Method and apparatus for forming a mono-diameter wellbore casing

Information

  • Patent Grant
  • 7363690
  • Patent Number
    7,363,690
  • Date Filed
    Wednesday, March 2, 2005
    19 years ago
  • Date Issued
    Tuesday, April 29, 2008
    16 years ago
Abstract
A mono-diameter wellbore casing. The mono-diameter wellbore casing is formed by plastically deforming and radially expanding a first tubular member within a wellbore. A second tubular member is then plastically deformed and radially expanded in overlapping relation to the first tubular member. The second tubular member and the overlapping portion of the first tubular member are then radially expanded again.
Description
BACKGROUND OF THE INVENTION

This invention relates generally to wellbore casings, and in particular to wellbore casings that are formed using expandable tubing.


Conventionally, when a wellbore is created, a number of casings are installed in the borehole to prevent collapse of the borehole wall and to prevent undesired outflow of drilling fluid into the formation or inflow of fluid from the formation into the borehole. The borehole is drilled in intervals whereby a casing which is to be installed in a lower borehole interval is lowered through a previously installed casing of an upper borehole interval. As a consequence of this procedure the casing of the lower interval is of smaller diameter than the casing of the upper interval. Thus, the casings are in a nested arrangement with casing diameters decreasing in downward direction. Cement annuli are provided between the outer surfaces of the casings and the borehole wall to seal the casings from the borehole wall. As a consequence of this nested arrangement a relatively large borehole diameter is required at the upper part of the wellbore. Such a large borehole diameter involves increased costs due to heavy casing handling equipment, large drill bits and increased volumes of drilling fluid and drill cuttings. Moreover, increased drilling rig time is involved due to required cement pumping, cement hardening, required equipment changes due to large variations in hole diameters drilled in the course of the well, and the large volume of cuttings drilled and removed.


The present invention is directed to overcoming one or more of the limitations of the existing procedures for forming wellbores.


SUMMARY OF THE INVENTION

According to one aspect of the invention, an apparatus for plastically deforming and radially expanding a tubular member is provided that includes means for plastically deforming and radially expanding a first portion of the tubular member to a first outside diameter, and means for plastically deforming and radially expanding a second portion of the tubular member to a second outside diameter.


According to another aspect of the present invention, an apparatus for plastically deforming and radially expanding a tubular member is provided that includes a tubular support member including a first fluid passage, an expansion cone coupled to the tubular support member having a second fluid passage fluidicly coupled to the first fluid passage and an outer conical surface, a removable annular conical sleeve coupled to the outer conical surface of the expansion cone, an annular expansion cone launcher coupled to the conical sleeve and a lower portion of the tubular member, and a shoe having a valveable passage coupled to an end of the expansion cone launcher.


According to another aspect of the present invention, a method of plastically deforming and radially expanding a tubular member is provided that includes plastically deforming and radially expanding a portion of the tubular member to a first outside diameter, and plastically deforming and radially expanding another portion of the tubular member to a second outside diameter.


According to another aspect of the present invention, a method of coupling a first tubular member to a second tubular member is provided that includes plastically deforming and radially expanding a first portion of the first tubular member to a first outside diameter, plastically deforming and radially expanding another portion of the first tubular member to a second outside diameter, positioning the second tubular member inside the first tubular member in overlapping relation to the first portion of the first tubular member, plastically deforming and radially expanding the second tubular member to a third outside diameter, and plastically deforming and radially expanding the second tubular member to a fourth outside diameter. The inside diameters of the first and second tubular members after the plastic deformations and radial expansions are substantially equal.


According to another aspect of the present invention, an apparatus for coupling a first tubular member to a second tubular member is provided that includes means for plastically deforming and radially expanding a first portion of the first tubular member to a first outside diameter, means for plastically deforming and radially expanding another portion of the first tubular member to a second outside diameter, means for positioning the second tubular member inside the first tubular member in overlapping relation to the first portion of the first tubular member, means for plastically deforming and radially expanding the second tubular member to a third outside diameter, and


means for plastically deforming and radially expanding the second tubular member to a fourth outside diameter. The inside diameters of the first and second tubular members after the plastic deformations and radial expansions are substantially equal.


According to another aspect of the present invention, an apparatus for forming a wellbore casing within a wellbore is provided that includes means for supporting a tubular member within the wellbore, means for plastically deforming and radially expanding a first portion of the tubular member to a first outside diameter, and means for plastically deforming and radially expanding a second portion of the tubular member to a second outside diameter.


According to another aspect of the present invention, an apparatus for forming a wellbore casing within a wellbore is provided that includes a tubular support member including a first fluid passage, an expansion cone coupled to the tubular support member having a second fluid passage fluidicly coupled to the first fluid passage and an outer conical surface, a removable annular conical sleeve coupled to the outer conical surface of the expansion cone, an annular expansion cone launcher coupled to the conical sleeve and a lower portion of the tubular member, and a shoe having a valveable passage coupled to an end of the expansion cone launcher.


According to another aspect of the present invention, a method of forming a wellbore casing within a wellbore is provided that includes supporting a tubular member within a wellbore, plastically deforming and radially expanding a portion of the tubular member to a first outside diameter, and plastically deforming and radially expanding another portion of the tubular member to a second outside diameter.


According to another aspect of the present invention, a method of forming a mono-diameter wellbore casing within a wellbore is provided that includes supporting a first tubular member within the wellbore, plastically deforming and radially expanding a first portion of the first tubular member to a first outside diameter, plastically deforming and radially expanding another portion of the first tubular member to a second outside diameter, positioning the second tubular member inside the first tubular member in overlapping relation to the first portion of the first tubular member, plastically deforming and radially expanding the second tubular member to a third outside diameter, and plastically deforming and radially expanding the second tubular member to a fourth outside diameter. The inside diameters of the first and second tubular members after the plastic deformations and radial expansions are substantially equal.


According to another aspect of the present invention, an apparatus for coupling a first tubular member to a second tubular member is provided that includes means for plastically deforming and radially expanding a first portion of the first tubular member to a first outside diameter, means for plastically deforming and radially expanding another portion of the first tubular member to a second outside diameter, means for positioning the second tubular member inside the first tubular member in overlapping relation to the first portion of the first tubular member, means for plastically deforming and radially expanding the second tubular member to a third outside diameter, and


means for plastically deforming and radially expanding the second tubular member to a fourth outside diameter. The inside diameters of the first and second tubular members after the plastic deformations and radial expansions are substantially equal.


According to another aspect of the present invention, an apparatus for plastically deforming and radially expanding a tubular member is provided that includes means for providing a lipped portion in a portion of the tubular member, and means for plastically deforming and radially expanding another portion of the tubular member.


According to another aspect of the present invention, an apparatus for plastically deforming and radially expanding a tubular member is provided that includes a tubular support member including a first fluid passage, an expansion cone coupled to the tubular support member having a second fluid passage fluidicly coupled to the first fluid passage and an outer conical surface, an annular expansion cone launcher including: a first annular portion coupled to a lower portion of the tubular member, a second annular portion coupled to the first annular portion that mates with the outer conical surface of the expansion cone, a third annular portion coupled to the second annular portion having a first outside diameter, and a fourth annular portion coupled to the third annular portion having a second outside diameter, wherein the second outside diameter is less than the first outside diameter, and a shoe having a valveable passage coupled to fourth annular portion of the expansion cone launcher.


According to another aspect of the present invention, a method of plastically deforming and radially expanding a tubular member is provided that includes providing a lipped portion in a portion of the tubular member, and plastically deforming and radially expanding another portion of the tubular member.


According to another aspect of the present invention, a method of coupling a first tubular member to a second tubular member is provided that includes providing a lipped portion in a portion of the first tubular member, plastically deforming and radially expanding another portion of the first tubular member, positioning the second tubular member inside the first tubular member in overlapping relation to the lipped portion of the first tubular member, and plastically deforming and radially expanding the second tubular member. The inside diameters of the first and second tubular members after the plastic deformations and radial expansions are substantially equal.


According to another aspect of the present invention, an apparatus for coupling a first tubular member to a second tubular member is provided that includes means for providing a lipped in the first tubular member, means for plastically deforming and radially expanding another portion of the first tubular member, means for positioning the second tubular member inside the first tubular member in overlapping relation to the lipped portion of the first tubular member, and means for plastically deforming and radially expanding the second tubular member. The inside diameters of the first and second tubular members after the plastic deformations and radial expansions are substantially equal.


According to another aspect of the present invention, an apparatus for forming a wellbore casing within a wellbore is provided that includes means for supporting a tubular member within the wellbore, means for providing a lipped portion in the tubular member, and means for plastically deforming and radially expanding another portion of the tubular member to a second outside diameter.


According to another aspect of the present invention, an apparatus for forming a wellbore casing within a wellbore is provided that includes a tubular support member including a first fluid passage, an expansion cone coupled to the tubular support member having a second fluid passage fluidicly coupled to the first fluid passage and an outer conical surface, an annular expansion cone launcher including: a first annular portion coupled to a lower portion of the tubular member, a second annular portion coupled to the first annular portion that mates with the outer conical surface of the expansion cone, a third annular portion coupled to the second annular portion having a first outside diameter, and a fourth annular portion coupled to the third annular portion having a second outside diameter, wherein the second outside diameter is less than the first outside diameter, and a shoe having a valveable passage coupled to fourth annular portion of the expansion cone launcher.


