This invention relates to surgical methods and apparatus in general, and more particularly to methods and apparatus for fixing a graft in a bone tunnel.
The complete or partial detachment of ligaments, tendons and/or other soft tissues from their associated bones within the body are relatively commonplace injuries. Tissue detachment may occur as the result of an accident such as a fall, overexertion during a work-related activity, during the course of an athletic event, or in any one of many other situations and/or activities. Such injuries are generally the result of excess stress being placed on the tissues.
In the case of a partial detachment, commonly referred to under the general term “sprain”, the injury frequently heals itself, if given sufficient time and if care is taken not to expose the injury to undue stress during the healing process. If, however, the ligament or tendon is completely detached from its associated bone or bones, or if it is severed as the result of a traumatic injury, partial or permanent disability may result. Fortunately, a number of surgical procedures exist for re-attaching such detached tissues and/or completely replacing severely damaged tissues.
One such procedure involves the re-attachment of the detached tissue using “traditional” attachment devices such as staples, sutures and/or cancellous bone screws. Such traditional attachment devices have also been used to attach tendon or ligament grafts (often formed from autogenous tissue harvested from elsewhere in the body) to the desired bone or bones.
Another procedure is described in U.S. Pat. No. 4,950,270, issued Aug. 21, 1990 to Jerald A. Bowman et al. In this procedure, a damaged anterior cruciate ligament (“ACL”) in a human knee is replaced by first forming bone tunnels through the tibia and femur at the points of normal attachment of the anterior cruciate ligament. Next, a graft ligament, with a bone block on one of its ends, is sized so as to fit within the bone tunnels. Suture is then attached to the bone block, and the suture is thereafter passed through the tibial tunnel and then the femoral tunnel. The bone block is then drawn up through the tibial tunnel and up into the femoral tunnel using the suture. As this is done, the graft ligament extends back out the femoral tunnel, across the interior of the knee joint, and then out through the tibial tunnel. The free end of the graft ligament resides outside the tibia, at the anterior side of the tibia. Next, a bone screw is inserted between the bone block and the wall of femoral bone tunnel so as to securely lock the bone block in position by a tight interference fit. Finally, the free end of the graft ligament is securely attached to the tibia.
In U.S. Pat. No. 5,147,362, issued Sep. 15, 1992 to E. Marlowe Goble, there is disclosed a procedure wherein aligned femoral and tibial tunnels are formed in a human knee. A bone block, with a graft ligament attached thereto, is passed through the tibial and femoral tunnels to a blind end of the femoral tunnel, where the block is fixed in place by an anchor. The graft ligament extends out the tibial tunnel, and the proximal end thereof is attached to the tibial cortex by staples or the like. Alternatively, the proximal end of the ligament may be fixed in the tibial tunnel by an anchor or by an interference screw.
Various types of ligament and/or suture anchors, and anchors for attaching other objects to bone, are also well known in the art. A number of these devices are described in detail in U.S. Pat. Nos. 4,898,156; 4,899,743; 4,968,315; 5,356,413; and 5,372,599.
One known method for anchoring bone blocks in bone tunnels is through “cross-pinning”, in which a pin, screw or rod is driven into the bone, transversely to the bone tunnel, so as to intersect the bone block and thereby “cross-pin” the bone block in the bone tunnel.
In this respect it should be appreciated that the cross-pin (i.e., the aforementioned pin, screw or rod) is generally placed in a pre-drilled transverse passageway. In order to provide for proper cross-pinning of the bone block in the bone tunnel, a drill guide is generally used. The drill guide serves to ensure that the transverse passageway is positioned in the bone so that the transverse passageway intersects the appropriate tunnel section and hence the bone block. Drill guides for use in effecting such transverse drilling are shown in U.S. Pat. Nos. 4,901,711; 4,985,032; 5,152,764; 5,350,380; and 5,431,651.
Other patents in which cross-pinning is discussed include U.S. Pat. Nos. 3,973,277; 5,004,474; 5,067,962; 5,266,075; 5,356,435; 5,376,119; 5,393,302; and 5,397,356.
Cross-pinning methods and apparatus currently exist for fixing a graft ligament in a femoral bone tunnel. However, the femoral cross-pinning methods and apparatus that are presently known in the art do not address the use of a cross-pin in a tibial bone tunnel, which involves a different set of considerations. Among these considerations are anatomical geometries, bone configurations, bone quality, etc.
Accordingly, there exists a need for a method and apparatus for positioning at least one cross-pin so as to fix a graft in a tibial bone tunnel.
There also exists a need for a method and apparatus for positioning at least one cross-pin across a tibial tunnel such that, upon completion of the procedure, the cross-pin is located in the cortical portion of the tibia, adjacent to the tibial plateau.
