with this aspect of the invention, can be used to provide the graft whereas, up until now, this matter was scrapped.
In practice, the method includes a shaping step in which the bone matter forming the upper humeral epiphysis is shaped into a one-piece volume extending in length about an axis inclined relative to the longitudinal direction of the humerus, and a cutting step in which the volume of bone matter is removed from the humerus by cutting the humeral epiphysis transversely to the axis of this volume, the volume of bone matter thus removed forming the graft.
The present method may include one or more of the following steps:
In accordance with another possibility according to the invention, rather than taking the bone graft from the patient's humeral epiphysis, the bone graft provided in step i) is chosen from a graft taken from a bone region in the patient other than the upper humeral epiphysis, in particular from the patient's ilium, an allograft and a graft of synthetic origin.
In accordance with an option of the method according to the invention that can be used equally well with a graft taken from the humeral epiphysis or elsewhere and with an allograft or else a graft of synthetic origin, during step ii), a protection layer is attached to at least a part of the graft that is not in contact with the glenoid surface, and, during step iii), at least a part of the opposing face of the glenoid component is supported on the protection layer.
In one embodiment, some or all of the surfaces on the glenoid component that engage with the bone graft are covered with hydroxyapatite or materials having a functionally similar surface state, such as a honeycomb surface state, allowing bone adhesion and rehabilitation to be improved. Selected surface of the glenoid component may be constructed of materials that facilitate fusion with bone, such as disclosed in U.S. Pat. No. 7,250,550.
According to yet another possibility of the invention, the bone graft provided in step i) consists of a purée of bone substance, it being appreciated that this bone substance can originate either from the patient, in particular from the upper epiphysis of his humerus, or from another, possibly synthetic, source. This purée of bone substance is advantageously used with a structure of protection as defined hereinbefore, which comprises a lattice shaped into a cage filled with the purée. This lattice cage allows good exchange of biological flows between the purée forming the graft and the surrounding tissues of the shoulder.
The invention also relates to a set of surgical instruments for fitting a shoulder prosthesis. The set includes a shaping ancillary instrument that shapes the bone matter forming the upper humeral epiphysis of a humerus into a one-piece volume extending in length about an axis inclined relative to the longitudinal direction of the humerus, and a cutting ancillary instrument that cuts the humeral epiphysis shaped by the shaping ancillary instrument, for cutting the volume of bone matter transversely to the axis of this volume. The cutting ancillary instrument thus allowing the volume of bone matter to be removed from the humerus so that said volume forms a graft.
The set of instruments according to the invention allows implementation of the fitting method defined hereinbefore, the shaping and cutting steps of which are respectively carried out by the shaping and cutting ancillary instrument. The volume of bone matter removed from the humerus using the cutting ancillary instrument can thus be used as the bone graft for carrying out the general fitting method defined hereinbefore in order laterally to offset the convex articular surface of a glenoid component of the prosthesis relative to the scapula of the patient's shoulder, during implantation of this glenoid component.
According to advantageous features of this set of instruments, taken in isolation or in any technically feasible combination:
The invention also relates to an inverted shoulder prosthesis comprising a glenoid component having a convex articular surface and an opposing face, wherein said prosthesis comprises a protection layer for protecting a bone graft interposed, when the prosthesis is fitted, between said opposing face and the glenoid surface of a scapula of a patient's shoulder, this protection layer being suitable for both covering at least a part of the graft that is not in contact with the glenoid surface and forming a support for at least a part of said opposing face.
The graft protected by the protection layer of the prosthesis according to the invention can be taken from the upper humeral epiphysis using the set of instruments defined hereinbefore, or else be chosen from a graft taken from a bone region in the patient other than the upper humeral epiphysis, in particular from the patient's ilium, an allograft and a graft of synthetic origin. In practice, this prosthesis is fitted in accordance with the general method defined hereinbefore.
According to advantageous features of this prosthesis optionally includes a protection layer, such as for example, a layer of hydroxyapatite or other material that has a functionally similar surface state, such as a honeycomb surface state, allowing bone adhesion and rehabilitation to be improved. In another embodiment, the protection layer includes a shape of a ring suitable for surrounding, in a close-fitting manner, the portion of the bone graft not in contact with the glenoid surface, it being appreciated that, in practice, this ring is used for a one-piece graft obtained, in particular, by the set of instruments as defined hereinbefore. The protection layer may also be a lattice shaped as a cage adapted to be filled with a purée of bone matter forming the graft.
A better understanding of the invention will be facilitated on reading the following description given merely by way of example and with reference to the drawings, in which:
The glenoid component 10 comprises a head 11 which has, on the side opposing the glenoid surface G of the scapula S, a convex articular surface 11A of generally hemispherical shape and, on the side turned toward the glenoid surface, an opposing face 11B. In the example considered in the FIGS., this face 11B is generally planar but, in non-illustrated variations, this face 11B can have a more elaborate geometry, being, for example, substantially concave or convex.
The glenoid component 10 also comprises an anchoring tail 12 which extends transversely so as to protrude from the face 11B, in the direction opposing the face 11A, and the free end part of which is securely anchored in the glenoid surface G, thus joining the glenoid component to the scapula S. In practice, in a manner not shown, the anchoring tail 12 can be provided, at its end turned toward the head 11, with a base accommodated inside the head 11, being securely joined thereto. In other words, more generally, the connection between the tail 12 and the head 11 can assume a broad range of forms, such as material continuity, respective wedging surfaces, attached mechanical assembly structures, etc. Also by way of non-illustrated variation, the tail 12 can be externally threaded or, generally, have a surface state promoting the anchoring thereof.
Between the face 11B of the glenoid head 11 and the glenoid surface G of the scapula S there is interposed a bone graft 2 having a substantially cylindrical outer shape with a circular base, the external diameter of which is substantially equal to that of the head 11. The outer lateral face 2A of the graft 2 thus extends substantially in the extension of the hemispherical face 11A. The graft 2 has, on its side opposing the glenoid surface G, a longitudinal end face or distal surface 2B covered by the face 11B of the head 11 and, on its side directed toward the glenoid surface, a longitudinal end face or medial surface 2C resting against the glenoid surface G. Once the bone graft 2 fuses with the glenoid surface G, the effective glenoid surface is displaced laterally outward to the distal surface 2B of the bone graft 2.
In the example considered in the FIGS., the longitudinal end faces 2B and 2C are planar; this has proven to be an embodiment that is simple to handle and easy to obtain, as will be referred to hereinafter. However, in practice, these faces 2B and 2C can have more elaborate geometries: on one side, the face 2B is provided to be covered in a substantially complementary manner with the face 11B of the head 11, including in this face the zones or the structure for connecting to the tail 12, it being understood that, as indicated hereinbefore, this face 11B can be generally concave, convex or planar; on the opposing side, the face 2C is provided to embrace the surface of the glenoid surface G, which has been previously prepared for this purpose, so that the face 2C and the glenoid surface are substantially complementary and can equally well be planar or curved.