According to another aspect of the present invention, a method of forming a wellbore casing in a wellbore is provided that includes supporting a tubular member within the wellbore, providing a lipped portion in a portion of the tubular member, and plastically deforming and radially expanding another portion of the tubular member.


According to another aspect of the present invention, a method of forming a mono-diameter wellbore casing within a wellbore is provided that includes supporting a first tubular member within the wellbore, providing a lipped portion in a portion of the first tubular member, plastically deforming and radially expanding another portion of the first tubular member, positioning the second tubular member inside the first tubular member in overlapping relation to the lipped portion of the first tubular member, and plastically deforming and radially expanding the second tubular member. The inside diameters of the first and second tubular members after the plastic deformations and radial expansions are substantially equal.


According to another aspect of the present invention, an apparatus for forming a mono-diameter wellbore casing within a wellbore is provided that includes means for providing a lipped in the first tubular member, means for plastically deforming and radially expanding another portion of the first tubular member, means for positioning the second tubular member inside the first tubular member in overlapping relation to the lipped portion of the first tubular member, and means for plastically deforming and radially expanding the second tubular member. The inside diameters of the first and second tubular members after the plastic deformations and radial expansions are substantially equal.


According to another aspect of the present invention, an apparatus for plastically deforming and radially expanding a tubular member is provided that includes means for plastically deforming and radially expanding a first end of the tubular member, and means for plastically deforming and radially expanding a second end of the tubular member.


According to another aspect of the present invention, an apparatus for plastically deforming and radially expanding a tubular member is provided that includes a tubular support member including a first passage, an expansion cone coupled to the tubular support having a second passage fluidicly coupled to the first passage and an outer conical surface, an annular expansion cone launcher movably coupled to outer conical surface of the expansion cone, an expandable tubular member coupled to an end of the annular expansion cone launcher, a shoe coupled to another end of the annular expansion cone launcher having a valveable fluid passage, and another annular expansion cone movably coupled to the tubular support member. The annular expansion cones are positioned in opposite orientations.


According to another aspect of the present invention, a method of plastically deforming and radially expanding a tubular member is provided that includes plastically deforming and radially expanding a first end of the tubular member, and plastically deforming and radially expanding a second end of the tubular member.


According to another aspect of the present invention, a method of coupling a first tubular member to a second tubular member is provided that includes positioning the second tubular member inside the first tubular member in an overlapping relationship, plastically deforming and radially expanding the end of the second tubular member that overlaps with the first tubular member, and plastically deforming and radially expanding the remaining portion of the second tubular member.


According to another aspect of the present invention, an apparatus for coupling a first tubular member to a second tubular member is provided that includes means for positioning the second tubular member inside the first tubular member in an overlapping relationship, means for plastically deforming and radially expanding the end of the second tubular member that overlaps with the first tubular member, and means for plastically deforming and radially expanding the remaining portion of the second tubular member.


According to another aspect of the present invention, an apparatus for forming a wellbore casing within a wellbore is provided that includes means for supporting a tubular member within the wellbore, means for plastically deforming and radially expanding a first end of the tubular member, and means for plastically deforming and radially expanding a second end of the tubular member.


According to another aspect of the present invention, an apparatus for forming a wellbore casing within a wellbore is provided that includes a tubular support member including a first passage, an expansion cone coupled to the tubular support having a second passage fluidicly coupled to the first passage and an outer conical surface, an annular expansion cone launcher movably coupled to outer conical surface of the expansion cone, an expandable tubular member coupled to an end of the annular expansion cone launcher, a shoe coupled to another end of the annular expansion cone launcher having a valveable fluid passage, and another annular expansion cone movably coupled to the tubular support member. The annular expansion cones are positioned in opposite orientations.


According to another aspect of the present invention, a method of forming a wellbore casing within a wellbore is provided that includes plastically deforming and radially expanding a first end of the tubular member, and plastically deforming and radially expanding a second end of the tubular member.


According to another aspect of the present invention, a method of forming a wellbore casing within a wellbore is provided that includes plastically deforming and radially expanding a first tubular member within the wellbore, positioning a second tubular member inside the first tubular member in an overlapping relationship, plastically deforming and radially expanding the end of the second tubular member that overlaps with the first tubular member, and plastically deforming and radially expanding the remaining portion of the second tubular member.


According to another aspect of the present invention, an apparatus for forming a wellbore casing within a wellbore is provided that includes means for plastically deforming and radially expanding a first tubular member within the wellbore, means for positioning the second tubular member inside the first tubular member in an overlapping relationship, means for plastically deforming and radially expanding the end of the second tubular member that overlaps with the first tubular member, and means for plastically deforming and radially expanding the remaining portion of the second tubular member.


According to another aspect of the present invention, an apparatus for bridging an axial gap between opposing pairs of wellbore casing within a wellbore is provided that includes means for supporting a tubular member in overlapping relation to the opposing ends of the wellbore casings, means for plastically deforming and radially expanding the tubular member, and


means for plastically deforming and radially expanding the tubular member and the opposing ends of the wellbore casings.


According to another aspect of the present invention, a method of bridging an axial gap between opposing pairs of wellbore casing within a wellbore is provided that includes supporting a tubular member in overlapping relation to the opposing ends of the wellbore casings, plastically deforming and radially expanding the tubular member, and plastically deforming and radially expanding the tubular member and the opposing ends of the wellbore casings.


According to another aspect of the present invention, a method of forming a structure having desired strength characteristics is provided that includes providing a first tubular member, and plastically deforming and radially expanding additional tubular members onto the interior surface of the first tubular member until the desired strength characteristics are achieved.


According to another aspect of the present invention, a method of forming a wellbore casing within a wellbore having desired strength characteristics is provided that includes plastically deforming and radially expanding a first tubular member within the wellbore, and plastically deforming and radially expanding additional tubular members onto the interior surface of the first tubular member until the desired strength characteristics are achieved.


According to another aspect of the present invention, a method of coupling a first tubular member to a second tubular member, the first tubular member having an original outside diameter OD0 and an original wall thickness t0, is provided that includes plastically deforming and radially expanding a first portion of the first tubular member to a first outside diameter, plastically deforming and radially expanding another portion of the first tubular member to a second outside diameter, positioning the second tubular member inside the first tubular member in overlapping relation to the first portion of the first tubular member, plastically deforming and radially expanding the second tubular member to a third outside diameter, and plastically deforming and radially expanding the second tubular member to a fourth outside diameter. The inside diameters of the first and second tubular members after the plastic deformations and radial expansions are substantially equal, and the ratio of the original outside diameter OD0 of the first tubular member to the original wall thickness t0 of the first tubular member is greater than or equal to 16.


According to another aspect of the present invention, a method of forming a mono-diameter wellbore casing is provided that includes positioning a first tubular member within a wellbore, the first tubular member having an original outside diameter OD0 and an original wall thickness t0, plastically deforming and radially expanding a first portion of the first tubular member to a first outside diameter, plastically deforming and radially expanding another portion of the first tubular member to a second outside diameter, positioning the second tubular member inside the first tubular member in overlapping relation to the first portion of the first tubular member, plastically deforming and radially expanding the second tubular member to a third outside diameter, and plastically deforming and radially expanding the second tubular member to a fourth outside diameter. The inside diameters of the first and second tubular members after the plastic deformations and radial expansions are substantially equal, and the ratio of the original outside diameter OD0 of the first tubular member to the original wall thickness t0 of the first tubular member is greater than or equal to 16.


According to another aspect of the present invention, an apparatus is provided that includes a plastically deformed and radially expanded tubular member having a first portion having a first outside diameter and a remaining portion having a second outside diameter. The ratio of the original outside diameter OD0 of the first tubular member to the original wall thickness t0 of the first tubular member is greater than or equal to 16.


According to another aspect of the present invention, an apparatus is provided that includes a plastically deformed and radially expanded first tubular member having a first portion having a first outside diameter and a remaining portion having a second outside diameter, and a plastically deformed and radially expanded second tubular member coupled to the first portion of the first tubular member. The ratio of the original outside diameter OD0 of the first tubular member to the original wall thickness t0 of the first tubular member is greater than or equal to 16.


According to another aspect of the present invention, a wellbore casing formed in a wellbore is provided that includes a plastically deformed and radially expanded first tubular member having a first portion having a first outside diameter and a remaining portion having a second outside diameter, and a plastically deformed and radially expanded second tubular member coupled to the first portion of the first tubular member. The ratio of the original outside diameter OD0 of the first tubular member to the original wall thickness t0 of the first tubular member is greater than or equal to 16.


According to another aspect of the present invention, an apparatus is provided that includes a plastically deformed and radially expanded tubular member. The ratio of the original outside diameter OD0 of the tubular member to the original wall thickness t0 of the tubular member is greater than or equal to 16.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1
a is a cross sectional illustration of a wellbore including a preexisting wellbore casing.



FIG. 1
b is a cross-sectional illustration of the placement of an embodiment of an apparatus for radially expanding a tubular member into the wellbore of FIG. 1a.



FIG. 1
c is a cross-sectional illustration of the injection of fluidic materials through the apparatus of FIG. 1b.



FIG. 1
d is a cross-sectional illustration of the injection of hardenable fluidic sealing materials through the apparatus of FIG. 1c.



FIG. 1
e is a cross-sectional illustration of the pressurization of the region below the expansion cone of the apparatus of FIG. 1d.