One object of the present invention is, therefore, to provide a novel method and apparatus for positioning at least one cross-pin so as to fix a graft in a tibial bone tunnel.
Another object of the present invention is to provide a novel method and apparatus for positioning at least one cross-pin across a tibial tunnel such that, upon completion of the procedure, the cross-pin is located in the tibia and, more preferably, in the cortical portion of the tibia, adjacent to the tibial plateau.
These and other objects of the present invention are addressed by the provision and use of a novel method and apparatus for fixing a graft in a bone tunnel.
In accordance with a feature of the present invention, there is provided apparatus for positioning at least one cross-pin in a bone through a bone tunnel, the apparatus comprising: a bone tunnel guide rod having a proximal end and a distal end; a movable element slidably positioned about the bone tunnel guide rod, wherein said movable element is lockable into a position to selectively adjust the length of said guide rod between said distal end and said movable element; a frame member having a base portion and an arm portion, the base portion attachable to the proximal end of the bone tunnel guide rod; a drill guide member attachable to the arm portion of the frame member; and drilling means for drilling at least one cross-pin hole in the bone and across the bone tunnel, with the drilling means being supported in position by the drill guide member, the drill guide member being in attachment with the frame member, the frame member being in attachment with the bone tunnel guide rod, and the bone tunnel guide rod being inserted into the bone tunnel, and the apparatus being held against the bone, with the movable element limiting further insertion into the bone tunnel.
In accordance with a further feature of the present invention, there is provided a method for fixing a ligament in a bone tunnel, the method comprising the steps of: forming a bone tunnel in a bone, the bone tunnel comprising a first open end and a second open end, with a portion between the first open end and the second open end having a diameter sized to receive the ligament; inserting a guide rod into the bone tunnel, the guide rod having a proximal end and a distal end; positioning the distal end of the guide rod adjacent to the second open end of the bone tunnel; positioning a movable element on the guide rod against the bone at the first open end of the bone tunnel; drilling at least one cross-pin hole transversely through the bone and across the bone tunnel, using drilling means for drilling the cross-pin hole, the drilling means being supported in position by a drill guide member, with that drill guide member being in attachment with a frame member, the frame member being in attachment with the bone S tunnel guide rod, the bone tunnel guide rod being inserted into the bone tunnel, and with the movable element limiting further insertion of the bone tunnel guide rod into the bone tunnel; and inserting at least one cross-pin through at least one cross-pin hole.
In accordance with a further feature of the present invention, there is provided an apparatus for positioning at least one cross-pin in a bone through a bone tunnel, the apparatus comprising: a bone tunnel guide rod having a proximal end and a distal end, with the bone tunnel guide rod having a gradiated index between the proximal end and the distal end, wherein the gradiated index is read at a given position in the bone tunnel in relation to an intended position of at least one cross-pin hole; a frame member having a base portion and an arm portion, the base portion attachable adjacent to the proximal end of the bone tunnel guide rod, and the arm portion of the frame member having a scale corresponding with the gradiated index of the bone tunnel guide rod; a drill guide member attachable to the arm portion of the frame member, the drill guide member being selectively adjustable relative to the scale of the frame member; and drilling means for drilling the at least one cross-pin hole in the bone through the bone tunnel, the drilling means being supported in position by the drill guide member, the drill guide member being in attachment with the frame member, and the frame member being in attachment with the bone tunnel guide rod, with the bone tunnel guide rod being inserted into the bone tunnel, with the distal end of apparatus being held against a terminal end of the bone tunnel, limiting further insertion into the bone tunnel.
In accordance with a further feature of the present invention, there is provided a method for fixing a ligament in a bone tunnel, the method comprising the steps of: forming a bone tunnel in a bone, the bone tunnel comprising a first portion and a second portion, the first portion having a first open end and a second open end, and the second portion having a third open end and a fourth terminal end, and a portion between the first open end and the fourth terminal end having a diameter sized to receive the ligament; inserting a bone tunnel guide rod into the bone tunnel, the bone tunnel guide rod having a proximal end and a distal end, and the bone tunnel guide rod having a gradiated index between the proximal end and the distal end; positioning the distal end of the guide rod against the fourth terminal end of the bone tunnel; determining the position of the gradiated index relative to the second open end of the bone tunnel; positioning a drill guide attached to a frame member, the frame member including a scale corresponding with the gradiated index of the bone tunnel guide rod, the drill guide being positioned relative to the scale in accordance with the gradiated index relative to the second open end of the bone tunnel; drilling at least one cross-pin hole transversely through the bone into the bone tunnel using drilling means for drilling the cross-pin hole, the drilling means supported in position by the drill guide member, the drill guide member being in attachment with the frame member, the frame member being in attachment with the bone tunnel guide rod, the bone tunnel guide rod being inserted into the bone tunnel, and the fourth terminal end of the bone tunnel limiting further insertion into the bone tunnel; and inserting at least one cross-pin through the cross-pin hole.