The bone graft can be a one-piece bone graft, a plurality of random or pre-formed bone pieces, one or more layers of bone material, a purée of bone substance, or combinations thereof. The bone graft can be formed from the patient's bone, an allograft, a xenograft, or a combination thereof. The bone graft can optionally be resorbable. The bone graft may be used alone or in combination with bone replacements, bone fillers, bone cements and/or bone adhesives. Various bone replacements, bone fillers, bone cements and bone adhesives are disclosed in U.S. Pat. No. 6,692,563 (Zimmerman), which is hereby incorporated by reference. Various additives can be included in the bone graft, such as for example, bone growth agents or pain inhibitors. In one embodiment, reinforcing fibers are added to the purée of bone substance.
Alternatively, the bone graft can be materials into which native bone will grow to create a structure with properties comparable to native bone, such as for example, a three-dimensional porous matrix or scaffold. Examples of a porous matrix or scaffold include a reticulated bioceramic framework, structured porous tantalum, synthetic fiber mesh, and the like. Various porous matrices and scaffoldings are disclosed in U.S. Pat. Nos. 4,479,271; 6,511,511; 6,605,117; 6,797,006; 6,902,584; and 7,250,550, which are hereby incorporated by reference.
The bone graft can be made from a variety of synthetic compounds, such as for example, polyglycolide, polylactides, polycaprolactones, polytrimethylenecarbonates, polyhydroxybutyrates, polyhydroxyvalerates, polydioxanones, polyorthoesters, polycarbonates, polytyrosinecarbonates, polyorthocarbonates, polyalkylene oxalates, polyalkylene succinates, poly(malic acid), poly(maleic anhydride), polypeptides, polydepsipeptides, polyvinylalcohol, polyesteramides, polyamides, polyanhydrides, polyurethanes, polyphosphazenes, polycyanoacrylates, polyfumarates, poly(amino acids), modified polysaccharides (e.g., cellulose, starch, dextran, chitin, chitosan, etc.), modified proteins (e.g., collagen, casein, fibrin, etc.) and their copolymers, or combinations thereof. Other polymers include polyglycolide, poly(L-lactide-co-glycolide), poly(D,L-lactide-co-glycolide), poly(L-lactide), poly(D,L-lactide), poly(L-lactide-co-D,L-lactide), polycaprolactone, poly(L-lactide-co-caprolactone), poly(D,L-lactide-co-caprolactone) polytrimethylenecarbonate, poly(L-lactide-co-trimethylenecarbonate), poly(D,L-lactide-co-trimethylenecarbonate), polydioxanone and copolymers, and polymer blends thereof. Various methods of manufacturing the bone graft from a synthetic compound can be found in U.S. Pat. Nos. 6,767,928; 6,730,252; 6,541,022; 6,454,811, which are hereby incorporated by reference. Optionally, before or during the surgical procedure the bone graft can be secured to the glenoid component using additional methods known in the art, such as for example biocompatible adhesives, mechanical fasteners, or combinations thereof.
The tail 12 passes straight through the graft 2, in the longitudinal direction thereof. In other words, the length of the tail is much greater than that of the graft 2, so that at least a substantial part of this tail is anchored securely in the native layer of the glenoid surface G.
In optional embodiments (not shown), the securing of the graft to the glenoid surface can be reinforced by fasteners additional to the tail 12, such as screws distributed around this tail and passing through the graft over at least part of the length thereof.
The humeral component 20 comprises a tail 21 for anchoring in the medullary cavity M of the humerus H. At its upper end, this tail is provided with a head 22 having, on its side opposing the tail 21, a concave articular face 22A in the form of a portion of a sphere, the radius of which is substantially equal to that of the face 11A. When the prosthesis 1 is implanted, as in
Given the presence of the graft 2, the face 11A is remote from the resected surface of the glenoid surface G in the sense that, if this graft were omitted, this face 11A would be directly juxtaposed with the resected surface of the glenoid surface. Thus, on account of the graft 2, the glenoid articular face 11A and, accordingly, the humeral articular face 22A are laterally remote from the glenoid surface G, limiting the risk of the lower portion of the head 22 interfering with the bottom of the glenoid surface G, i.e. with the pillar P of the scapula S. In addition, it will be understood that, as a consequence resulting from this lateralization desired within the scope of the invention, the graft 2 acts as bone matter to make good any bone deficit in the glenoid surface.
In practice, the glenoid component 10 can be of a broad range of sizes, to which the graft 2 is adapted. Typically, the head 11 is available in at least two different sizes, namely with an external diameter of 36 mm or 42 mm, it being understood that other sizes are conceivable. Similarly, the length l of the graft 2 can have a broad range of values, distributed in practice in a uniform sequence, in a manner adapted to the morphology and/or to the pathology of the patient. The graft 2 can thus have lengths of 3, 6, 8 or 10 mm, whereas the tail 12 has a length of between 15 and 25 mm, possibly greater.
A surgical method seeking to implant the shoulder prosthesis 1 of
In its common part, the shaft 31 is secured, in particular detachably, to a body 32 in the shape of an upwardly rounded bell. This body 32 is generally arranged transversely to the shaft 31, extending in length about a central geometrical axis 33. Projected in a plane mediolateral to the patient and containing the longitudinal axis of the shaft 31, as shown in
The body 32 has on its inside a concave surface 34, of which the main center of curvature and the peak pertain substantially to the axis 33. This surface 34 is provided to reproduce approximately the surface features of the upper epiphysis of a normal anatomical humerus, it being understood that, in practice, the surgeon has a range of a plurality of homothetic ancillary instruments 30, the bodies 32 of which have respective dimensions associated with the size and the state of the patient's bones. On its outer face, the body 32 is provided with a protruding tube 35 centered on the axis 33 and opening into the interior of the body 32, on its inner surface 34.
The shaft 31 is inserted into the medullary cavity M of the humerus H until contact is established between the surface 34 and the humeral epiphysis E, the body 32 then covering the epiphysis in the manner of a cap. Then, advantageously, the shaft 31 is driven in rotation about itself, over a short course, in order to allow for the retroversion of the humerus H. In a manner known per se, the shaft 31 is provided, in its proximal end part, with diametral through-orifices 36 angularly offset from one another about the longitudinal axis of the shaft 31 and, as a function of the retroversion of the patient determined by the surgeon, an elongate rod (not shown) is introduced into one of these orifices in order effectively to display the retained direction of retroversion, so that the shaft 31 is rotated on itself until this retroversion rod is aligned with the patient's forearm.
A guide pin 40, at the pointed distal end 41, is then introduced into the tube 35, from the free end thereof, and is inserted into the humeral epiphysis E over a substantial depth, as indicated by arrow 42 in
Once the guide pin 40 has reached an insertion depth in, or even through, the humerus H sufficient securely to anchor it, the ancillary instruments 30 is withdrawn, without removing the pin. The humerus is then in the state illustrated by solid lines in
In a variation, when carrying out the first stage of the operation, the guide pin 40 is inserted in the humerus H without being guided, i.e. without using the ancillary instrument 30.