FIG. 1
f is a cross-sectional illustration of the continued pressurization of the region below the expansion cone of the apparatus of FIG. 1e.



FIG. 1
g is a cross-sectional illustration of the continued pressurization of the region below the expansion cone of the apparatus of FIG. 1f following the removal of the over-expansion sleeve.



FIG. 1
h is a cross-sectional illustration of the completion of the radial expansion of the expandable tubular member of the apparatus of FIG. 1g.



FIG. 1
i is a cross-sectional illustration of the drilling out of a new section of the wellbore below the apparatus of FIG. 1h.



FIG. 1
j is a cross-sectional illustration of the radial expansion of another expandable tubular member that overlaps with the apparatus of FIG. 1i.



FIG. 1
k is a cross-sectional illustration of the secondary radial expansion of the other expandable tubular member of the apparatus of FIG. 1l.



FIG. 1
l is a cross-sectional illustration of the completion of the secondary radial expansion of the other expandable tubular member of FIG. 1k to form a mono-diameter wellbore casing.



FIG. 2
a is a cross sectional illustration of a wellbore including a preexisting wellbore casing.



FIG. 2
b is a cross-sectional illustration of the placement of an embodiment of an apparatus for radially expanding a tubular member into the wellbore of FIG. 2a.



FIG. 2
c is a cross-sectional illustration of the injection of fluidic materials through the apparatus of FIG. 2b.



FIG. 2
d is a cross-sectional illustration of the injection of hardenable fluidic sealing materials through the apparatus of FIG. 2c.



FIG. 2
e is a cross-sectional illustration of the pressurization of the region below the expansion cone of the apparatus of FIG. 2d.



FIG. 2
f is a cross-sectional illustration of the continued pressurization of the region below the expansion cone of the apparatus of FIG. 2e.



FIG. 2
g is a cross-sectional illustration of the completion of the radial expansion of the expandable tubular member of the apparatus of FIG. 2f.



FIG. 2
h is a cross-sectional illustration of the drilling out of a new section of the wellbore below the apparatus of FIG. 2g.



FIG. 2
i is a cross-sectional illustration of the radial expansion of another expandable tubular member that overlaps with the apparatus of FIG. 2h.



FIG. 2
j is a cross-sectional illustration of the secondary radial expansion of the other expandable tubular member of the apparatus of FIG. 2i.



FIG. 2
k is a cross-sectional illustration of the completion of the secondary radial expansion of the other expandable tubular member of FIG. 2j to form a mono-diameter wellbore casing.



FIG. 3 is a cross-sectional illustration of the apparatus of FIG. 2b illustrating the design and construction of the over-expansion insert.



FIG. 3
a is a cross-sectional illustration of an alternative embodiment of the over-expansion insert of FIG. 3.



FIG. 4 is a cross-sectional illustration of an alternative embodiment of the apparatus of FIG. 2b including a resilient hook for retrieving the over-expansion insert.



FIG. 5
a is a cross-sectional illustration of a wellbore including a preexisting wellbore casing.



FIG. 5
b is a cross-sectional illustration of the formation of a new section of wellbore casing in the wellbore of FIG. 5a.



FIG. 5
c is a fragmentary cross-sectional illustration of the placement of an inflatable bladder into the new section of the wellbore casing of FIG. 5b.



FIG. 5
d is a fragmentary cross-sectional illustration of the inflation of the inflatable bladder of FIG. 5c.



FIG. 5
e is a cross-sectional illustration of the new section of wellbore casing of FIG. 5d after over-expansion.



FIG. 5
f is a cross-sectional illustration of the new section of wellbore casing of FIG. 5e after drilling out a new section of the wellbore.



FIG. 5
g is a cross-sectional illustration of the formation of a mono-diameter wellbore casing that includes the new section of the wellbore casing and an additional section of wellbore casing.



FIG. 6
a is a cross-sectional illustration of a wellbore including a preexisting wellbore casing.



FIG. 6
b is a cross-sectional illustration of the formation of a new section of wellbore casing in the wellbore of FIG. 6a.



FIG. 6
c is a fragmentary cross-sectional illustration of the placement of a roller radial expansion device into the new section of the wellbore casing of FIG. 6b.



FIG. 6
d is a cross-sectional illustration of the new section of wellbore casing of FIG. 6c after over-expansion.



FIG. 6
e is a cross-sectional illustration of the new section of wellbore casing of FIG. 6d after drilling out a new section of the wellbore.



FIG. 6
f is a cross-sectional illustration of the formation of a mono-diameter wellbore casing that includes the new section of the wellbore casing and an additional section of wellbore casing.



FIG. 7
a is a cross sectional illustration of a wellbore including a preexisting wellbore casing.



FIG. 7
b is a cross-sectional illustration of the placement of an embodiment of an apparatus for radially expanding a tubular member into the wellbore of FIG. 7a.



FIG. 7
c is a cross-sectional illustration of the injection of fluidic materials through the apparatus of FIG. 7b.



FIG. 7
d is a cross-sectional illustration of the injection of hardenable fluidic sealing materials through the apparatus of FIG. 7c.



FIG. 7
e is a cross-sectional illustration of the pressurization of the region below the expansion cone of the apparatus of FIG. 7d.



FIG. 7
f is a cross-sectional illustration of the continued pressurization of the region below the expansion cone of the apparatus of FIG. 7e.



FIG. 7
g is a cross-sectional illustration of the completion of the radial expansion of the expandable tubular member of the apparatus of FIG. 7f.



FIG. 7
h is a cross-sectional illustration of the drilling out of a new section of the wellbore below the apparatus of FIG. 7g.



FIG. 7
i is a cross-sectional illustration of the completion of the radial expansion of another expandable tubular member to form a mono-diameter wellbore casing.



FIG. 8
a is cross-sectional illustration of an wellbore including a preexisting section of wellbore casing having a recessed portion.



FIG. 8
b is a cross-sectional illustration of the placement of an apparatus for radially expanding a tubular member within the wellbore of FIG. 8a.



FIG. 8
c is a cross-sectional illustration of the injection of fluidic materials through the apparatus of FIG. 8b.



FIG. 8
d is a cross-sectional illustration of the injection of a hardenable fluidic sealing material through the apparatus of FIG. 8c.



FIG. 8
e is cross-sectional illustration of the isolation of the region below the expansion cone and within the expansion cone launcher of the apparatus of FIG. 8d.



FIG. 8
f is a cross-sectional illustration of the plastic deformation and radial expansion of the upper portion of the expandable tubular member of the apparatus of FIG. 8e.



FIG. 8
g is a cross-sectional illustration of the removal of the upper expansion cone from the wellbore of FIG. 8f.



FIG. 8
h is a cross-sectional illustration of the continued pressurization of the region below the expansion cone of the apparatus of FIG. 8g to thereby plastically deform and radially expand the expansion cone launcher and expandable tubular member.



FIG. 8
i is a cross-sectional illustration of the completion of the initial radial expansion process of the apparatus of FIG. 8h.



FIG. 8
j is a cross-sectional illustration of the further radial expansion of the apparatus of FIG. 8i in order to form a mono-diameter wellbore casing.



FIG. 9
a is a cross-sectional illustration of a wellbore including upper and lower preexisting wellbore casings that are separated by an axial gap.



FIG. 9
b is a cross-sectional illustration of the coupling of a tubular member to the opposing ends of the wellbore casings of FIG. 9a.



FIG. 9
c is a fragmentary cross-sectional illustration of the placement of a radial expansion device into the tubular member of FIG. 9b.



FIG. 9
d is a fragmentary cross-sectional illustration of the actuation of the radial expansion device of FIG. 9c.



FIG. 9
e is a cross-sectional of a mono-diameter wellbore casing generated by the actuation of the radial expansion device of FIG. 9d.



FIG. 10 is a cross-sectional illustration of a mono-diameter wellbore casing that includes a plurality of layers of radially expanded tubular members along at least a portion of the its length.



FIG. 11
a is a cross-sectional illustration of a wellbore including a casing formed by plastically deforming and radially expanding a first tubular member.



FIG. 11
b is a cross-sectional illustration of a wellbore including another casing coupled to the preexisting casing by plastically deforming and radially expanding a second tubular member.



FIG. 11
c is a cross-sectional illustration of a mono-diameter wellbore casing formed by radially expanding the second tubular member a second time.





DETAILED DESCRIPTION

Several embodiments of methods and apparatus for forming a mono-diameter wellbore casing are disclosed. In several alternative embodiments, the methods and apparatus may be used for form or repair mono-diameter wellbore casings, pipelines, or structural supports. Furthermore, while the present illustrative embodiments are described with reference to the formation of mono-diameter wellbore casings, the teachings of the present disclosure have general application to the formation or repair of wellbore casings, pipelines, and structural supports.