In accordance with a further feature of the present invention, there is provided an apparatus for positioning at least one cross-pin in a bone through a bone tunnel, the apparatus comprising: a kit of bone tunnel guide rods, each of the bone tunnel guide rods including a proximal end and a distal end, and each of the bone tunnel guide rods including insertion limiting means for limiting insertion into the bone tunnel, the insertion limiting means of each of the bone tunnel guide rods being located a given distance from its distal end, the kit including at least two bone tunnel guide rods, with the given distance of each of the bone tunnel guide rods being different from one another, and wherein selection from the kit is made by inserting at least one of the bone tunnel guide rods into the bone tunnel and selecting a bone tunnel guide rod that has its distal end aligned with a bone surface when said insertion limiting means is in engagement with another bone surface; a frame member having a base portion and an arm portion, the base portion attachable adjacent to the proximal end of the selected bone tunnel guide rod; a drill guide member attached to the arm portion of the frame member; drilling means for drilling the at least one cross-pin hole in the bone through the bone tunnel, the drilling means being supported in position by the drill guide member, the drill guide member being in attachment with the frame member, and the frame member being in attachment with the selected bone tunnel guide rod, with the selected bone tunnel guide rod being inserted into the bone tunnel, and with the insertion limiting means preventing further insertion into the bone tunnel.
In accordance with a further feature of the present invention, there is provided a method for fixing a ligament in a bone tunnel, the method comprising the steps of: forming a bone tunnel in a bone, the bone tunnel comprising a first open end and a second open end, with a portion between the first open end and the second open end having a diameter sized to receive the ligament; inserting at least one guide rod from a kit of bone tunnel guide rods into the bone tunnel, each of the bone tunnel guide rods including a proximal-end and a distal end, and each of the bone tunnel guide rods including insertion limiting means for limiting insertion into the bone tunnel, the insertion limiting means of each of the bone tunnel guide rods being located a given distance from its distal end, the kit including at least two bone tunnel guide rods, with the given distance of each of the bone tunnel guide rods being different from one another; inserting at least one of the bone tunnel guide rods into the bone tunnel and selecting a bone tunnel guide rod that has its distal end aligned with the second end of the bone tunnel when the insertion limiting means is in engagement with the bone adjacent the first end of the bone tunnel; drilling at least one cross-pin hole transversely through the bone and across the bone tunnel, using drilling means for drilling the cross-pin hole, the drilling means being supported in position by a drill guide member, with the drill guide member being in attachment with a frame member, the frame member being in attachment with the selected bone tunnel guide rod, the selected bone tunnel guide rod being inserted into the bone tunnel, and with the insertion limiting means limiting further insertion of the bone tunnel guide rod into the bone tunnel; and inserting at least one cross-pin through said at least one cross-pin hole.
In accordance with a further feature of the present invention, there is provided an apparatus for positioning at least one cross-pin in a bone through a bone tunnel, the apparatus comprising: a bone tunnel guide rod having a proximal end and a distal end; a frame member having a base portion and an arm portion, the base portion attachable adjacent to the proximal end of the bone tunnel guide rod; at least one slot in the arm portion, the at least one slot being cammed outwardly toward the base portion relative to the bone tunnel guide rod; a drill guide member slidably connected with the at least one slot in the arm portion; and a probe connected to the drill guide member, the probe attachable to the distal end of the bone tunnel guide member such that the probe acts to guide member such that the probe acts to guide the positioning of the at least one cross-pin in the bone tunnel; and drilling means for drilling at least one cross-pin hole in the bone and across the bone tunnel, with the drilling means being supported in position by the drill guide member, the drill guide member in slidable connection with the frame member being in attachment with the bone tunnel guide rod, and the bone tunnel guide rod being inserted into the bone tunnel, and the probe being attached to the distal end of the bone tunnel guide rod to position the drill guide member to place at least one cross-pin hole in bone through a bone tunnel and allow the drill guide member to adjust relative to a changing angle and distance relative to a desired cross-pin site.