In a second stage, the surgeon will resect the end of the humeral epiphysis E, using an ancillary instrument 50 illustrated in
The surgeon threads the ancillary instrument 50 around the guide pin 40, by introducing it by the terminal drill 53 thereof, as indicated by arrow 54 in
In a third stage, once the ancillary instrument 50 has been removed from the guide pin 40, the surgeon will cut the humeral epiphysis E in a manner centered on the guide pin 40, i.e. he will shape the bone matter forming this epiphysis into a cylinder E3 having a center axis EX-X corresponding to this axis 33, as illustrated in
The rod 61 of the ancillary instrument 60 is slipped around the guide pin 40, which is left in place in the humeral epiphysis E, until its distal end is received in a complementary manner in the recess E1. In doing this, the saw 62 gradually cuts out the bone matter from the epiphysis so as to obtain the bone cylinder E3, it being noted that a corresponding part of the recess E1 passes through the entire length of said bone cylinder. The length of the cylinder E3 thus obtained, i.e. its dimension along its axis EX-X, is determined by the depth of action of the saw 62, wherein this depth can easily be marked along the rod 61, in particular by markings.
Once the ancillary instrument 60 has been removed, the humerus H is in the state illustrated in
In a fourth stage, the surgeon will remove the cylinder of bone matter E3 from the humerus H using a cutting ancillary instrument 70 illustrated in
After having removed the guide pin 40, the ancillary instrument 70 is slipped around the humeral cylinder E3, as indicated by arrow 76 in
Once the ancillary instrument 70 has been removed, the surgeon recovers the cylinder of bone matter E3 thus separated from the humerus H.
In a non-illustrated variation, the slot 73 can be provided so as to be inclined relative to the longitudinal direction of the block 71 so that, in contrast to the cylinder E3 described hereinbefore, the bone cylinder thus obtained has longitudinal end faces inclined relative to one another. The graft is thus able to make good the wear to a peripheral portion of the glenoid surface G, it being noted that the inclination of the slot 73 is advantageously adjustable as a function of the wear noted by the surgeon during the operation.
Before describing the following stage of the operation, namely the fifth stage,
Thus,
The ancillary instrument 130 allows the guide pin 40 to be inserted in the humeral epiphysis E so as to be close-fitted relative to the humerus H, as indicated by the arrow 142 in
As a variation of both the ancillary instrument 50 and the ancillary instrument 60 in
Hence, when the ancillary instrument 160 is slipped round the guide pin 40, the teeth 163 of the saw 162 gradually cut out the bone matter of the humeral epiphysis E so as to obtain the bone cylinder E3. Once the entire height of the saw 162 has thus been introduced into the epiphysis, the reamer 166 begins to cut the upper end of this epiphysis and thus progressively resects this end until the cutting plane E2 is obtained.
Once the ancillary instrument 160 has been released, the humerus H is in the state shown in
The surgeon then uses a drilling ancillary instrument 167 comprising a bored shaft 168 of which the distal end is provided with a drill 153. By slipping the shaft 168 round the guide pin 40, as indicated by the arrow 169 in
In practice, the drilling ancillary instrument 167 can also be used after a variation of the ancillary instrument 50, depleted of the drill 53, has been used and/or after a variation of the ancillary instrument 60, of which the rod 61 does not project on the distal side of the base wall of the saw 62 has been used.
As a variation of the ancillary instrument 70 in
Hence, by manipulating the shaft 176, the surgeon positions the annular body 171 round the humeral epiphysis E so as to position the guide surface 173 in a suitable manner relative to the cylinder of bone matter E3. The surgeon then applies the cutting instrument against this surface 173 in a guided manner in order to cut the base of the cylinder E3 over the cutting plane E4 and release this cylinder from the humerus H.
Advantageously, the guide surface 173 forms an angle of approx. 155° with the longitudinal direction of the shaft 176, and this allows the ancillary instrument 170 also to be used to prepare the implantation of the humeral component 20 at a later stage, by positioning the shaft 176 in such a way that its longitudinal direction is substantially aligned with the longitudinal direction of the humerus H, as illustrated in
In a fifth stage, the cylinder of bone matter E3 is used to form the bone graft 2 described hereinbefore. In order to do this, this cylinder is fitted on the glenoid surface C. The glenoid surface is previously prepared for this purpose, being opened up and, if necessary, resected. The glenoid component 10 is then implanted in the configuration described hereinbefore with reference to
If the longitudinal end faces of the bone cylinder have been formed so as to be inclined relative to each other, it will be understood that the interposing of this cylinder, as the graft, between the glenoid component 10 and the glenoid surface G allows inclination, in particular downward inclination, of the glenoid articular face 11A.
More generally, it will be understood that the dimensions desired by the surgeon for the graft 2, in particular as a function of the size of the glenoid component 10, determine the dimensions of the ancillary instrument 50, 60 and 70 or the ancillary instrument 160, 168 and 170 used to take the bone cylinder E3 from the humeral epiphysis E. In particular, the internal diameter of the saw 62 or 162 determines the external diameter of the graft 2. Similarly, the depth of action of this saw determines the length 1 of the graft while at the same time allowing for any adjustment in length resulting from the positioning of the sawing slot 73 or the guide surface 173.
Furthermore, the geometry desired for the longitudinal end faces 2B and 2C of the graft 2 directly conditions the embodiment of the resection ancillary instrument 50 and cutting ancillary instrument 70 or the ancillary instrument 160 and 170, in the sense that the parts of these ancillary instrument that determine the incision profile of the bone are shaped to form an appropriate incision in the humeral epiphysis. Optionally, these ancillary instruments 50 and 70 can be associated with one or more ancillary instrument for resurfacing the longitudinal end faces of the removed cylinder E3.
In practice, the surgeon also takes account of the state of the cancellous bone matter forming the epiphysis E in order, if necessary, to remove the graft with as healthy a constitution as possible. For this purpose ancillary instrument for gripping and storing the graft 2 after it has been released from the humerus H can optionally be provided, in order to limit the risks of damaging the graft.
Furthermore, in non-illustrated variations, the graft 2 can have volume forms other than a cylinder as in the FIGS., provided that the volume of bone matter forming this graft has a shape generally centered about a longitudinal axis of the type of the axis while at the same time defining a lateral face and longitudinal end faces of the type of the faces 2A, 2B and 2C. For example, the graft can thus be truncated in shape, having a longitudinal axis EX-X; in this case, the inner surface of the crown saw 62 or 162 is, for example, provided so as to be truncated.
Optionally, the bone graft 2 can be protected laterally by a reinforcing structure, such as for example ring 80 shown merely in
If the ring 80 is implanted in conjunction with the graft 2, it protects the lateral face 2A of the graft and forms a support for at least a part of the face 11B of the glenoid component 10, thus limiting the stresses applied to the graft. Advantageously, the ring 80 is covered with hydroxyapatite or, more generally, has a porous or honeycomb surface state allowing improved bone adhesion and rehabilitation of the ring to the graft and to the resected surface part of the glenoid surface G that is not covered by this graft. In one embodiment, the ring 80 is attached to the glenoid component 10.