Referring initially to FIG. 1a, a wellbore 10 includes a preexisting wellbore casing 15. The wellbore 10 may be oriented in any orientation from the vertical to the horizontal. The preexisting wellbore casing 15 may be coupled to the upper portion of the wellbore 10 using any number of conventional methods. In a preferred embodiment, the wellbore casing 15 is coupled to the upper portion of the wellbore 10 using one or more of the methods and apparatus disclosed in one or more of the following: (1) U.S. patent application Ser. No. 09/454,139, filed on Dec. 3, 1999, (2) U.S. patent application Ser. No. 09/510,913, filed on Feb. 23, 2000, (3) U.S. patent application Ser. No. 09/502,350, filed on Feb. 10, 2000, (4) U.S. patent application Ser. No. 09/440,338, filed on Nov. 15, 1999, (5) U.S. patent application Ser. No. 09/523,460, filed on Mar. 10, 2000, (6) U.S. patent application Ser. No. 09/512,895, filed on Feb. 24, 2000, (7) U.S. patent application Ser. No. 09/511,941, filed on Feb. 24, 2000, (8) U.S. patent application Ser. No. 09/588,946, filed on Jun. 7, 2000, (9) U.S. patent application Ser. No. 09/559,122, filed on Apr. 26, 2000, (10) PCT patent application serial no. PCT/US00/18635, filed on Jul. 9, 2000, (11) U.S. provisional patent application Ser. No. 60/162,671, filed on Nov. 1, 1999, (12) U.S. provisional patent application Ser. No. 60/154,047, filed on Sep. 16, 1999, (13) U.S. provisional patent application Ser. No. 60/159,082, filed on Oct. 12, 1999, (14) U.S. provisional patent application Ser. No. 60/159,039, filed on Oct. 12, 1999, (15) U.S. provisional patent application Ser. No. 60/159,033, filed on Oct. 12, 1999, (16) U.S. provisional patent application Ser. No. 60/212,359, filed on Jun. 19, 2000, (17) U.S. provisional patent application Ser. No. 60/165,228, filed on Nov. 12, 1999, (18) U.S. provisional patent application Ser. No. 60/221,443, filed on Jul. 28, 2000, (19) U.S. provisional patent application Ser. No. 60/221,645, filed on Jul. 28, 2000, and (20) U.S. provisional patent application Ser. No. 60/233,638, filed on Sep. 18, 2000, the disclosures of which are incorporated herein by reference. More generally, the preexisting wellbore casing 15 may be coupled to another preexisting wellbore casing and/or may include one or more concentrically positioned tubular members.


Referring to FIG. 1b, an apparatus 100 for radially expanding a tubular member may then be positioned within the wellbore 10. The apparatus 100 includes a tubular support member 105 defining a passage 110 for conveying fluidic materials. An expansion cone 115 defining a passage 120 and having an outer conical surface 125 for radially expanding tubular members is coupled to an end of the tubular support member 105. An annular conical over-expansion sleeve 130 mates with and is removably coupled to the outer conical surface 125 of the expansion cone 115. In several alternative embodiments, the over-expansion sleeve 130 is fabricated from frangible materials such as, for example, ceramic materials, in order to facilitate the removal of the over-expansion sleeve during operation of the apparatus 100. In this manner, the amount of radial expansion provided by the apparatus may be decreased following the removal of the over-expansion sleeve 130.


An expansion cone launcher 135 is movably coupled to and supported by the expansion cone 115 and the over-expansion sleeve 130. The expansion cone launcher 135 include an upper portion having an upper outer diameter, an intermediate portion that mates with the expansion cone 115 and the over-expansion sleeve 130, an a lower portion having a lower outer diameter. The lower outer diameter is greater than the upper outer diameter. A shoe 140 defining a valveable passage 145 is coupled to the lower portion of the expansion cone launcher 135. In a preferred embodiment, the valveable passage 145 may be controllably closed in order to fluidicly isolate a region 150 below the expansion cone 115 and bounded by the lower portion of the expansion cone launcher 135 and the shoe 140 from the region outside of the apparatus 100.


An expandable tubular member 155 is coupled to the upper portion of the expansion cone launcher 135. One or more sealing members 160a and 160b are coupled to the exterior of the upper portion of the expandable tubular member 155. In several alternative embodiments, the sealing members 160a and 160b may include elastomeric elements and/or metallic elements and/or composite elements. In several alternative embodiments, one or more anchoring elements may substituted for, or used in addition to, the sealing members 160a and 160b.


In a preferred embodiment, the support member 105, the expansion cone 115, the expansion cone launcher 135, the shoe 140, and the expandable tubular member 155 are provided substantially as disclosed in one or more of the following: (1) U.S. patent application Ser. No. 09/454,139, filed on Dec. 3, 1999, (2) U.S. patent application Ser. No. 09/510,913, filed on Feb. 23, 2000, (3) U.S. patent application Ser. No. 09/502,350, filed on Feb. 10, 2000, (4) U.S. patent application Ser. No. 09/440,338, filed on Nov. 15, 1999, (5) U.S. patent application Ser. No. 09/523,460, filed on Mar. 10, 2000, (6) U.S. patent application Ser. No. 09/512,895, filed on Feb. 24, 2000, (7) U.S. patent application Ser. No. 09/511,941, filed on Feb. 24, 2000, (8) U.S. patent application Ser. No. 09/588,946, filed on Jun. 7, 2000, (9) U.S. patent application Ser. No. 09/559,122, filed on Apr. 26, 2000, (10) PCT patent application serial no. PCT/US00/18635, filed on Jul. 9, 2000, (11) U.S. provisional patent application Ser. No. 60/162,671, filed on Nov. 1, 1999, (12) U.S. provisional patent application Ser. No. 60/154,047, filed on Sep. 16, 1999, (13) U.S. provisional patent application Ser. No. 60/159,082, filed on Oct. 12, 1999, (14) U.S. provisional patent application Ser. No. 60/159,039, filed on Oct. 12, 1999, (15) U.S. provisional patent application Ser. No. 60/159,033, filed on Oct. 12, 1999, (16) U.S. provisional patent application Ser. No. 60/212,359, filed on Jun. 19, 2000, (17) U.S. provisional patent application Ser. No. 60/165,228, filed on Nov. 12, 1999, (18) U.S. provisional patent application Ser. No. 60/221,443, filed on Jul. 28, 2000, (19) U.S. provisional patent application Ser. No. 60/221,645, filed on Jul. 28, 2000, and (20) U.S. provisional patent application Ser. No. 60/233,638, filed on Sep. 18, 2000, the disclosures of which are incorporated herein by reference.


As illustrated in FIG. 1b, in a preferred embodiment, during placement of the apparatus 100 within the wellbore 10, fluidic materials 165 within the wellbore 10 are conveyed through the apparatus 100 through the passages 110, 120 and 145 to a location above the apparatus 100. In this manner, surge pressures during placement of the apparatus 100 within the wellbore 10 are reduced. In a preferred embodiment, the apparatus 100 is initially positioned within the wellbore 10 such that the top portion of the tubular member 155 overlaps with the preexisting casing 15. In this manner, the upper portion of the expandable tubular member 155 may be radially expanded into contact with and coupled to the preexisting casing 15. As will be recognized by persons having ordinary skill in the art, the precise initial position of the expandable tubular member 155 will vary as a function of the amount of radial expansion, the amount of axial shrinkage during radial expansion, and the material properties of the expandable tubular member.


As illustrated in FIG. 1c, a fluidic material 170 may then be injected through the apparatus 100 through the passages 110, 120, and 145 in order to test the proper operation of these passages.


As illustrated in FIG. 1d, a hardenable fluidic sealing material 175 may then be injected through the apparatus 100 through the passages 110, 120 and 145 into the annulus between the apparatus and the wellbore 10. In this manner, an annular barrier to fluid migration into and out of the wellbore 10 may be formed around the radially expanded expansion cone launcher 135 and expandable tubular member 155. The hardenable fluidic sealing material may include, for example, a cement mixture. In several alternative embodiments, the injection of the hardenable fluidic sealing material 175 may be omitted. In several alternative embodiments, the hardenable fluidic sealing material 175 is compressible, before, during and/or after, the curing process.


As illustrated in FIG. 1e, a non-hardenable fluidic material 180 may then be injected into the apparatus through the passages 110 and 120. A ball plug 185, or other similar device, may then be injected with the fluidic material 180 to thereby seal off the passage 145. In this manner, the region 150 may be pressurized by the continued injection of the fluidic material 180 into the apparatus 100.


As illustrated in FIG. 1f, the continued injection of the fluidic material 180 into the apparatus 100 causes the expansion cone launcher 135 and expandable tubular member 155 to be plastically deformed and radially expanded off of the over-expansion sleeve 130. In this manner, the expansion cone 115 and over-expansion sleeve 130 are displaced relative to the expansion cone launcher 135 and expandable tubular member 155 in the axial direction.


After a predetermined time period and/or after a predetermined axial displacement of the expansion cone 115 relative to the expansion cone launcher 135 and expandable tubular member 155, the over-expansion sleeve 130 may be removed from the outer conical surface 125 of the expansion cone 115 by the application of a predetermined upward shock load to the support member 105. In a preferred embodiment, the shock load causes the frangible over-expansion sleeve 130 to fracture into small pieces that are then forced off of the outer conical surface 125 of the expansion cone 115 by the continued pressurization of the region 150. In a preferred embodiment, the pieces of the over-expansion sleeve 130 are pulverized into grains of material by the continued pressurization of the region 150.


Referring to FIG. 1g, following the removal of the frangible over-expansion sleeve 130, the continued pressurization of the region 150 causes the expandable tubular member 155 to be plastically deformed and radially expanded and extruded off of the outer conical surface 125 of the expansion cone 115. Note that the amount of radial expansion provided by the outer conical surface 125 of expansion cone 115 is less than the amount of radial expansion provided by the combination of the over-expansion sleeve 130 and the expansion cone 115. In this manner, as illustrated in FIG. 1h, recess 186 is formed in the radially expanded tubular member 155.


