The invention relates in general to tire manufacturing, and more particularly to a method for forming a composite tread and tire with microchimneys.
Tire manufacturers have progressed to more complicated designs due to an advance in technology as well as a highly competitive industrial environment. In particular, tire designers seek to use multiple rubber compounds in a tire tread in order to meet customer demands. Using multiple rubber compounds per tire component can result in a huge number of compounds needed to be on hand for the various tire lines of the manufacturer. In addition, modern tire tread design requires the use of a conductive rubber material in order to form a chimney in order to dissipate static electric charge. The tread with a chimney is typically made by extrusion, which increases the complexity of the splice bar design and die work. However, if there are any issues/inconsistencies with the extrusion, the conductive path can be broken and the tire will not properly dissipate the built up static charge.
Thus, it is desired to have an improved method and apparatus which provides independent flow of two or more compounds, including a conductive rubber material, from a single application head. More particularly, it is desired to be able to make a custom tire tread with conductive chimneys, directly onto a tire building machine in an efficient manner, reducing the need for multiple application stations. It is also desired to have a tire tread with multiple conductive chimneys, as opposed to a single chimney.
“Aspect Ratio” means the ratio of a tire's section height to its section width.
“Axial” and “axially” means the lines or directions that are parallel to the axis of rotation of the tire.
“Bead” or “Bead Core” means generally that part of the tire comprising an annular tensile member, the radially inner beads are associated with holding the tire to the rim being wrapped by ply cords and shaped, with or without other reinforcement elements such as flippers, chippers, apexes or fillers, toe guards and chafers.
“Belt Structure” or “Reinforcing Belts” means at least two annular layers or plies of parallel cords, woven or unwoven, underlying the tread, unanchored to the bead, and having both left and right cord angles in the range from 17° to 27° with respect to the equatorial plane of the tire.
“Bias Ply Tire” means that the reinforcing cords in the carcass ply extend diagonally across the tire from bead-to-bead at about 25-65° angle with respect to the equatorial plane of the tire, the ply cords running at opposite angles in alternate layers.
“Breakers” or “Tire Breakers” means the same as belt or belt structure or reinforcement belts.
“Carcass” means a laminate of tire ply material and other tire components cut to length suitable for splicing, or already spliced, into a cylindrical or toroidal shape. Additional components may be added to the carcass prior to its being vulcanized to create the molded tire.
“Circumferential” means lines or directions extending along the perimeter of the surface of the annular tread perpendicular to the axial direction; it can also refer to the direction of the sets of adjacent circular curves whose radii define the axial curvature of the tread as viewed in cross section.
“Cord” means one of the reinforcement strands, including fibers, which are used to reinforce the plies.
“Inner Liner” means the layer or layers of elastomer or other material that form the inside surface of a tubeless tire and that contain the inflating fluid within the tire.
“Inserts” means the reinforcement typically used to reinforce the sidewalls of runflat-type tires; it also refers to the elastomeric insert that underlies the tread.
“Ply” means a cord-reinforced layer of elastomer-coated, radially deployed or otherwise parallel cords.
“Radial” and “radially” mean directions radially toward or away from the axis of rotation of the tire.
“Radial Ply Structure” means the one or more carcass plies or which at least one ply has reinforcing cords oriented at an angle of between 65° and 90° with respect to the equatorial plane of the tire.
“Radial Ply Tire” means a belted or circumferentially-restricted pneumatic tire in which the ply cords which extend from bead to bead are laid at cord angles between 65° and 90° with respect to the equatorial plane of the tire.
“Sidewall” means a portion of a tire between the tread and the bead.
“Laminate structure” means an unvulcanized structure made of one or more layers of tire or elastomer components such as the innerliner, sidewalls, and optional ply layer.
The invention will be described by way of example and with reference to the accompanying drawings in which:
The coextruded strip forming apparatus 10 is used to form the tread shown in
Coextruded Strip Forming Apparatus
As shown in
The first compound A is extruded by the first extruder 30 and then pumped by the first gear pump 42 into a nozzle 100, while at the same time the second compound B is extruded by the second extruder 60 and then pumped by the second gear pump 44 into the coextrusion nozzle 100.
The coextrusion nozzle 100 has a removable insert 120 that functions to divide the nozzle into a first and second flow passageway 122,124. The removable insert 120 is preferably rectangular in cross-sectional shape. The removable insert 120 has a distal end 130 with tapered ends 132,134 forming a nose 136. The nose 136 is positioned adjacent the nozzle die exit 140 and spaced a few millimeters from the die exit 140. The region between the nose 136 and the die exit 140 is a low volume coextrusion zone 150 that is high pressure. In the low volume coextrusion zone 150, compound A flowstream 122 merges with compound B flowstream 124 forming two discrete layers 212,214 joined together at an interface 215.
The volume ratio of compound A to compound B may be changed by varying the ratio of the speed of gear pump of compound A to the speed of gear pump of compound B. The dual coextruded strip forming apparatus 10 can adjust the speed ratios on the fly, and due to the small residence time of the coextrusion nozzle, the apparatus has a fast response to a change in the compound ratios. This is due to the low volume of the coextrusion zone.
The tread having a plurality of microchimneys as described herein is beneficial for cycle time since it replaces the job of two single gear pumps with one, and eliminates the sequence starts/stops that are required when switching from one gear pump to the other. The microchimney design is also a more robust solution because it provides multiple conductive paths throughout the tread as opposed to a single path, resolving issues with conventional chimney designs as a result of issues/inconsistencies with the extrusion, the conduction path can be broken and the tire will not properly dissipate the built up static charge. This concept also eliminates the complexity of splice bar design and die work. The microchimney layout can easily be modified with programming changes.
Variations in the present inventions are possible in light of the description of it provided herein. While certain representative embodiments and details have been shown for the purpose of illustrating the subject invention, it will be apparent to those skilled in this art that various changes and modifications can be made therein without departing from the scope of the subject invention. It is, therefore, to be understood that changes can be made in the particular embodiments described which will be within the full intended scope of the invention as defined by the following appended claims.
Number | Date | Country | |
---|---|---|---|
62781768 | Dec 2018 | US |