In practice, it will be understood that the inner surface of the ring 80 is advantageously complementary with the face 2A of the graft, whereas its outer face can have advantageous optional configurations. This outer surface can thus be provided so as to be truncated and diverged toward the glenoid surface G, so holes passing through the ring in respective directions substantially perpendicular to the outer surface thereof are able to receive screws or the like in order to reinforce the securing of the graft to the glenoid surface. Similarly, the bottom portion of the ring 80 can be provided so as to be less thick than the remainder of the ring so as not subsequently to disturb the humeral component 20 during adduction movements on the part of the patient.
In a variation of the fitting method, rather than delivering a one-piece bone volume such as the cylinder E3, in the upper humeral epiphysis E, the graft 2 can consist of a purée of bone substance. This substance is taken from the spongy bone zones of the humeral epiphysis, in particular when preparing the humerus for the fitting of the humeral implant. In practice, in order to contain this purée of bone substance during implantation of the glenoid component 10, a reinforcing structure, such as for example a lattice 90 shaped as a cage 92 for receiving this purée will advantageously be used, as shown in
The lattice 90 forming the cage 92 allows exchanges of biological fluids between the purée of bone substance with which the cage is filled and the surrounding tissues of the patient. The cage 92 thus prevents necrosis of the purée of bone substance while mechanically protecting it. In particular the cage 92 absorbs a proportion, or even the majority, of the stresses applied to the graft 2 consisting of the purée of bone substances by forming, in the region of its lateral end walls 92A and 92B, supports for the face 11B of the glenoid component 10 and the previously prepared surface of the glenoid surface G respectively. The bone substance preferably chemically bonds with the glenoid surface G through the lattice 90. In effect, the glenoid surface G is extended laterally outward to engage with the face 11B of the glenoid component 10.
In another embodiment, the cage 92 is constructed from a porous matrix or scaffold, without the purée of bone substance. The cage 92 can be, for example, reticulated bioceramic framework, structured porous tantalum, synthetic fiber mesh, and the like. The native bone of the glenoid surface G grows into the porous matrix or scaffold to create a bone graft with structure properties comparable to native bone. The cage 92 is alternately made of a slow-absorbing, biologically benign material, such as Poly-4-hydroxybutyrate (a.k.a. Tephaflex™), poly(urethane urea) (Artelon™), surgical silk, or other materials, known to the art, having similar characteristics, such as disclosed in U.S. Patent Publication No. 2007/0198087, entitled Method and Device for Rotator Cuff Repair, filed Feb. 5, 2007 and U.S. Patent Publication No. 2007/0276509, entitled Tissue Scaffold, filed Aug. 9, 2007, the entire disclosures of which are incorporated by reference. Other less preferred embodiments employ non-absorbable materials such as PTFE, Polypropylene, Nylon, or other biocompatible, inert materials known to the art.
Before or after implanting of the glenoid component 10, the humeral component 20 is implanted in the humerus H, advantageously using ancillary instrument (not shown), the handling of which is marked by the end part of the recess E1 remaining in the humeral epiphysis E after removal of the bone volume such as the cylinder E3. If the surgical actions applied to the humerus for implanting the component 20 by way of the recess E1 are dispensed with and these actions are therefore generally independent of those applied to the humerus for taking the graft 2, the ancillary instrument 30 can be simplified, as it is in this case no longer necessary to take account of the retroversion of the patient's forearm in order to insert the guide pin 40. The shaft 31 may in this case assume the form of an intramedullary humeral rod.
According to a variation of the fitting method, the graft 2, whether in the form of a one-piece bone volume or of a purée of bone substance, is not taken from the humeral epiphysis E but rather is taken from another of the patient's bones, in particular from his ilium, or consists of an allograft or a graft of synthetic origin, it being understood that the dimensions of this synthetic graft are provided so as to be appropriate for the glenoid component 10 to be implanted, as stated hereinbefore for the removed cylinder E3 or cone frustum. Obviously, the protection ring 80 and the cage 92 described hereinbefore can be used in conjunction with a graft of this type of alternative origin.
The glenoid component 220 includes a recess 230 that engages with distal surface 232 of the reinforcing structure 222. Anchor 234 optionally extends through the reinforcing structure 222 and bone graft 224 to further secure the glenoid component 220 to the scapula S. In the illustrated embodiment, the anchor 234 includes a pointed tip 236 to facilitate insertion into the glenoid surface G. The radius of curvature 228 of convex articular surface 235 is preferably selected so the center of rotation 233 of the glenoid component 220 is preferably either in or behind plane 237 comprising a distal surface 239 of the bone graft 224. Once the bone graft 224 has fused with the glenoid surface G, the distal surface 239 of the bone graft 224 becomes the effective glenoid surface.
Opposite reinforcing structure 308 extends over the reinforcing structure 302 and bone graft 310. In the illustrated embodiment, opposite reinforcing structure 308 telescopically engages with the reinforcing structure 302. The bone graft 310 can be a one-piece bone volume or a purée of bone substance. The opposite reinforcing structure 308 optionally includes a plurality of holes 307 to facilitate bone in-growth.
Glenoid component 300 is optionally attached to distal surface 312 of the opposing reinforcing structure 308. In the illustrated embodiment, the glenoid component is mounted to the opposing reinforcing structure 308 off-center. The opposing reinforcing structure 308 preferably has a plurality of mounting features that permit the surgeon to locate the glenoid component 300 in a variety of locations. The radius of curvature of convex articular surface 314 is preferably selected so the center of rotation 319 is in or behind plane 316 comprising distal surface 318 of the bone graft 310. In another embodiment, the center of rotation is close to the plane 316.
In the illustrated embodiment, the glenoid component 340 is secured to glenoid surface G using a plurality of fasteners 352. Although distal surface 354 of the glenoid component 340 is illustrated as planar it can be configured for with either a convex or concave articular surface, depending on the application.
The bone graft 426 can be a one-piece volume, a plurality of pieces, purée of bone substance, or a combination thereof. In one embodiment, a plurality of pre-formed bone grafts of known shape are available to the surgeon during the procedure. The surgeon removes material from the exposed surface 422 of the glenoid surface G corresponding to the shape of one of the pre-formed bone grafts. The surgeon then places the pre-formed bone graft into the corresponding recess formed in the glenoid surface G.
In the illustrated embodiment, anchor 446 of the base plate 444 and/or the glenoid component 440 are located off-set from the center axis 448 of the glenoid surface G. Lower portion 450 of the convex articular surface 452 extends beyond the pillar of the scapula S to minimize interference with the humeral prosthetic portion. The radius of curvature of convex articular surface 452 is preferably selected so the center of rotation around the glenoid component 440 is preferably in a plane 454 comprising a distal surface 456 of the bone graft 458 or between the plane 454 and the glenoid surface G.
In the illustrate embodiment, exposed surface 460 of the glenoid surface G includes one or more defects 462. These defects 462 are preferably repaired with a one-piece bone graft, a plurality of pieces, purée of bone substance, or a combination thereof 464. After the repair, the exposed surface 460 of the glenoid surface G is preferably generally planar and well suited to receive the bone graft 458.