After completing the plastic deformation and radial expansion of the tubular member 155, the hardenable fluidic sealing material is allowed to cure to thereby form an annular body 190 that provides a barrier to fluid flow into or out of the wellbore 10.


Referring to FIG. 1i, the shoe 140 may then removed by drilling out the shoe using a conventional drilling device. A new section of the wellbore 10 may also be drilled out in order to permit additional expandable tubular members to be coupled to the bottom portion of the plastically deformed and radially expanded tubular member 155.


Referring to FIG. 1j, a tubular member 200 may then be plastically deformed and radially expanded using any number of conventional methods of radially expanding a tubular member. In a preferred embodiment, the upper portion of the radially expanded tubular member 200 overlaps with and mates with the recessed portion 186 of the tubular member 155. In a preferred embodiment, one or more sealing members 205 are coupled to the exterior surface of the upper portion of the tubular member 200. In a preferred embodiment, the sealing members 205 seal the interface between the upper portion of the tubular member 200 and the recessed portion 186 of the tubular member 155. In several alternative embodiments, the sealing members 205 may include elastomeric elements and/or metallic elements and/or composite elements. In several alternative embodiments, one or more anchoring elements may substituted for, or used in addition to, the sealing members 205. In a preferred embodiment, an annular body 210 of a hardenable fluidic sealing material is also formed around the tubular member 200 using one or more conventional methods.


In a preferred embodiment, the tubular member 200 is plastically deformed and radially expanded, and the annular body 210 is formed using one or more of the apparatus and methods disclosed in the following: (1) U.S. patent application Ser. No. 09/454,139, filed on Dec. 3, 1999, (2) U.S. patent application Ser. No. 09/510,913, filed on Feb. 23, 2000, (3) U.S. patent application Ser. No. 09/502,350, filed on Feb. 10, 2000, (4) U.S. patent application Ser. No. 09/440,338, filed on Nov. 15, 1999, (5) U.S. patent application Ser. No. 09/523,460, filed on Mar. 10, 2000, (6) U.S. patent application Ser. No. 09/512,895, filed on Feb. 24, 2000, (7) U.S. patent application Ser. No. 09/511,941, filed on Feb. 24, 2000, (8) U.S. patent application Ser. No. 09/588,946, filed on Jun. 7, 2000, (9) U.S. patent application Ser. No. 09/559,122, filed on Apr. 26, 2000, (10) PCT patent application serial no. PCT/US00/18635, filed on Jul. 9, 2000, (11) U.S. provisional patent application Ser. No. 60/162,671, filed on Nov. 1, 1999, (12) U.S. provisional patent application Ser. No. 60/154,047, filed on Sep. 16, 1999, (13) U.S. provisional patent application Ser. No. 60/159,082, filed on Oct. 12, 1999, (14) U.S. provisional patent application Ser. No. 60/159,039, filed on Oct. 12, 1999, (15) U.S. provisional patent application Ser. No. 60/159,033, filed on Oct. 12, 1999, (16) U.S. provisional patent application Ser. No. 60/212,359, filed on Jun. 19, 2000, (17) U.S. provisional patent application Ser. No. 60/165,228, filed on Nov. 12, 1999, (18) U.S. provisional patent application Ser. No. 60/221,443, filed on Jul. 28, 2000, (19) U.S. provisional patent application Ser. No. 60/221,645, filed on Jul. 28, 2000, and (20) U.S. provisional patent application Ser. No. 60/233,638, filed on Sep. 18, 2000, the disclosures of which are incorporated herein by reference.


In an alternative embodiment, the annular body 210 may be omitted. In several alternative embodiments, the annular body 210 may be radially compressed before, during and/or after curing.


Referring to FIG. 1k, an expansion cone 215 may then be driven in a downward direction by fluid pressure and/or by a support member 220 to plastically deform and radially expand the tubular member 200 such that the interior diameter of the tubular members 155 and 200 are substantially equal. In this manner, as illustrated in FIG. 1l, a mono-diameter wellbore casing may be formed. In a preferred embodiment, during the displacement of the expansion cone 215 in the downward direction, fluidic materials displaced by the expansion cone are conveyed out of the wellbore by an internal passage 220a defined within the support member 220.


Referring to FIGS. 2a and 2b, in an alternative embodiment, an apparatus 300 for radially expanding a tubular member may then be positioned within the wellbore 10. The apparatus 300 includes a tubular support member 305 defining a passage 310 for conveying fluidic materials. An expansion cone 315 defining a passage 320 and having an outer conical surface 325 for radially expanding tubular members is coupled to an end of the tubular support member 305. An annular conical over-expansion insert 330 mates with and is removably coupled to the outer conical surface 325 of the expansion cone 315.


An expansion cone launcher 335 is movably coupled to and supported by the expansion cone 315 and the over-expansion insert 330. The expansion cone launcher 335 includes an upper portion having an upper outer diameter, an intermediate portion that mates with the expansion cone 315 and the over-expansion insert 330, an a lower portion having a lower outer diameter. The lower outer diameter is greater than the upper outer diameter. A shoe 340 defining a valveable passage 345 is coupled to the lower portion of the expansion cone launcher 335. In a preferred embodiment, the valveable passage 345 may be controllably closed in order to fluidicly isolate a region 350 below the expansion cone 315 and bounded by the lower portion of the expansion cone launcher 335 and the shoe 340 from the region outside of the apparatus 300.


In a preferred embodiment, as illustrated in FIG. 3, the over-expansion insert 330 includes a plurality of spaced-apart arcuate inserts 330a, 330b, 330c and 330d that are positioned between the outer conical surface 325 of the expansion cone 315 and the inner surface of the intermediate portion of the expansion cone launcher 335. In this manner, the relative axial displacement of the expansion cone 315 and the expansion cone launcher 335 will cause the expansion cone to over-expand the intermediate portion of the expansion cone launcher. In this manner, a recess may be formed in the radially expanded expansion cone launcher 335. In several alternative embodiments, the inserts 330a, 330b, 330c, and 330d fall out of the recess and/or are removed from the recess using a conventional retrieval tool upon the completion of the radial expansion process.


In an alternative embodiment, as illustrated in FIG. 3a, the over expansion insert 330 further includes intermediate resilient members 331a, 331b, 331c, and 331d for resiliently coupling the inserts 330a, 330b, 330c, and 330d. In this manner, upon the completion of the radial expansion process, the resilient force exerted by the resilient members 331 causes the over-expansion insert to collapse in the radial direction and thereby fall out of the recess.


An expandable tubular member 355 is coupled to the upper portion of the expansion cone launcher 335. One or more sealing members 360a and 360b are coupled to the exterior of the upper portion of the expandable tubular member 355. In several alternative embodiments, the sealing members 360a and 360b may include elastomeric elements and/or metallic elements and/or composite elements. In several alternative embodiments, one or more anchoring elements may substituted for, or used in addition to, the sealing members 360a and 360b.


In a preferred embodiment, the support member 305, the expansion cone 315, the expansion cone launcher 335, the shoe 340, and the expandable tubular member 355 are provided substantially as disclosed in one or more of the following: (1) U.S. patent application Ser. No. 09/454,139, filed on Dec. 3, 1999, (2) U.S. patent application Ser. No. 09/510,913, filed on Feb. 23, 2000, (3) U.S. patent application Ser. No. 09/502,350, filed on Feb. 10, 2000, (4) U.S. patent application Ser. No. 09/440,338, filed on Nov. 15, 1999, (5) U.S. patent application Ser. No. 09/523,460, filed on Mar. 10, 2000, (6) U.S. patent application Ser. No. 09/512,895, filed on Feb. 24, 2000, (7) U.S. patent application Ser. No. 09/511,941, filed on Feb. 24, 2000, (8) U.S. patent application Ser. No. 09/588,946, filed on Jun. 7, 2000, (9) U.S. patent application Ser. No. 09/559,122, filed on Apr. 26, 2000, (10) PCT patent application serial no. PCT/US00/18635, filed on Jul. 9, 2000, (11) U.S. provisional patent application Ser. No. 60/162,671, filed on Nov. 1, 1999, (12) U.S. provisional patent application Ser. No. 60/154,047, filed on Sep. 16, 1999, (13) U.S. provisional patent application Ser. No. 60/159,082, filed on Oct. 12, 1999, (14) U.S. provisional patent application Ser. No. 60/159,039, filed on Oct. 12, 1999, (15) U.S. provisional patent application Ser. No. 60/159,033, filed on Oct. 12, 1999, (16) U.S. provisional patent application Ser. No. 60/212,359, filed on Jun. 19, 2000, (17) U.S. provisional patent application Ser. No. 60/165,228, filed on Nov. 12, 1999, (18) U.S. provisional patent application Ser. No. 60/221,443, filed on Jul. 28, 2000, (19) U.S. provisional patent application Ser. No. 60/221,645, filed on Jul. 28, 2000, and (20) U.S. provisional patent application Ser. No. 60/233,638, filed on Sep. 18, 2000, the disclosures of which are incorporated herein by reference.


