The invention relates to methods and devices for fixing the position of an endovascular prosthesis within the lumen of a hollow anatomical structure, such as a blood vessel.
Prostheses, such as endovascular vascular stents and stent-grafts are widely used to treat numerous medical conditions, for example, to maintain patency of a compromised or obstructed blood vessel by placing the stent or stent-graft within the lumen of the vessel. The placement and fixation of such prostheses in the targeted position within the lumen of the vessel is important, as is the ability of the prosthesis to remain in that position. To that end, such prostheses, which typically include a tubular, wire-like framework, are expanded against the inner wall of the vessel to firmly engage the vessel to maintain the prosthesis in place. In the case of a stent-graft, a tubular graft in the form of a fabric (e.g., Dacron) or unwoven material (e.g., expanded PTFE) is attached to and is supported by the framework and, when placed within the lumen of the vessel, functions as a prosthetic portion of the vessel . In some instances, however, even if the prosthesis is placed in the proper location, it may tend to migrate downstream, for example, as a result of exposure to repeated pulsatile blood. The risk of migration is particularly problematic when the prosthesis is used to treat an arterial aneurysm and, especially, an aneurysm of the aorta, such as an abdominal aortic aneurysm (AAA). AAA results from a weakening of a portion of the wall of the aorta so that the diameter of the aorta at that location increases in response to the blood pressure. Should the weakened wall of an AAA burst, the high rate of internal hemorrhage is life threatening. Invasive surgical repair of an AAA is a delicate procedure and has a relatively high mortality. Consequently, less invasive techniques and devices have been developed to enable clinicians to access the aorta intraluminally so as to place a stent-graft within the aorta to effectively line the lumen of the aorta and relieve the aneurysmal region. The stent-graft should be configured to engage and seal against an unweakened portion of the aorta at least above the weakened region of the aneurysm and also may be secured below the aneurysm. Such stent-grafts typically are delivered and deployed intraluminally by a percutaneous delivery catheter that can be advanced through the patient's vasculature to the site of the aneurysm where the stent-graft is deployed and expanded into engagement with the inner luminal surface of the vessel.
In order to reduce the risk of stent-graft migration, such stent-grafts may be provided with additional means to fix the position of the deployed stent-graft. Thus, the framework of some stent-grafts have been provided with barbs or hooks as part of the framework of the stent adapted to dig into the vessel wall. Other fixation devices have included, among others, corkscrew-like fasteners with a sharp tip adapted to pierce the graft and the aorta wall to secure the position of the prosthesis. Such tissue-piercing devices have been reported (e.g., U.S. Patent Pub. 2009/0270976) to work loose over time and that may result in stent-graft migration and/or blood leaking into the space between the graft and the vessel wall or other risks to the patient. It would be desirable to provide an improved means to fix the position of such tubular prosthesis.
The invention provides a catheter-deliverable fastener that can be advanced percutaneously and intraluminally into the aorta or other vessel and be deployed to secure the prosthesis to the vessel wall. The fastener is contained in a hollow needle that is deliverable by the catheter to the target area. The needle then is advanced out of the catheter and is directed partly in a radial direction so that the needle pierces the stent-graft and the wall of the vessel to transfix the graft and vessel wall and locate the tip of the needle just outside of the vessel. The fastener may be of two-piece construction, having a distal component and a proximal component, that are containable in tandem in a low profile in the lumen of the needle during delivery. Each of the proximal and distal components can expand to larger diameter when ejected from the needle. The needle is provided with a limit stop on its outer surface that is adapted to engage the inner surface of the stent-graft so as to prevent the sharp tip of the needle from projecting much beyond the outer surface of the vessel wall, to avoid potentially damaging surrounding tissue. With the needle tip just beyond the outside of the vessel wall, the distal portion of the fastener is deployed, followed by retraction of the needle into the lumen of the stent-graft, and the proximal portion of the fastener then is deployed. Both portions of the fastener self-deploy to their expanded configuration upon release from the needle with an intermediate portion of the fastener passing through the needle-formed puncture in the stent-graft and the vessel wall, transfixing and securing both. The deployment apparatus then can be withdrawn. One or more of such fasteners can be placed, as desired.
The various objects and advantages of the invention will be appreciated more fully from the following further description, with reference to the accompanying drawings in which:
Ideally, the engagement of the stent-graft 14 with a healthy portion of the aorta would maintain the stent graft in position. Continued exposure to pulsatile blood flow as well as pulsating expansion and contraction of the aortic wall, however, may, over time, cause the stent-graft to migrate downstream, possibly allowing blood to enter the space between the stent-graft and the weakened portion of the aortic wall, presenting a risk to the patient. In order to reduce that risk, it has become common to provide additional fixation means to secure the stent-graft in place. These have included, for example, incorporation of hooks or barbs into the stent framework that are intended to dig into the tissue of the aortic wall or the use of corkscrew-like fasteners to pierce the stent-graft and the aortic wall and hold the stent-graft in place. Such devices may tend to damage those pierced portions of the aorta and may result in the fixation devices working loose over time.
A fixation device that is less damaging to tissue is described in U.S. Pat. No. 10,076,339 and U.S. patent application Ser. No. 15/699,975, filed Sep. 8, 2017, the disclosures of which are hereby incorporated by reference, in their entireties. An embodiment of the fixation fastener is illustrated in
Distal implant body 215 preferably is formed out of an elastic material (e.g., a shape memory material having superelastic properties such as Nitinol or superelastic polymers) and constructed so that the legs 235 normally are bent and project laterally away from the longitudinal axis of the body 215 as shown in
In a preferred embodiment, the proximal and distal implants may be arranged so that when they are connected, legs of one are interdigitated with legs of the other, at least in the absence of tissue between the implants. Interdigitation refers to an arrangement that, when the proximal and distal implants are connected the legs 295 of the proximal implant will overlie the spaces between the legs 235 of the distal implant (or vice versa), as discussed in further detail below. With that arrangement, the legs of the fastener cooperate to apply oppositely directed forces at circumferentially alternating locations about the center of the fastener. We have found that application of clamping forces in this manner results in reduced risk of tissue damage while providing secure fixation and sealing of fastened layers of tissue or non-tissue. By applying clamping forces in this manner the clamped tissue and/or non-tissue layers can be constrained in a serpentine pattern that circumscribes the center of the fastener.
Additionally, the proximal end of the locking tube 220E may be provided with a first half 266 of a mechanical interlock 320 by which the locking tube 220 (and hence distal implant 205) can be connected to a distal implant retention tube 310 (
The manner in which the fastener 200 may be deployed is illustrated, somewhat diagrammatically, in
The extent to which the tip of the needle protrudes beyond the aorta wall is limited in order to avoid potentially injuring tissues or organs adjacent to the fixation site. In order to so limit the needle penetration, the needle 305 is provided with one or more needle stops 415 mounted on the exterior of the needle a short distance behind the needle tip (
It should be understood that the foregoing description is intended merely to be illustrative of the invention and that other modification, embodiments and equivalents may be apparent to those skilled in the art.
Number | Date | Country | |
---|---|---|---|
62656786 | Apr 2018 | US |