The curvilinear surface C of the humeral epiphysis E is located on base 502, as illustrated in
In one embodiment, the resulting bone graft 500 is an annular ring with a planar surface 512 and a curvilinear surface 514 as illustrated in
Various modifications and additions can be made to the exemplary embodiments discussed without departing from the scope of the present invention. For example, the distal surfaces of the glenoid components disclosed herein can be used with an interpositional implant, such as disclosed in U.S. Pat. Nos. 6,436,146; 5,723,018; 4,846,840; 4,206,517; and U.S. Provisional Application Ser. No. 61/015,042, entitled INTRA-ARTICULAR JOINT REPLACEMENT, the complete disclosures of which are hereby incorporated by reference. While the embodiments described above refer to particular features, the scope of this invention also includes embodiments having different combinations of features and embodiments that do not include all of the described features. Accordingly, the scope of the present invention is intended to embrace all such alternatives, modifications, and variations as fall within the scope of the claims, together with all equivalents thereof.
Number | Name | Date | Kind |
---|---|---|---|
2666430 | Gispert | Jan 1954 | A |
3412733 | Ross | Nov 1968 | A |
3694820 | Scales et al. | Oct 1972 | A |
3815157 | Skorecki et al. | Jun 1974 | A |
3842442 | Kolbel | Oct 1974 | A |
3864758 | Yakich | Feb 1975 | A |
3869730 | Skobel | Mar 1975 | A |
3916451 | Buechel et al. | Nov 1975 | A |
3978528 | Buechel et al. | Sep 1976 | A |
3979778 | Stroot | Sep 1976 | A |
3992726 | Freeman et al. | Nov 1976 | A |
4003095 | Gristina | Jan 1977 | A |
4030143 | Elloy et al. | Jun 1977 | A |
4040131 | Gristina | Aug 1977 | A |
4054955 | Seppo | Oct 1977 | A |
4126924 | Akins et al. | Nov 1978 | A |
4131116 | Hendrick | Dec 1978 | A |
4135517 | Reale | Jan 1979 | A |
4179758 | Gristina | Dec 1979 | A |
4206517 | Pappas et al. | Jun 1980 | A |
4261062 | Amstutz et al. | Apr 1981 | A |
4479271 | Bolesky et al. | Oct 1984 | A |
4550450 | Kinnett | Nov 1985 | A |
4662891 | Noiles | May 1987 | A |
4693723 | Gabard | Sep 1987 | A |
4822370 | Schelhas | Apr 1989 | A |
4846840 | Leclercq et al. | Jul 1989 | A |
4865605 | Dines et al. | Sep 1989 | A |
4865609 | Roche | Sep 1989 | A |
4892549 | Figgie, III et al. | Jan 1990 | A |
4919670 | Dale et al. | Apr 1990 | A |
4957510 | Cremascoli | Sep 1990 | A |
4963155 | Lazzeri et al. | Oct 1990 | A |
4964865 | Burkhead et al. | Oct 1990 | A |
5030233 | Ducheyne | Jul 1991 | A |
5032132 | Matsen, III et al. | Jul 1991 | A |
5053050 | Italy | Oct 1991 | A |
5080673 | Burkhead et al. | Jan 1992 | A |
5080685 | Bolesky et al. | Jan 1992 | A |
5127920 | MacArthur | Jul 1992 | A |
5135529 | Paxson et al. | Aug 1992 | A |
5163961 | Harwin | Nov 1992 | A |
5181928 | Bolesky et al. | Jan 1993 | A |
5192329 | Christie et al. | Mar 1993 | A |
5201882 | Paxson | Apr 1993 | A |
5206925 | Nakazawa et al. | Apr 1993 | A |
5222984 | Forte | Jun 1993 | A |
5261914 | Warren | Nov 1993 | A |
5314479 | Rockwood et al. | May 1994 | A |
5314487 | Schryver et al. | May 1994 | A |
5330531 | Capanna | Jul 1994 | A |
5358526 | Tornier | Oct 1994 | A |
5383936 | Kubein Meesenburg et al. | Jan 1995 | A |
5425779 | Schlosser et al. | Jun 1995 | A |
5443515 | Cohen et al. | Aug 1995 | A |
5443519 | Averill et al. | Aug 1995 | A |
5462563 | Shearer et al. | Oct 1995 | A |
5507817 | Craig et al. | Apr 1996 | A |
5507818 | McLaughlin | Apr 1996 | A |
5507824 | Lennox | Apr 1996 | A |
5534033 | Simpson | Jul 1996 | A |
5549682 | Roy | Aug 1996 | A |
5580352 | Sekel | Dec 1996 | A |
5702447 | Walch et al. | Dec 1997 | A |
5702457 | Walch et al. | Dec 1997 | A |
5702486 | Craig et al. | Dec 1997 | A |
5723018 | Cyprien et al. | Mar 1998 | A |
5728161 | Camino et al. | Mar 1998 | A |
5741335 | Gerber et al. | Apr 1998 | A |
5755719 | Frieze et al. | May 1998 | A |
5755807 | Anstaett et al. | May 1998 | A |
5779709 | Harris et al. | Jul 1998 | A |
5800551 | Williamson et al. | Sep 1998 | A |
5800557 | Elhami | Sep 1998 | A |
5879355 | Ullmark | Mar 1999 | A |
5879405 | Ries et al. | Mar 1999 | A |
5902340 | White et al. | May 1999 | A |
5910171 | Kummer et al. | Jun 1999 | A |
5928285 | Bigliani et al. | Jul 1999 | A |
5944758 | Mansat et al. | Aug 1999 | A |
5961555 | Huebner | Oct 1999 | A |
5972368 | McKay | Oct 1999 | A |
5984927 | Wenstrom et al. | Nov 1999 | A |
6015437 | Stossel | Jan 2000 | A |
6027503 | Khalili et al. | Feb 2000 | A |
6033439 | Camino et al. | Mar 2000 | A |
6045302 | Orr | Apr 2000 | A |
6045582 | Prybyla | Apr 2000 | A |
6045583 | Gross et al. | Apr 2000 | A |
6090145 | Hassler et al. | Jul 2000 | A |
6102953 | Huebner | Aug 2000 | A |
6129764 | Servidio | Oct 2000 | A |
6165224 | Tornier | Dec 2000 | A |
6171341 | Boileau et al. | Jan 2001 | B1 |
6197062 | Fenlin | Mar 2001 | B1 |
6197063 | Dews | Mar 2001 | B1 |
6203575 | Farey | Mar 2001 | B1 |
6206925 | Tornier | Mar 2001 | B1 |
6221076 | Albrektsson et al. | Apr 2001 | B1 |
6228120 | Leonard et al. | May 2001 | B1 |