In accordance with a further feature of the present invention, there is provided a method for fixing a ligament in a bone tunnel, the method comprising the steps of: forming a bone tunnel in a bone, the bone tunnel comprising a first open end and a second open end, with a portion between the first open end and the second open end, with a portion between the first open end and the second open end having a diameter sized to receive the ligament; inserting a bone tunnel guide rod into the bone tunnel, the bone tunnel guide rod having a proximal end and a distal end; positioning a drill guide member slidably connected with a frame member, the frame member, being attached to the proximal end of the drill guide member, the frame member having a probe connected to the drill guide member, with the drill guide member being positioned so that the probe is connected to the distal end of the bone tunnel guide rod, with such positioning causing the drill guide member to adjust to a changing angle and distance relative to a desired cross-pin site; drilling at least one cross-pin hole transversely through the bone and across the bone tunnel, using drilling means for drilling the cross-pin hole, the drilling means being supported in position by the drill guide member, with the drill guide member being in slidable attachment with the frame member, the frame member being in attachment with the proximal end of the bone tunnel guide rod, the bone tunnel guide rod being inserted into the bone tunnel, and with the probe being in engagement with the distal end of the bone tunnel guide rod; and inserting at least one cross-pin through the at least one cross-pin hole.
The above and other objects and features of the present invention will be more fully discussed in, or rendered obvious by, the following detailed description of the preferred embodiments of the invention, which is to be considered together with the accompanying drawings wherein like numbers refer to like parts, and further wherein:
Looking first at
Cross-pin guide assembly 5 further comprises a bone tunnel guide rod 25 which, adjacent to a first end 30 thereof, forms a diametrical, longitudinally-elongated passageway 35, and which, at a second end 40 thereof, is releasably connectable to base portion 15 of L-shaped member 10. In a preferred embodiment, bone tunnel guide rod 25 is cannulated along its axis 65 (see
Still looking at
The present invention may be practiced with cross-pins of any type, and is independent of the type of cross-pins used in a surgical procedure. Preferably, cross-pins of an absorbable nature are used in a given surgical procedure. Accordingly, the ACL reconstruction will hereinafter be discussed in the context of using absorbable cross-pins, and in the context of using preferred apparatus for deploying such absorbable cross-pins.
More particularly, in a preferred embodiment using absorbable cross-pins 255, 260 (
First and second trocar sleeves 80, 85 (
First and second absorbable rods 255, 260 (see
In another preferred embodiment, guide member 58 is configured for the direct placement of cross-pins, without the use of trocar sleeves 80, 85 and trocars 100. In this case, the cross-pins are inserted through, and guided by, each of bores 60 in guide member 58.
Referring now to
Now looking at
Now looking at
Trocar 210 may then be withdrawn from first trocar sleeve 200 and placed in a second trocar sleeve 230 (
Referring now to
Referring now to
Now looking at
Now referring to
Trocar 100 may then be withdrawn from first trocar sleeve 80 and placed in second trocar sleeve 85. Alternatively a second trocar 100 may be provided for second trocar sleeve 85. In either case, the combination of trocar sleeve 85 and trocar 100 is then drilled (
The guide assembly's L-shaped member 10 may then be removed from the surgical site. This may be accomplished by first loosening set screw 75 (
Significantly, due to the geometry of guide assembly 5, trocar sleeves 80, 85 (and hence cross-pins 255, 260) will be directed into the strong cortical bone located just beneath tibial plateau 235.
Guidewire 140 is then used to pull a suture 245, which is attached to a graft ligament 250 (including, but not limited to, soft tissue grafts and bone block grafts) up through tibial tunnel 135 and into femoral tunnel 130, until graft ligament 250 engages the annular shoulder 165 in femoral tunnel 130 (
Trocar 210 may then be removed from second trocar sleeve 230, placed in first trocar sleeve 200, and then sleeve 200 and trocar 210 drilled through the distal end of graft ligament 250, as shown in
Looking next at
Next, graft ligament 250 is attached to tibia 125. More particularly, first trocar sleeve 80 and a trocar 100 are drilled through ligament 250, as shown in
Now referring to
Bone tunnel reference guide 265 further comprises a bone tunnel guide rod 285 having a first end 290 and a second end 295. Bone tunnel guide rod 285 includes a gradiated index 300 between first end 290 and second end 295. Bone tunnel guide rod 285 includes a diametrically-extending, longitudinally-elongated passageway 305 intermediate its length and, at second end 295, is connected to base portion 275 of L-shaped member 270. In a preferred embodiment, bone tunnel guide rod 285 is cannulated at 306 (
Still looking at
The present invention may be practiced with cross-pins of any type, and is independent of the type of cross-pins used in a surgical procedure. Preferably, cross-pins of an absorbable nature are used in a given surgical procedure. Accordingly, the ACL reconstruction will hereinafter be discussed in the context of using absorbable pins, and in the context of using preferred apparatus for deploying such absorbable pins.