As illustrated in FIG. 2b, in a preferred embodiment, during placement of the apparatus 300 within the wellbore 10, fluidic materials 365 within the wellbore 10 are conveyed through the apparatus 300 through the passages 310, 320 and 345 to a location above the apparatus 300. In this manner, surge pressures during placement of the apparatus 300 within the wellbore 10 are reduced. In a preferred embodiment, the apparatus 300 is initially positioned within the wellbore 10 such that the top portion of the tubular member 355 overlaps with the preexisting casing 15. In this manner, the upper portion of the expandable tubular member 355 may be radially expanded into contact with and coupled to the preexisting casing 15. As will be recognized by persons having ordinary skill in the art, the precise initial position of the expandable tubular member 355 will vary as a function of the amount of radial expansion, the amount of axial shrinkage during radial expansion, and the material properties of the expandable tubular member.


As illustrated in FIG. 2c, a fluidic material 370 may then be injected through the apparatus 300 through the passages 310, 320, and 345 in order to test the proper operation of these passages.


As illustrated in FIG. 2d, a hardenable fluidic sealing material 375 may then be injected through the apparatus 300 through the passages 310, 320 and 345 into the annulus between the apparatus and the wellbore 10. In this manner, an annular barrier to fluid migration into and out of the wellbore 10 may be formed around the radially expanded expansion cone launcher 335 and expandable tubular member 355. The hardenable fluidic sealing material may include, for example, a cement mixture. In several alternative embodiments, the injection of the hardenable fluidic sealing material 375 may be omitted. In several alternative embodiments, the hardenable fluidic sealing material 375 is compressible, before, during and/or after, the curing process.


As illustrated in FIG. 2e, a non-hardenable fluidic material 380 may then be injected into the apparatus through the passages 310 and 320. A ball plug 385, or other similar device, may then be injected with the fluidic material 380 to thereby seal off the passage 345. In this manner, the region 350 may be pressurized by the continued injection of the fluidic material 380 into the apparatus 300.


As illustrated in FIG. 2f, the continued injection of the fluidic material 380 into the apparatus 300 causes the expansion cone launcher 335 to be plastically deformed and radially expanded off of the over-expansion insert 330. In this manner, the expansion cone 315 is displaced relative to the expansion cone launcher 335 and expandable tubular member 355 in the axial direction.


Once the radial expansion process has progressed beyond the over-expansion insert 330, the radial expansion of the expansion cone launcher 335 and expandable tubular member 355 is provided solely by the outer conical surface 325 of the expansion cone 315. Note that the amount of radial expansion provided by the outer conical surface 325 of expansion cone 315 is less than the amount of radial expansion provided by the combination of the over-expansion insert 330 and the expansion cone 315. In this manner, as illustrated in FIG. 2g, a recess 390 is formed in the radially expanded tubular member 355.


In several alternative embodiments, the over-expansion insert 330 is removed from the recess 390 by falling out and/or removal using a conventional retrieval tool. In an alternative embodiment, the resilient force provided by the resilient members 331a, 331b, 331c, and 331d cause the insert 330 to collapse in the radial direction and thereby fall out of the recess 390. In an alternative embodiment, as illustrated in FIG. 4, one or more resilient hooks 395a and 395b are coupled to the bottom of the expansion cone 315 for retrieving the over-expansion insert 330 during or after the completion of the radial expansion process.


After completing the plastic deformation and radial expansion of the tubular member 355, the hardenable fluidic sealing material is allowed to cure to thereby form an annular body 400 that provides a barrier to fluid flow into or out of the wellbore 10.


Referring to FIG. 2h, the shoe 340 may then removed by drilling out the shoe using a conventional drilling device. A new section of the wellbore 10 may also be drilled out in order to permit additional expandable tubular members to be coupled to the bottom portion of the plastically deformed and radially expanded tubular member 355.


Referring to FIG. 2i, a tubular member 405 may then be plastically deformed and radially expanded using any number of conventional methods of radially expanding a tubular member. In a preferred embodiment, the upper portion of the radially expanded tubular member 405 overlaps with and mates with the recessed portion 390 of the tubular member 355. In a preferred embodiment, one or more sealing members 410 are coupled to the exterior surface of the upper portion of the tubular member 405. In a preferred embodiment, the sealing members 410 seal the interface between the upper portion of the tubular member 405 and the recessed portion 390 of the tubular member 355. In several alternative embodiments, the sealing members 410 may include elastomeric elements and/or metallic elements and/or composite elements. In several alternative embodiments, one or more anchoring elements may substituted for, or used in addition to, the sealing members 410. In a preferred embodiment, an annular body 415 of a hardenable fluidic sealing material is also formed around the tubular member 405 using one or more conventional methods.


In a preferred embodiment, the tubular member 405 is plastically deformed and radially expanded, and the annular body 415 is formed using one or more of the apparatus and methods disclosed in the following: (1) U.S. patent application Ser. No. 09/454,139, filed on Dec. 3, 1999, (2) U.S. patent application Ser. No. 09/510,913, filed on Feb. 23, 2000, (3) U.S. patent application Ser. No. 09/502,350, filed on Feb. 10, 2000, (4) U.S. patent application Ser. No. 09/440,338, filed on Nov. 15, 1999, (5) U.S. patent application Ser. No. 09/523,460, filed on Mar. 10, 2000, (6) U.S. patent application Ser. No. 09/512,895, filed on Feb. 24, 2000, (7) U.S. patent application Ser. No. 09/511,941, filed on Feb. 24, 2000, (8) U.S. patent application Ser. No. 09/588,946, filed on Jun. 7, 2000, (9) U.S. patent application Ser. No. 09/559,122, filed on Apr. 26, 2000, (10) PCT patent application serial no. PCT/US00/18635, filed on Jul. 9, 2000, (11) U.S. provisional patent application Ser. No. 60/162,671, filed on Nov. 1, 1999, (12) U.S. provisional patent application Ser. No. 60/154,047, filed on Sep. 16, 1999, (13) U.S. provisional patent application Ser. No. 60/159,082, filed on Oct. 12, 1999, (14) U.S. provisional patent application Ser. No. 60/159,039, filed on Oct. 12, 1999, (15) U.S. provisional patent application Ser. No. 60/159,033, filed on Oct. 12, 1999, (16) U.S. provisional patent application Ser. No. 60/212,359, filed on Jun. 19, 2000, (17) U.S. provisional patent application Ser. No. 60/165,228, filed on Nov. 12, 1999, (18) U.S. provisional patent application Ser. No. 60/221,443, filed on Jul. 28, 2000, (19) U.S. provisional patent application Ser. No. 60/221,645, filed on Jul. 28, 2000, and (20) U.S. provisional patent application Ser. No. 60/233,638, filed on Sep. 18, 2000, the disclosures of which are incorporated herein by reference.


In an alternative embodiment, the annular body 415 may be omitted. In several alternative embodiments, the annular body 415 may be radially compressed before, during and/or after curing.


Referring to FIG. 2j, an expansion cone 420 may then be driven in a downward direction by fluid pressure and/or by a support member 425 to plastically deform and radially expand the tubular member 405 such that the interior diameter of the tubular members 355 and 405 are substantially equal. In this manner, as illustrated in FIG. 2k, a mono-diameter wellbore casing may be formed. In a preferred embodiment, during the displacement of the expansion cone 420 in the downward direction, fluidic materials displaced by the expansion cone are conveyed out of the wellbore by an internal passage 425a defined within the support member 425.


Referring to FIGS. 5a-5b, in an alternative embodiment, a tubular member 500 having a shoe 505 may be plastically deformed and radially expanded and thereby coupled to the preexisting section of wellbore casing 15 using any number of conventional methods. An annular body of a fluidic sealing material 510 may also be formed around the tubular member 500 using any number of conventional methods. In a preferred embodiment, the tubular member 500 is plastically deformed and radially expanded and the annular body 510 is formed using one or more of the methods and apparatus disclosed in one or more of the following: (1) U.S. patent application Ser. No. 09/454,139, filed on Dec. 3, 1999, (2) U.S. patent application Ser. No. 09/510,913, filed on Feb. 23, 2000, (3) U.S. patent application Ser. No. 09/502,350, filed on Feb. 10, 2000, (4) U.S. patent application Ser. No. 09/440,338, filed on Nov. 15, 1999, (5) U.S. patent application Ser. No. 09/523,460, filed on Mar. 10, 2000, (6) U.S. patent application Ser. No. 09/512,895, filed on Feb. 24, 2000, (7) U.S. patent application Ser. No. 09/511,941, filed on Feb. 24, 2000, (8) U.S. patent application Ser. No. 09/588,946, filed on Jun. 7, 2000, (9) U.S. patent application Ser. No. 09/559,122, filed on Apr. 26, 2000, (10) PCT patent application serial no. PCT/US00/18635, filed on Jul. 9, 2000, (11) U.S. provisional patent application Ser. No. 60/162,671, filed on Nov. 1, 1999, (12) U.S. provisional patent application Ser. No. 60/154,047, filed on Sep. 16, 1999, (13) U.S. provisional patent application Ser. No. 60/159,082, filed on Oct. 12, 1999, (14) U.S. provisional patent application Ser. No. 60/159,039, filed on Oct. 12, 1999, (15) U.S. provisional patent application Ser. No. 60/159,033, filed on Oct. 12, 1999, (16) U.S. provisional patent application Ser. No. 60/212,359, filed on Jun. 19, 2000, (17) U.S. provisional patent application Ser. No. 60/165,228, filed on Nov. 12, 1999, (18) U.S. provisional patent application Ser. No. 60/221,443, filed on Jul. 28, 2000, (19) U.S. provisional patent application Ser. No. 60/221,645, filed on Jul. 28, 2000, and (20) U.S. provisional patent application Ser. No. 60/233,638, filed on Sep. 18, 2000, the disclosures of which are incorporated herein by reference.