6245074 | Allard et al. | Jun 2001 | B1 |
6267767 | Strobel et al. | Jul 2001 | B1 |
6283999 | Rockwood | Sep 2001 | B1 |
6312467 | McGee | Nov 2001 | B1 |
6334874 | Tornier | Jan 2002 | B1 |
6364910 | Shultz et al. | Apr 2002 | B1 |
6368352 | Camino et al. | Apr 2002 | B1 |
6368353 | Arcand | Apr 2002 | B1 |
6398812 | Masini | Jun 2002 | B1 |
6406495 | Schoch | Jun 2002 | B1 |
6406496 | Rüter | Jun 2002 | B1 |
6436144 | Ahrens | Aug 2002 | B1 |
6436146 | Hassler et al. | Aug 2002 | B1 |
6436147 | Zweymüller | Aug 2002 | B1 |
6454811 | Sherwood et al. | Sep 2002 | B1 |
6458136 | Allard et al. | Oct 2002 | B1 |
6475221 | White et al. | Nov 2002 | B1 |
6475243 | Sheldon et al. | Nov 2002 | B1 |
6494913 | Huebner | Dec 2002 | B1 |
6506214 | Gross | Jan 2003 | B1 |
6508840 | Rockwood et al. | Jan 2003 | B1 |
6511511 | Slivka et al. | Jan 2003 | B1 |
6514287 | Ondrla et al. | Feb 2003 | B2 |
6520994 | Nogarin | Feb 2003 | B2 |
6530957 | Jack | Mar 2003 | B1 |
6541022 | Murphy et al. | Apr 2003 | B1 |
6558425 | Rockwood | May 2003 | B2 |
6569202 | Whiteside | May 2003 | B2 |
6589281 | Hyde, Jr. | Jul 2003 | B2 |
6605117 | Kuberasampath et al. | Aug 2003 | B2 |
6620197 | Maroney et al. | Sep 2003 | B2 |
6626946 | Walch et al. | Sep 2003 | B1 |
6673114 | Hartdegen et al. | Jan 2004 | B2 |
6673115 | Resch et al. | Jan 2004 | B2 |
6679916 | Frankle et al. | Jan 2004 | B1 |
6692563 | Zimmermann | Feb 2004 | B2 |
6730252 | Teoh et al. | May 2004 | B1 |
6736851 | Maroney et al. | May 2004 | B2 |
6746487 | Scifert et al. | Jun 2004 | B2 |
6749637 | Bähler | Jun 2004 | B1 |
6755866 | Southworth | Jun 2004 | B2 |
6761740 | Tornier | Jul 2004 | B2 |
6767928 | Murphy et al. | Jul 2004 | B1 |
6780190 | Maroney | Aug 2004 | B2 |
6783549 | Stone et al. | Aug 2004 | B1 |
6790234 | Frankle | Sep 2004 | B1 |
6797006 | Hodorek | Sep 2004 | B2 |
6863690 | Ball et al. | Mar 2005 | B2 |
6875234 | Lipman et al. | Apr 2005 | B2 |
6887277 | Rauscher et al. | May 2005 | B2 |
6890358 | Ball et al. | May 2005 | B2 |
6902584 | Kwan et al. | Jun 2005 | B2 |
6942699 | Stone et al. | Sep 2005 | B2 |
6953478 | Bouttens et al. | Oct 2005 | B2 |
6969406 | Tornier | Nov 2005 | B2 |
7011686 | Ball et al. | Mar 2006 | B2 |
7033395 | Tornier | Apr 2006 | B2 |
7051417 | Michelson | May 2006 | B2 |
7066959 | Errico et al. | Jun 2006 | B2 |
7108719 | Horber | Sep 2006 | B2 |
7166132 | Callaway et al. | Jan 2007 | B2 |
7169184 | Dalla Pria | Jan 2007 | B2 |
7175663 | Stone | Feb 2007 | B1 |
7195645 | Disilvestro et al. | Mar 2007 | B2 |
7238207 | Blatter et al. | Jul 2007 | B2 |
7238208 | Camino et al. | Jul 2007 | B2 |
7250550 | Overby et al. | Jul 2007 | B2 |
7297163 | Huebner | Nov 2007 | B2 |
7309360 | Tornier et al. | Dec 2007 | B2 |
7329284 | Maroney et al. | Feb 2008 | B2 |
7338498 | Long et al. | Mar 2008 | B2 |
7338528 | Stone et al. | Mar 2008 | B2 |
7462197 | Tornier et al. | Dec 2008 | B2 |
7520898 | Re et al. | Apr 2009 | B2 |
7604637 | Johnson et al. | Oct 2009 | B2 |
8062376 | Shultz et al. | Nov 2011 | B2 |
8414586 | Cawthan et al. | Apr 2013 | B2 |
8864834 | Boileau et al. | Oct 2014 | B2 |
8974536 | Walch et al. | Mar 2015 | B2 |
9089435 | Walch et al. | Jul 2015 | B2 |
9408652 | Hassler et al. | Aug 2016 | B2 |
20010032021 | McKinnon | Oct 2001 | A1 |
20010047210 | Wolf | Nov 2001 | A1 |
20010049561 | Dews et al. | Dec 2001 | A1 |
20020032484 | Hyde | Mar 2002 | A1 |
20020099381 | Maroney | Jul 2002 | A1 |
20020138148 | Hyde | Sep 2002 | A1 |
20020143402 | Steinberg | Oct 2002 | A1 |
20020151982 | Masini | Oct 2002 | A1 |
20020177901 | Howie | Nov 2002 | A1 |
20030009171 | Tornier | Jan 2003 | A1 |
20030065397 | Hanssen et al. | Apr 2003 | A1 |
20030097183 | Rauscher et al. | May 2003 | A1 |
20030114933 | Bouttens et al. | Jun 2003 | A1 |
20030125809 | Iannotti | Jul 2003 | A1 |
20030149485 | Tornier | Aug 2003 | A1 |
20030158605 | Tornier | Aug 2003 | A1 |
20030181916 | Wolford | Sep 2003 | A1 |
20040002765 | Maroney et al. | Jan 2004 | A1 |
20040006392 | Grusin et al. | Jan 2004 | A1 |
20040030394 | Horber | Feb 2004 | A1 |
20040034431 | Maroney et al. | Feb 2004 | A1 |
20040064189 | Maroney et al. | Apr 2004 | A1 |
20040064190 | Ball et al. | Apr 2004 | A1 |
20040068320 | Robie et al. | Apr 2004 | A1 |
20040133276 | Lang et al. | Jul 2004 | A1 |
20040138754 | Lang et al. | Jul 2004 | A1 |
20040148033 | Schroeder | Jul 2004 | A1 |
20040193276 | Maroney et al. | Sep 2004 | A1 |
20040193277 | Long et al. | Sep 2004 | A1 |
20040193278 | Maroney et al. | Sep 2004 | A1 |
20040210317 | Maroney et al. | Oct 2004 | A1 |
20040220673 | Pria | Nov 2004 | A1 |
20040220674 | Pria | Nov 2004 | A1 |
20040225367 | Glien et al. | Nov 2004 | A1 |
20040230197 | Tornier et al. | Nov 2004 | A1 |
20040249383 | White et al. | Dec 2004 | A1 |
20040267370 | Ondrla | Dec 2004 | A1 |
20050008672 | Winterbottom et al. | Jan 2005 | A1 |
20050010304 | Jamali | Jan 2005 | A1 |
20050015154 | Lindsey et al. | Jan 2005 | A1 |
20050033443 | Blatter et al. | Feb 2005 | A1 |
20050043805 | Chudik | Feb 2005 | A1 |
20050049709 | Tornier | Mar 2005 | A1 |