More particularly, in a preferred embodiment using absorbable cross-pins, a trocar sleeve guide member 330 is removably connectable to, and selectably adjustable along, scale 325 of arm portion 280 of L-shaped member 270. Trocar sleeve guide member 330 is provided with bores 335 extending therethrough. Bores 335 extend through a longitudinal axis 340 of bone tunnel guide rod 285. As such, at least one cross-pin is ultimately positioned in the tibia so as to pass through the tibial tunnel. More preferably, bores 335 are configured to intersect the longitudinal axis 340 of bone tunnel guide 285 just below the patient's tibial plateau. In this way, the at least one cross-pin will be deployed in the cortical portion of the tibia, adjacent to and just below the tibial plateau, and at the region of greatest bone strength. A set screw 345 may be used to releasably retain trocar sleeve guide member 330 in position along scale 325 of arm portion 280. Trocar sleeve guide member 330 is preferably formed in two halves releasably held together by a set screw 350, whereby trocar sleeve guide member 330 can be detached from first and second trocar sleeves 355, 360 passing through bores 335, as will hereinafter be discussed.
In another preferred embodiment, trocar sleeve guide member 330 is configured for direct placement of cross-pins, without the use of trocar sleeves 355, 360. In this case, cross-pins are inserted through, and guided by each of bores 335 in guide member 330.
Bone tunnel reference guide 265 is preferably used as follows. First, femoral tunnel 130 and tibial tunnel 135 (
Next, drill sleeves 355, 360 are used to set trocars 365, 370 into the tibia. Trocar sleeve guide member 330 is then separated into its two halves so as to free drill sleeves 355, 360 from reference guide 265, and the reference guide 265 is removed from the surgical site, e.g., by withdrawing it proximally off the guidewire. Then the graft ligament is pulled up into femoral tunnel 130 and tibial tunnel 135, the distal end of the graft ligament is made fast in femoral tunnel 130, and then drill sleeves 355, 360 are used to set absorbable cross-pins through the proximal end of the graft ligament, whereby to cross-pin the ligament to the tibia.
Now looking at
Each of the bone tunnel guide rods 305 includes a proximal end 310 and a distal end 315. As insertion limiting means 320, for limiting insertion into a bone tunnel, is located between proximal end 310 and distal end 315. Preferably insertion limiting means 320 comprises an annular shoulder formed intermediate the distal end 321 and the proximal end 322 of a given bone tunnel guide rod 305.
Insertion limiting means 320 are located at a given distance 325 from the distal end 321 of bone tunnel guide rods 305. Each kit 300 includes at least two bone tunnel guide rods, with the given distance 325 of each of the tunnel guide rods being different from one another. As such, selection is made from kit 300 by inserting at least one of the bone tunnel guide rods 305 into a bone tunnel and selecting the one of the bone tunnel guide rods 305 that has its distal end 321 aligned with the patient's tibial plateau when insertion limiting means 320 are in engagement with the front side of the patient's tibia. As a result of this construction, when that selected bone tunnel guide rod 305 is loaded in cross-pin guide assembly 308, bores 60 (
In many circumstances the bone tunnel's “angle of attack” may vary, and this can have an effect on how the drill sleeves need to be positioned relative to the bone. More particularly, in
In an aspect of the present invention, apparatus can be provided to facilitate this variable positioning of the drill sleeve relative to the bone.
More particularly, and looking next at
A drill guide member 445 slidably carries a pair of carriages 441 on its body. Each of the carriages 441 has a pin 442 which rides in a slot 440, whereby carriages 441 can be cammed relative to drill guide member 445 as the drill guide is moved relative to arm portion 431. Carriages 441 slidably receive drilling means 405 therein. Drill guide member 445 has a probe 450 which is attachable to distal end 420 of bone tunnel guide rod 410. Probe 450 acts to guide the positioning of the at least one drilling means 405. Drilling means 405 drill at least one cross-pin hole (not shown) in the bone and across the bone tunnel, with the drilling means 405 being supported in position by carriages 441, which are slidably supported by drill guide member 445. Drill guide member 445 is in slidable connection with frame member 425, which is in attachment with bone tunnel guide rod 410.
In use, bone tunnel guide rod 410 is inserted into the bone tunnel and probe 450 is then attached to distal end 420 of bone tunnel guide rod 410 to position the drill guide member 445 so as to place at least one cross-pin (not shown) in a bone through a bone tunnel. Inasmuch as carriages 441 are movably attached to drill guide member 445, and drill guide member 445 is movably attached to frame member 425, and inasmuch as carriages 441 are cammed by the two slots 440, and the two slots 440 are oriented outwardly, carriages 441 can move towards and away from bone tunnel guide rod 410 as the drill guide member 445 moves down and up frame member 425, respectively. Thus, the construction of apparatus 400 allows carriages 441 and drill guide member 445 to adjust to a changing angle and distance relative to a desired cross-pin site. This can be extremely beneficial where the cross-pins are to be set for a variety of different bone tunnel angles using trocar sleeves of a fixed length.