In several alternative embodiments, the annular body 510 may be omitted or may be compressible before, during, or after curing.


Referring to FIGS. 5c and 5d, a conventional inflatable bladder 515 may then be positioned within the tubular member 500 and inflated to a sufficient operating pressure to plastically deform and radially expand a portion of the tubular member to thereby form a recess 520 in the tubular member.


Referring to FIGS. 5e and 5f, the inflatable bladder 515 may then be removed and the shoe 505 drilled out using a conventional drilling device.


Referring to FIG. 5g, an additional tubular member 525 may then be plastically deformed and radially expanded in a conventional manner and/or by using one or more of the methods and apparatus described above in order to form a mono-diameter wellbore casing. Before, during or after the radial expansion of the tubular member 525, an annular body 530 of a fluidic sealing material may be formed around the tubular member in a conventional manner and/or by using one or more of the methods and apparatus described above.


In several alternative embodiments, the inflatable bladder 515 may be coupled to the bottom of an expansion cone in order to permit the over-expansion process to be performed during the radial expansion process implemented using the expansion cone.


Referring to FIGS. 6a-6b, in an alternative embodiment, a tubular member 600 having a shoe 605 may be plastically deformed and radially expanded and thereby coupled to the preexisting section of wellbore casing 15 using any number of conventional methods. An annular body of a fluidic sealing material 610 may also be formed around the tubular member 600 using any number of conventional methods. In a preferred embodiment, the tubular member 600 is plastically deformed and radially expanded and the annular body 610 is formed using one or more of the methods and apparatus disclosed in one or more of the following: (1) U.S. patent application Ser. No. 09/454,139, filed on Dec. 3, 1999, (2) U.S. patent application Ser. No. 09/510,913, filed on Feb. 23, 2000, (3) U.S. patent application Ser. No. 09/502,350, filed on Feb. 10, 2000, (4) U.S. patent application Ser. No. 09/440,338, filed on Nov. 15, 1999, (5) U.S. patent application Ser. No. 09/523,460, filed on Mar. 10, 2000, (6) U.S. patent application Ser. No. 09/512,895, filed on Feb. 24, 2000, (7) U.S. patent application Ser. No. 09/511,941, filed on Feb. 24, 2000, (8) U.S. patent application Ser. No. 09/588,946, filed on Jun. 7, 2000, (9) U.S. patent application Ser. No. 09/559,122, filed on Apr. 26, 2000, (10) PCT patent application serial no. PCT/US00/18635, filed on Jul. 9, 2000, (11) U.S. provisional patent application Ser. No. 60/162,671, filed on Nov. 1, 1999, (12) U.S. provisional patent application Ser. No. 60/154,047, filed on Sep. 16, 1999, (13) U.S. provisional patent application Ser. No. 60/159,082, filed on Oct. 12, 1999, (14) U.S. provisional patent application Ser. No. 60/159,039, filed on Oct. 12, 1999, (15) U.S. provisional patent application Ser. No. 60/159,033, filed on Oct. 12, 1999, (16) U.S. provisional patent application Ser. No. 60/212,359, filed on Jun. 19, 2000, (17) U.S. provisional patent application Ser. No. 60/165,228, filed on Nov. 12, 1999, (18) U.S. provisional patent application Ser. No. 60/221,443, filed on Jul. 28, 2000, (19) U.S. provisional patent application Ser. No. 60/221,645, filed on Jul. 28, 2000, and (20) U.S. provisional patent application Ser. No. 60/233,638, filed on Sep. 18, 2000, the disclosures of which are incorporated herein by reference.


In several alternative embodiments, the annular body 610 may be omitted or may be compressible before, during, or after curing.


Referring to FIGS. 6c and 6d, a conventional roller expansion device 615 may then be positioned within the tubular member 600 and operated in a conventional manner apply a radial force to the interior surface of the tubular member 600 to plastically deform and radially expand a portion of the tubular member to thereby form a recess 620 in the tubular member. As will be recognized by persons having ordinary skill in the art, a roller expansion device typically utilizes one or more rollers that, through rotation of the device, apply a radial force to the interior surfaces of a tubular member. In several alternative embodiments, the roller expansion device 615 may include eccentric rollers such as, for example, as disclosed in U.S. Pat. Nos. 5,014,779 and 5,083,608, the disclosures of which are incorporated herein by reference.


Referring to FIGS. 6d and 6e, the roller expansion device 615 may then be removed and the shoe 605 drilled out using a conventional drilling device.


Referring to FIG. 6f, an additional tubular member 625 may then be plastically deformed and radially expanded in a conventional manner and/or by using one or more of the methods and apparatus described above in order to form a mono-diameter wellbore casing. Before, during or after the radial expansion of the tubular member 625, an annular body 630 of a fluidic sealing material may be formed around the tubular member in a conventional manner and/or by using one or more of the methods and apparatus described above.


In several alternative embodiments, the roller expansion device 615 may be coupled to the bottom of an expansion cone in order to permit the over-expansion process to be performed during the radial expansion process implemented using the expansion cone.


Referring initially to FIG. 7a, a wellbore 10 includes a preexisting wellbore casing 15. The wellbore 10 may be oriented in any orientation from the vertical to the horizontal. The preexisting wellbore casing 15 may be coupled to the upper portion of the wellbore 10 using any number of conventional methods. In a preferred embodiment, the wellbore casing 15 is coupled to the upper portion of the wellbore 10 using one or more of the methods and apparatus disclosed in one or more of the following: (1) U.S. patent application Ser. No. 09/454,139, filed on Dec. 3, 1999, (2) U.S. patent application Ser. No. 09/510,913, filed on Feb. 23, 2000, (3) U.S. patent application Ser. No. 09/502,350, filed on Feb. 10, 2000, (4) U.S. patent application Ser. No. 09/440,338, filed on Nov. 15, 1999, (5) U.S. patent application Ser. No. 09/523,460, filed on Mar. 10, 2000, (6) U.S. patent application Ser. No. 09/512,895, filed on Feb. 24, 2000, (7) U.S. patent application Ser. No. 09/511,941, filed on Feb. 24, 2000, (8) U.S. patent application Ser. No. 09/588,946, filed on Jun. 7, 2000, (9) U.S. patent application Ser. No. 09/559,122, filed on Apr. 26, 2000, (10) PCT patent application serial no. PCT/US00/18635, filed on Jul. 9, 2000, (11) U.S. provisional patent application Ser. No. 60/162,671, filed on Nov. 1, 1999, (12) U.S. provisional patent application Ser. No. 60/154,047, filed on Sep. 16, 1999, (13) U.S. provisional patent application Ser. No. 60/159,082, filed on Oct. 12, 1999, (14) U.S. provisional patent application Ser. No. 60/159,039, filed on Oct. 12, 1999, (15) U.S. provisional patent application Ser. No. 60/159,033, filed on Oct. 12, 1999, (16) U.S. provisional patent application Ser. No. 60/212,359, filed on Jun. 19, 2000, (17) U.S. provisional patent application Ser. No. 60/165,228, filed on Nov. 12, 1999, (18) U.S. provisional patent application Ser. No. 60/221,443, filed on Jul. 28, 2000, (19) U.S. provisional patent application Ser. No. 60/221,645, filed on Jul. 28, 2000, and (20) U.S. provisional patent application Ser. No. 60/233,638, filed on Sep. 18, 2000, the disclosures of which are incorporated herein by reference. More generally, the preexisting wellbore casing 15 may be coupled to another preexisting wellbore casing and/or may include one or more concentrically positioned tubular members.


Referring to FIG. 7b, an apparatus 700 for radially expanding a tubular member may then be positioned within the wellbore 10. The apparatus 700 includes a tubular support member 705 defining a passage 710 for conveying fluidic materials. An expansion cone 715 defining a passage 720 and having an outer conical surface 725 for radially expanding tubular members is coupled to an end of the tubular support member 705.


An expansion cone launcher 735 is movably coupled to and supported by the expansion cone 715. The expansion cone launcher 735 includes an upper portion 735a having an upper outer diameter, an intermediate portion 735b that mates with the expansion cone 715, and a lower portion 735c having a lower outer diameter. The lower outer diameter is greater than the upper outer diameter. The expansion cone launcher 735 further includes a recessed portion 735d having an outer diameter that is less than the lower outer diameter.


A shoe 740 defining a valveable passage 745 is coupled to the lower portion of the expansion cone launcher 735. In a preferred embodiment, the valveable passage 745 may be controllably closed in order to fluidicly isolate a region 750 below the expansion cone 715 and bounded by the lower portion 735c of the expansion cone launcher 735 and the shoe 740 from the region outside of the apparatus 700.


An expandable tubular member 755 is coupled to the upper portion 735a of the expansion cone launcher 735. One or more sealing members 760a and 760b may be coupled to the exterior of the upper portion of the expandable tubular member 755. In several alternative embodiments, the sealing members 760a and 760b may include elastomeric elements and/or metallic elements and/or composite elements. In several alternative embodiments, one or more anchoring elements may substituted for, or used in addition to, the sealing members 760a and 760b.