20050060039 | Cyprien | Mar 2005 | A1 |
20050065612 | Winslow | Mar 2005 | A1 |
20050085919 | Durand Allen et al. | Apr 2005 | A1 |
20050085921 | Gupta et al. | Apr 2005 | A1 |
20050090902 | Masini | Apr 2005 | A1 |
20050107882 | Stone et al. | May 2005 | A1 |
20050113837 | Salyer | May 2005 | A1 |
20050113931 | Horber | May 2005 | A1 |
20050119531 | Sharratt | Jun 2005 | A1 |
20050143818 | Yuan et al. | Jun 2005 | A1 |
20050143829 | Ondrla et al. | Jun 2005 | A1 |
20050159751 | Berthusen et al. | Jul 2005 | A1 |
20050165490 | Tornier | Jul 2005 | A1 |
20050177241 | Angibaud et al. | Aug 2005 | A1 |
20050186247 | Hunter et al. | Aug 2005 | A1 |
20050197708 | Stone et al. | Sep 2005 | A1 |
20050209700 | Rockwood et al. | Sep 2005 | A1 |
20050216092 | Marik et al. | Sep 2005 | A1 |
20050240267 | Randall et al. | Oct 2005 | A1 |
20050245934 | Tuke et al. | Nov 2005 | A1 |
20050251263 | Forrer et al. | Nov 2005 | A1 |
20050256584 | Farrar | Nov 2005 | A1 |
20050267590 | Lee | Dec 2005 | A1 |
20050278030 | Tornier et al. | Dec 2005 | A1 |
20050278031 | Tornier et al. | Dec 2005 | A1 |
20050278032 | Tornier et al. | Dec 2005 | A1 |
20050278033 | Tornier et al. | Dec 2005 | A1 |
20050288681 | Klotz et al. | Dec 2005 | A1 |
20050288791 | Tornier et al. | Dec 2005 | A1 |
20060004462 | Gupta | Jan 2006 | A1 |
20060009852 | Winslow et al. | Jan 2006 | A1 |
20060020344 | Shultz et al. | Jan 2006 | A1 |
20060025796 | Merced O'Neill | Feb 2006 | A1 |
20060030946 | Ball et al. | Feb 2006 | A1 |
20060111787 | Bailie et al. | May 2006 | A1 |
20060122705 | Morgan | Jun 2006 | A1 |
20060195110 | White et al. | Aug 2006 | A1 |
20060241775 | Buss | Oct 2006 | A1 |
20070078516 | Emami | Apr 2007 | A1 |
20070142916 | Olson, Jr. et al. | Jun 2007 | A1 |
20070156250 | Seitz et al. | Jul 2007 | A1 |
20070173945 | Wiley et al. | Jul 2007 | A1 |
20070179562 | Nycz | Aug 2007 | A1 |
20070198087 | Coleman et al. | Aug 2007 | A1 |
20070225817 | Reubelt et al. | Sep 2007 | A1 |
20070225818 | Reubelt et al. | Sep 2007 | A1 |
20070225821 | Reubelt et al. | Sep 2007 | A1 |
20070244564 | Ferrand et al. | Oct 2007 | A1 |
20070250174 | Tornier et al. | Oct 2007 | A1 |
20070276509 | Ratcliffe et al. | Nov 2007 | A1 |
20090125113 | Guederian et al. | May 2009 | A1 |
20090270993 | Maisonneuve et al. | Oct 2009 | A1 |
20090287309 | Walch et al. | Nov 2009 | A1 |
20090292364 | Linares | Nov 2009 | A1 |
20090306782 | Schwyzer | Dec 2009 | A1 |
20100280517 | Cawthan et al. | Nov 2010 | A1 |
20100280518 | Gary | Nov 2010 | A1 |
20110098822 | Walch et al. | Apr 2011 | A1 |
20110166661 | Boileau et al. | Jul 2011 | A1 |
20110213372 | Keefer et al. | Sep 2011 | A1 |
20110264153 | Hassler et al. | Oct 2011 | A1 |
20140058523 | Walch et al. | Feb 2014 | A1 |
20150012104 | Boileau et al. | Jan 2015 | A1 |
20150297354 | Walch et al. | Oct 2015 | A1 |
20160331555 | Hassler et al. | Nov 2016 | A1 |
Number | Date | Country |
---|---|---|
426096 | Dec 1966 | CH |
507704 | May 1971 | CH |
1950937 | Sep 1996 | DE |
19630298 | Jan 1998 | DE |
0257359 | Nov 1991 | EP |
0299889 | Mar 1992 | EP |
0524857 | Jan 1993 | EP |
0549480 | Jun 1993 | EP |
0617934 | Oct 1994 | EP |
0679375 | Nov 1995 | EP |
0712617 | May 1996 | EP |
0715836 | Jun 1996 | EP |
0599429 | Oct 1997 | EP |
0797964 | Oct 1997 | EP |
0864306 | Sep 1998 | EP |
0903128 | Mar 1999 | EP |
1062923 | Dec 2000 | EP |
1064890 | Jan 2001 | EP |
0664108 | Aug 2002 | EP |
0809986 | Oct 2002 | EP |
0927548 | May 2003 | EP |
1323395 | Jul 2003 | EP |
0807426 | Oct 2003 | EP |
1380274 | Jan 2004 | EP |
1402853 | Mar 2004 | EP |
1477120 | Nov 2004 | EP |
1195149 | Jul 2005 | EP |
1570816 | Sep 2005 | EP |
1607069 | Dec 2005 | EP |
1652482 | May 2006 | EP |
0903127 | Jun 2007 | EP |
1952788 | Jan 2008 | EP |
1952771 | Aug 2008 | EP |
1952788 | Aug 2008 | EP |
1402854 | Jul 2010 | EP |
1952771 | Oct 2016 | EP |
3335676 | Jun 2018 | EP |
2216981 | Sep 1974 | FR |
2248820 | May 1975 | FR |
2545352 | Nov 1984 | FR |
2574283 | Jun 1986 | FR |
2652498 | Apr 1991 | FR |
2664809 | Jan 1992 | FR |
2699400 | Jun 1994 | FR |
2704747 | Nov 1994 | FR |
2721200 | Dec 1995 | FR |
2726994 | May 1996 | FR |
2737107 | Jan 1997 | FR |
2835425 | Aug 2003 | FR |
2836039 | Aug 2003 | FR |
749392 | Jul 1980 | SU |
WO 1991007932 | Jun 1991 | WO |
WO 1993009733 | May 1993 | WO |
WO 1996017553 | Jun 1996 | WO |
WO 1998046172 | Oct 1998 | WO |
WO 1999049792 | Oct 1999 | WO |
WO 1999065413 | Dec 1999 | WO |
WO 2000015154 | Mar 2000 | WO |
WO 2000041653 | Jul 2000 | WO |
WO 2000062718 | Oct 2000 | WO |
WO 2001047442 | Jul 2001 | WO |
WO 2002039931 | May 2002 | WO |
WO 2002039933 | May 2002 | WO |
WO 2002049516 | Jun 2002 | WO |
WO 2002067821 | Sep 2002 | WO |
WO 2003005933 | Jan 2003 | WO |
WO 2003092513 | Nov 2003 | WO |
WO 2003094806 | Nov 2003 | WO |
WO 2006039483 | Apr 2006 | WO |
WO 2007109340 | Sep 2007 | WO |
WO 2007109291 | Apr 2008 | WO |
WO 2007109319 | Jun 2008 | WO |
Entry |
---|
“Aequalis-Fracture Shoulder Prosthesis—Surgical Technique,” Tornier, Inc., in 32 pages. |
“Aequalis-Fracture Suture Technique in 5 Steps,” Tornier, Inc., in 2 pages. |