Apparatus 400 may be used as follows to fix a ligament in a bone tunnel in the bone. First, a bone tunnel is formed in the bone, where the bone tunnel comprises a first open end and the second open end, with a portion between the first open end and the second open end having a diameter sized to receive the ligament. For example, this may be a tibial tunnel formed in a patient's tibia. Then bone tunnel guide rod 410 is inserted into the bone tunnel so that the guide rod's distal end is adjacent to the patient's tibial plateau. Then a drill guide member 445 is slid along the at least one slot 440 until the inner tip of probe 450 engages distal end 420 of guide rod 410. The cammed nature of slots 440 causes carriages 441 to adjust to a changing angle and distance relative to the desired cross-pin site. Then at least one cross-pin hole is drilled transversely through the bone and across the bone tunnel, using drilling means 405. Apparatus 400 is then removed, permitting a cross-pin to be inserted in the cross-pin hole so as to cross-pin a graft ligament to the bone.
It is to be understood that the present invention is by no means limited to the specific applications thereof as herein disclosed and/or shown in the drawings. For example, for illustrative purposes, the inventive method and apparatus are described herein and illustrated with reference to the human knee joint. It is anticipated that the method and apparatus described herein will be particularly beneficial with respect to such operations. However, it will also be appreciated by those skilled in the art that the method and apparatus described herein will find utility with respect to mammals generally, and with respect to other bones as, for example, in shoulder joints or the like.
Furthermore, trocars 100 and 210 are disclosed herein as being in the form of a hard rod with a sharp tip for penetrating bone. Thus, for example, trocars 100 and 210 might comprise guidewires of K-wires with a pyramidal front point. Alternatively, however, the invention might also be practiced with trocars 100 and 210 comprising a twist drill, a spade drill and/or some other sort of drill.
Also it is contemplated that trocars 100 and/or 210 might be used with their associated guide member 58, rack assembly 145, reference guide 265, guide assembly 308 and/or apparatus 400 to set absorbable rods 255, 260, but without their associated sleeves 80, 85, and 200, 230, respectively. In this case, at least one trocar would always remain positioned in graft ligament 250 until at least one absorbable rod 255, 260 was positioned in the bone block.
If desired, it is also possible to practice the present invention using just one sleeve 80 and one trocar 100, or just one sleeve 85 and one trocar 100, or just one sleeve 200 and one trocar 210, or without using sleeves and/or trocars at all.
Numerous further variations, alterations, modifications and other derivations of the present invention will occur and/or become obvious to those skilled in the art in view of the foregoing detailed description of the preferred embodiments of the present invention. Accordingly, it is to be understood that the foregoing specification and the appended drawings are intended to be illustrative only, and not as limiting of the invention.
The present application is a divisional of prior U.S. patent application Ser. No. 10/436,038 filed on May 12, 2003 and entitled “Method and Apparatus for Fixing a Graft in a Bone Tunnel,” now U.S. Pat. No. 7,594,917, which is a continuation-in-part of prior U.S. patent application Ser. No. 10/364,786 filed on Feb. 11, 2003 and entitled “Method and Apparatus for Fixing a Graft in a Bone Tunnel,” now U.S. Pat. No. 6,958,067, which is a continuation of U.S. patent application Ser. No. 09/865,274 filed on May 25, 2002 and entitled “Method and Apparatus for Fixing a Graft in a Bone Tunnel,” now U.S. Pat. No. 6,517,546, which claims priority to U.S. Provisional Application Ser. No. 60/275,431 filed on Mar. 31, 2001 and entitled “Method and Apparatus for Fixing a Graft in a Tibial Tunnel.” These references are hereby incorporated herein in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