“Aequalis-Glenoid Keeled and Pegged—Surgical Technique,” Tornier, Inc., in 12 pages. |
“Aequalis Press-Fit Shoulder Prosthesis—Surgical Technique,” Tornier, Inc., in 27 pages. |
“Aequalis Resurfacing Head”, retrieved from http://www/tornier-us.com/upper/shoulder/shorec004/index.php?pop+1 on Apr. 14, 2010. |
“Aequalis-Reversed™ Shoulder Prosthesis, Surgical Technique,” Tornier, Inc., in 24 pages. |
“Anatomic Glenoid, Surgical Technique,” Smith & Nephew; Inc., Feb. 2000 in 6 pages. |
“Anatomical Shoulder™—Cemented Shoulder Prosthesis Product Information and Surgical Technique,” Sulzer Medica, 2000, in 30 pages. |
“Anatomical Shoulder™ System—The new removable head option,” Zimmer Inc., 2004 in 6 pages. |
“Anatomical Shoulder™ System Surgical Technique—Removable head option for improved surgical results,” Zimmer, Inc, 2004 in 33 pages. |
Apoil, A., “A Condyle for the Rotator Cuff Muscles: The Total Shoulder Prosthesis,” Aesculap—ICP S.A., Feb. 1994, in 4 pages. |
Bigliani/Flatow®—The Complete Shoulder Solution, Designed ;Shoulder Surgery, Zimmer, Inc., 2001 in 6 pages. |
Bigliani/Flatow®—The Complete Shoulder Solution, Total Shoulder Arthoroplasty Surgical Technique, Zimmer, Inc., 2003, in 30 pages. |
Bigliani/Flatow®—The Complete Shoulder Solution, 4-Part Fracture of the Humerus Surgical Technique, Zimmer, Inc., 2001. |
“Bio-Modular® / Bi-Polar Shoulder Arthroplasty,” Biomet, Inc., 1997, in 2 pages. |
“Bio-Modular® Choice—Shoulder System—Surgical Technique,” Biomet Orthopedics, Inc., 2004, in 16 pages. |
“Bio-Modular Total Shoulder Surgical Technique,” Biomet Orthopedics, Inc., 2001. |
Boileau, P., et al. “Adaptability and modularity of shoulder prosthese,” Maitrise Orthopédique, https://www.maitriseorthop.com/corpusmaitri/orthopaedic/prothese_epaule_orthop/boileau_us.shtml, downloaded Jan. 3, 2006. |
Boileau, P., et al. “Arthroscopic Repair of Full-Thickness Tears of the Supraspinatus: Does the Tendon Really Heal?” The Journal of Bone and Joint Surgery, Inc., Jun. 2005, 87A(6): 1229-1240. |
Buechel, F F., “Buechel-Pappas™ Modular Salvage Shoulder System, Surgical Procedure,” Endotec, Inc., Aug. 2001, in 8 pages. |
Buechel, F.F., “Buechel-Pappas™ Resurfacing Shoulder System, Surgical Procedure” Endotec, Inc., Aug. 2000, in 8 pages. |
Buechel, F.F., “Buechel-Pappas™ Total Shoulder System, Surgical Procedure,” Endotec, Inc., Aug. 2000, in 16 pages. |
Cofield, R.H., “Cofield2 Total Shoulder System, Surgical Technique,” Smith & Nephew, 1997 in 32 pages. |
“Copeland™ Humeral Resurfacing Head,” Biomet Orthopedics, Inc., 2001, in 12 pages. |
“Delta CTA™ Reverse Shoulder Prosthesis—Surgical Technique,” DePuy International Ltd., revised Aug. 2004, in 28 pages. |
“Design Rationale,” Latitude® Total Elbow, pp. 3-38. |
Fenlin, Jr., J.M., “Total Glenohumeral Joint Replacement,” Symposium on Surgery of the Shoulder, Orthopedic Clinics of North America, Apr. 1975, 6(2): 565-583. |
“Global C.A.P. ™ Surgical Technique, Resurfacing Humeral Head Implant,” DePuy International, Ltd., revised Oct. 2004, in 23 pages. |
Hertel, R., “Technical considerations for implantation of EPOCA glenoid components (Leseprobe),” Epoca Newsletter, May 14, 2001, in 1 page. |
Klein, T.J., et al., “Mechanically Favorable Bone Remodeling in Rotator Cuff Arthropathy Patients with Good Function,” Minneapolis Sports Medicine Center and University of Minnesota, in 2 pages. |
Mansat, M., “Neer 3™, Surgical Technique for Fractures,” Smith & Nephew, Sep. 2000, in 19 pages. |
Nicholson, G.P., “Chapter 7, Arthroplasty and Rotator Cuff Deficiency,” Shoulder Arthroplastry, 2005, pp. 149-166. |
Office Communication for European Appl. No. 08356017.7 dated May 26, 2015 in 16 pages. |
Office Communication for European Appl. No. 08356018.5 dated Mar. 16, 2015 in 5 pages. |
Office Communication for European Appl. No. 08356018.5 dated Dec. 1, 2015 in 3 pages. |
“Offset Head: Bio-Modular® Total Shoulder,” Biomet, Inc. 2000 in 2 pages. |
Search Report for European Appl. No. 08356017.7 dated Jun. 4, 2008 in 5 pages. |
Search Report for European Appl. No. 08356018.5 dated Jun. 16 2008 in 6 pages. |
“The FOUNDATION® Total Shoulder System,” Encore Surgical, in 2 pages. |
“The Townley Modular Shoulder—Design by Reason,” Biopro, Inc., in 2 pages. |
“TORNIER Surgical Technique Addendum, Tornier Aequalis® Reversed Hemi-Adaptor Technique,” Tornier, Inc., Aug. 8, 2005. |
“TORNIER Surgical Technique Addendum, Aequalis® Reversed Shoulder Polyethylene Insert,” Tornier, Inc., Oct. 8, 2005, in 1 page. |
“Zimmer® Shoulder Retractors,” Zimmer, Inc., 2000, in 2 pages. |
Search Report for European Appl. No. 18153967.7 dated May 22, 2018 in 6 pages. |
Number | Date | Country | |
---|---|---|---|
20170042687 A1 | Feb 2017 | US |
Number | Date | Country | |
---|---|---|---|
60888437 | Feb 2007 | US | |
60971762 | Sep 2007 | US | |
61015042 | Dec 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12020913 | Jan 2008 | US |
Child | 14495703 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14495703 | Sep 2014 | US |
Child | 15338188 | US |