2112337 | Gillespie | Mar 1938 | A |
3973277 | Semple et al. | Aug 1976 | A |
4013071 | Rosenberg | Mar 1977 | A |
4022191 | Jamshidi | May 1977 | A |
4257411 | Cho | Mar 1981 | A |
4431200 | Sugimura | Feb 1984 | A |
4462395 | Johnson | Jul 1984 | A |
4541424 | Grosse et al. | Sep 1985 | A |
4590928 | Hunt et al. | May 1986 | A |
4760843 | Fischer et al. | Aug 1988 | A |
4787377 | Laboureau | Nov 1988 | A |
4792336 | Hlavacek et al. | Dec 1988 | A |
4809694 | Ferrara | Mar 1989 | A |
4838282 | Strasser et al. | Jun 1989 | A |
4858603 | Clemow et al. | Aug 1989 | A |
4898156 | Gatturna et al. | Feb 1990 | A |
4899743 | Nicholson et al. | Feb 1990 | A |
4901711 | Goble et al. | Feb 1990 | A |
4944742 | Clemow et al. | Jul 1990 | A |
4950270 | Bowman et al. | Aug 1990 | A |
4968315 | Gatturna | Nov 1990 | A |
4985032 | Goble | Jan 1991 | A |
4986833 | Worland | Jan 1991 | A |
5004474 | Fronk et al. | Apr 1991 | A |
5013318 | Spranza, III | May 1991 | A |
5031634 | Simon | Jul 1991 | A |
5053042 | Bidwell | Oct 1991 | A |
5067962 | Campbell et al. | Nov 1991 | A |
5080673 | Burkhead et al. | Jan 1992 | A |
5098435 | Stednitz et al. | Mar 1992 | A |
5100387 | Ng | Mar 1992 | A |
5108446 | Wagner et al. | Apr 1992 | A |
5116372 | Laboureau | May 1992 | A |
5120318 | Nallapareddy | Jun 1992 | A |
5147362 | Goble | Sep 1992 | A |
5152764 | Goble | Oct 1992 | A |
5154720 | Trott et al. | Oct 1992 | A |
5169400 | Muhling et al. | Dec 1992 | A |
5192322 | Koch et al. | Mar 1993 | A |
5201742 | Hasson | Apr 1993 | A |
5209753 | Biedermann et al. | May 1993 | A |
5234434 | Goble et al. | Aug 1993 | A |
5235987 | Wolfe | Aug 1993 | A |
5257632 | Turkel et al. | Nov 1993 | A |
5266075 | Clark et al. | Nov 1993 | A |
5298012 | Handlos | Mar 1994 | A |
5312409 | McLaughlin et al. | May 1994 | A |
5314429 | Goble | May 1994 | A |
5314487 | Schryver et al. | May 1994 | A |
5316014 | Livingston | May 1994 | A |
5320111 | Livingston | Jun 1994 | A |
5350380 | Goble et al. | Sep 1994 | A |
5354300 | Goble et al. | Oct 1994 | A |
5356413 | Martins et al. | Oct 1994 | A |
5356435 | Thein et al. | Oct 1994 | A |
5364400 | Rego, Jr. et al. | Nov 1994 | A |
5372599 | Martins | Dec 1994 | A |
5376119 | Zimmermann et al. | Dec 1994 | A |
5393302 | Clark et al. | Feb 1995 | A |
5397356 | Goble et al. | Mar 1995 | A |
5431651 | Goble | Jul 1995 | A |
5470334 | Ross et al. | Nov 1995 | A |
5494039 | Onik et al. | Feb 1996 | A |
5522817 | Sander et al. | Jun 1996 | A |
5530380 | Kondoh | Jun 1996 | A |
5556411 | Taoda et al. | Sep 1996 | A |
5562664 | Durlacher et al. | Oct 1996 | A |
5562671 | Goble et al. | Oct 1996 | A |
5601562 | Wolf et al. | Feb 1997 | A |
5647373 | Paltieli et al. | Jul 1997 | A |
5669885 | Smith | Sep 1997 | A |
5672158 | Okada et al. | Sep 1997 | A |
5674224 | Howell et al. | Oct 1997 | A |
5681320 | McGuire | Oct 1997 | A |
5688284 | Chervitz et al. | Nov 1997 | A |
5697933 | Gundlapalli et al. | Dec 1997 | A |
5702447 | Walch et al. | Dec 1997 | A |
5849013 | Whittaker et al. | Dec 1998 | A |
5868673 | Vesely | Feb 1999 | A |
5891150 | Chan | Apr 1999 | A |
5911707 | Wolvek et al. | Jun 1999 | A |
5916175 | Bauer et al. | Jun 1999 | A |
5918604 | Whelan | Jul 1999 | A |
5919193 | Slavitt | Jul 1999 | A |
5931840 | Goble et al. | Aug 1999 | A |
5941852 | Dunlap et al. | Aug 1999 | A |
5941889 | Cermak | Aug 1999 | A |
5954670 | Baker | Sep 1999 | A |
5957947 | Wattiez et al. | Sep 1999 | A |
5984930 | Maciunas et al. | Nov 1999 | A |
6027506 | Faccioli et al. | Feb 2000 | A |
6030364 | Durgin et al. | Feb 2000 | A |
D422706 | Bucholz et al. | Apr 2000 | S |
6048321 | McPherson et al. | Apr 2000 | A |
6066173 | McKernan et al. | May 2000 | A |
6096060 | Fitts et al. | Aug 2000 | A |
6132433 | Whelan | Oct 2000 | A |
6187011 | Torrie | Feb 2001 | B1 |
6195577 | Truwit et al. | Feb 2001 | B1 |
6203499 | Imling et al. | Mar 2001 | B1 |
6216029 | Paltieli et al. | Apr 2001 | B1 |
6228061 | Flatland et al. | May 2001 | B1 |
6231565 | Tovey et al. | May 2001 | B1 |
6231585 | Takahashi et al. | May 2001 | B1 |
6236875 | Bucholz et al. | May 2001 | B1 |
6245028 | Furst et al. | Jun 2001 | B1 |
6254606 | Carney et al. | Jul 2001 | B1 |
6280472 | Boucher et al. | Aug 2001 | B1 |
6283942 | Staehlin et al. | Sep 2001 | B1 |
6306138 | Clark et al. | Oct 2001 | B1 |
6342056 | Mac-Thiong et al. | Jan 2002 | B1 |
6361499 | Bates et al. | Mar 2002 | B1 |
6379307 | Filly et al. | Apr 2002 | B1 |
6400979 | Stoianovici et al. | Jun 2002 | B1 |
6436119 | Erb et al. | Aug 2002 | B1 |
6443960 | Brabrand et al. | Sep 2002 | B1 |
6445943 | Ferre et al. | Sep 2002 | B1 |
6468226 | McIntyre, IV | Oct 2002 | B1 |
6475152 | Kelly, Jr. et al. | Nov 2002 | B1 |
6490467 | Bucholz et al. | Dec 2002 | B1 |
6501981 | Schweikard et al. | Dec 2002 | B1 |
6517546 | Whittaker et al. | Feb 2003 | B2 |
6529765 | Franck et al. | Mar 2003 | B1 |
6535756 | Ruch et al. | Mar 2003 | B1 |
6539121 | Haskell et al. | Mar 2003 | B1 |
6546279 | Bova et al. | Apr 2003 | B1 |
6547782 | Charles et al. | Apr 2003 | B1 |
6632245 | Kim | Oct 2003 | B2 |
6665554 | Charles et al. | Dec 2003 | B1 |
6687531 | Ferre et al. | Feb 2004 | B1 |
6723106 | Charles et al. | Apr 2004 | B1 |
6723125 | Heckele et al. | Apr 2004 | B2 |
6731966 | Spigelman et al. | May 2004 | B1 |
6770027 | Banik et al. | Aug 2004 | B2 |
6770076 | Foerster | Aug 2004 | B2 |
6782288 | Truwit | Aug 2004 | B2 |
6783524 | Anderson | Aug 2004 | B2 |
6785572 | Yanof et al. | Aug 2004 | B2 |
6902526 | Katzman | Jun 2005 | B2 |
6958067 | Whittaker et al. | Oct 2005 | B2 |
7021173 | Stoianovici et al. | Apr 2006 | B2 |
7076106 | Haskell et al. | Jul 2006 | B2 |
7094200 | Katzman | Aug 2006 | B2 |
7195642 | McKernan et al. | Mar 2007 | B2 |
7399306 | Reiley et al. | Jul 2008 | B2 |
7594917 | Whittaker et al. | Sep 2009 | B2 |
7655011 | Whittaker et al. | Feb 2010 | B2 |
7674290 | McKernan et al. | Mar 2010 | B2 |
20010018619 | Enzerink et al. | Aug 2001 | A1 |
20010044659 | Laboureau et al. | Nov 2001 | A1 |
20020165611 | Enzerink et al. | Nov 2002 | A1 |
20030100814 | Kindlein | May 2003 | A1 |
20100030222 | Whittaker et al. | Feb 2010 | A1 |
20100121339 | Whittaker et al. | May 2010 | A1 |
20100121448 | McKernan et al. | May 2010 | A1 |
Number | Date | Country |
---|---|---|
19510372 | Jul 1996 | DE |
0933064 | Aug 1999 | EP |
2560764 | Sep 1985 | FR |
2598311 | Nov 1987 | FR |
2716364 | Aug 1995 | FR |
2-057247 | Feb 1990 | JP |
4-338470 | Nov 1992 | JP |
5-123336 | May 1993 | JP |
8-505550 | Jun 1996 | JP |
9-075354 | Mar 1997 | JP |
9-140721 | Jun 1997 | JP |
2000210311 | Aug 2000 | JP |
2001-507977 | Jun 2001 | JP |
WO-9830162 | Jul 1998 | WO |
9835621 | Aug 1998 | WO |
9952453 | Oct 1999 | WO |
02071958 | Sep 2002 | WO |
03037163 | May 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20100057142 A1 | Mar 2010 | US |
Number | Date | Country | |
---|---|---|---|
60275431 | Mar 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10436038 | May 2003 | US |
Child | 12392682 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09865274 | May 2001 | US |
Child | 10364786 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10364786 | Feb 2003 | US |
Child | 10436038 | US |