In a preferred embodiment, the support member 705, the expansion cone 715, the expansion cone launcher 735, the shoe 740, and the expandable tubular member 755 are provided substantially as disclosed in one or more of the following: (1) U.S. patent application Ser. No. 09/454,139, filed on Dec. 3, 1999, (2) U.S. patent application Ser. No. 09/510,913, filed on Feb. 23, 2000, (3) U.S. patent application Ser. No. 09/502,350, filed on Feb. 10, 2000, (4) U.S. patent application Ser. No. 09/440,338, filed on Nov. 15, 1999, (5) U.S. patent application Ser. No. 09/523,460, filed on Mar. 10, 2000, (6) U.S. patent application Ser. No. 09/512,895, filed on Feb. 24, 2000, (7) U.S. patent application Ser. No. 09/511,941, filed on Feb. 24, 2000, (8) U.S. patent application Ser. No. 09/588,946, filed on Jun. 7, 2000, (9) U.S. patent application Ser. No. 09/559,122, filed on Apr. 26, 2000, (10) PCT patent application serial no. PCT/US00/18635, filed on Jul. 9, 2000, (11) U.S. provisional patent application Ser. No. 60/162,671, filed on Nov. 1, 1999, (12) U.S. provisional patent application Ser. No. 60/154,047, filed on Sep. 16, 1999, (13) U.S. provisional patent application Ser. No. 60/159,082, filed on Oct. 12, 1999, (14) U.S. provisional patent application Ser. No. 60/159,039, filed on Oct. 12, 1999, (15) U.S. provisional patent application Ser. No. 60/159,033, filed on Oct. 12, 1999, (16) U.S. provisional patent application Ser. No. 60/212,359, filed on Jun. 19, 2000, (17) U.S. provisional patent application Ser. No. 60/165,228, filed on Nov. 12, 1999, (18) U.S. provisional patent application Ser. No. 60/221,443, filed on Jul. 28, 2000, (19) U.S. provisional patent application Ser. No. 60/221,645, filed on Jul. 28, 2000, and (20) U.S. provisional patent application Ser. No. 60/233,638, filed on Sep. 18, 2000, the disclosures of which are incorporated herein by reference.


As illustrated in FIG. 7b, in a preferred embodiment, during placement of the apparatus 700 within the wellbore 10, fluidic materials 765 within the wellbore 10 are conveyed through the apparatus 700 through the passages 710, 720 and 745 to a location above the apparatus 700. In this manner, surge pressures during placement of the apparatus 700 within the wellbore 10 are reduced. In a preferred embodiment, the apparatus 700 is initially positioned within the wellbore 10 such that the top portion of the tubular member 755 overlaps with the preexisting casing 15. In this manner, the upper portion of the expandable tubular member 755 may be radially expanded into contact with and coupled to the preexisting casing 15. As will be recognized by persons having ordinary skill in the art, the precise initial position of the expandable tubular member 755 will vary as a function of the amount of radial expansion, the amount of axial shrinkage during radial expansion, and the material properties of the expandable tubular member.


As illustrated in FIG. 7c, a fluidic material 770 may then be injected through the apparatus 700 through the passages 710, 720, and 745 in order to test the proper operation of these passages.


As illustrated in FIG. 7d, a hardenable fluidic sealing material 775 may then be injected through the apparatus 700 through the passages 710, 720 and 745 into the annulus between the apparatus and the wellbore 10. In this manner, an annular barrier to fluid migration into and out of the wellbore 10 may be formed around the radially expanded expansion cone launcher 735 and expandable tubular member 755. The hardenable fluidic sealing material may include, for example, a cement mixture. In several alternative embodiments, the injection of the hardenable fluidic sealing material 775 may be omitted. In several alternative embodiments, the hardenable fluidic sealing material 775 is compressible, before, during and/or after, the curing process.


As illustrated in FIG. 7e, a non-hardenable fluidic material 780 may then be injected into the apparatus through the passages 710 and 720. A ball plug 785, or other similar device, may then be injected with the fluidic material 780 to thereby seal off the passage 745. In this manner, the region 750 may be pressurized by the continued injection of the fluidic material 780 into the apparatus 700.


As illustrated in FIGS. 7f and 7g, the continued injection of the fluidic material 780 into the apparatus 700 causes the expansion cone launcher 735 and expandable tubular member 755 to be plastically deformed and radially expanded off of the expansion cone 715. The resulting structure includes a lip 790.


After completing the plastic deformation and radial expansion of the tubular member 755, the hardenable fluidic sealing material is allowed to cure to thereby form an annular body 795 that provides a barrier to fluid flow into or out of the wellbore 10.


Referring to FIG. 7h, the shoe 740 may then removed by drilling out the shoe using a conventional drilling device. A new section of the wellbore 10 may also be drilled out in order to permit additional expandable tubular members to be coupled to the bottom portion of the plastically deformed and radially expanded tubular member 755.


Referring to FIG. 7i, an additional tubular member 800 may then be plastically deformed and radially expanded in a conventional manner and/or by using one or more of the methods and apparatus described above in order to form a mono-diameter wellbore casing. Before, during or after the radial expansion of the tubular member 800, an annular body 805 of a fluidic sealing material may be formed around the tubular member in a conventional manner and/or by using one or more of the methods and apparatus described above. In a preferred embodiment, the lip 790 facilitates the coupling of the tubular member 800 to the tubular member 755 by providing a region on which the tubular member 800 may be easily coupled onto.


Referring to FIG. 8a, in an alternative embodiment, a wellbore 10 includes a preexisting section of wellbore casing 15 and 900. The wellbore casing 900 includes sealing members 905a and 905b and a recess 910. An annular body 915 of a fluidic sealing material may also be provided around the casing 900. The casing 900 and annular body 915 may be provided using any number of conventional methods, the methods described above, and/or using one or more of the methods disclosed in the following: (1) U.S. patent application Ser. No. 09/454,139, filed on Dec. 3, 1999, (2) U.S. patent application Ser. No. 09/510,913, filed on Feb. 23, 2000, (3) U.S. patent application Ser. No. 09/502,350, filed on Feb. 10, 2000, (4) U.S. patent application Ser. No. 09/440,338, filed on Nov. 15, 1999, (5) U.S. patent application Ser. No. 09/523,460, filed on Mar. 10, 2000, (6) U.S. patent application Ser. No. 09/512,895, filed on Feb. 24, 2000, (7) U.S. patent application Ser. No. 09/511,941, filed on Feb. 24, 2000, (8) U.S. patent application Ser. No. 09/588,946, filed on Jun. 7, 2000, (9) U.S. patent application Ser. No. 09/559,122, filed on Apr. 26, 2000, (10) PCT patent application serial no. PCT/US00/18635, filed on Jul. 9, 2000, (11) U.S. provisional patent application Ser. No. 60/162,671, filed on Nov. 1, 1999, (12) U.S. provisional patent application Ser. No. 60/154,047, filed on Sep. 16, 1999, (13) U.S. provisional patent application Ser. No. 60/159,082, filed on Oct. 12, 1999, (14) U.S. provisional patent application Ser. No. 60/159,039, filed on Oct. 12, 1999, (15) U.S. provisional patent application Ser. No. 60/159,033, filed on Oct. 12, 1999, (16) U.S. provisional patent application Ser. No. 60/212,359, filed on Jun. 19, 2000, (17) U.S. provisional patent application Ser. No. 60/165,228, filed on Nov. 12, 1999, (18) U.S. provisional patent application Ser. No. 60/221,443, filed on Jul. 28, 2000, (19) U.S. provisional patent application Ser. No. 60/221,645, filed on Jul. 28, 2000, and (20) U.S. provisional patent application Ser. No. 60/233,638, filed on Sep. 18, 2000, the disclosures of which are incorporated herein by reference.


Referring to FIG. 8b, an apparatus 1000 for radially expanding a tubular member is then positioned within the wellbore 10 that includes a tubular support member 1005 that defines a passage 1010 for conveying fluidic materials. A hydraulic locking device 1015 that defines a passage 1020 for conveying fluidic materials that is fluidicly coupled to the passage 1010. The locking device 1015 further includes inlet passages, 1020a and 1020b, actuating chambers, 1025a and 1025b, and locking members, 1030a and 1030b. During operation, the injection of fluidic materials into the actuating chambers, 1025a and 1025b, causes the locking members, 1030a and 1030b, to be displaced outwardly in the radial direction. In this manner, the locking device 1015 may be controllably coupled to a tubular member to thereby maintain the tubular member in a substantially stationary position. As will be recognized by persons having ordinary skill in the art, the operating pressures and physical shape of the inlet passages 1020, actuating chambers 1025, and locking members 1030 will determine the maximum amount of holding force provided by the locking device 1015. In several alternative embodiments, fluidic materials may be injected into the locking device 1015 using a dedicated fluid passage in order to provide precise control of the locking device. In several alternative embodiments, the locking device 1015 may be omitted and the tubular support member 1005 coupled directly to the tubular support member 1035.


One end of a tubular support member 1035 that defines a passage 1040 is coupled to the locking device 1015. The passage 1040 is fluidicly coupled to the passage 1020. An expansion cone 1045 that defines a passage 1050 and includes an outer conical surface 1055 is coupled to another end of the tubular support member 1035. An expansion cone launcher 1060 is movably coupled to and supported by the expansion cone 1045. The expansion cone launcher 1060 includes an upper portion 1060a having an upper outside diameter, an intermediate portion 1060b that mates with the expansion cone 1045, and a lower portion 1060c having a lower outside diameter. The lower outside diameter is greater than the upper outside diameter.


A shoe 1065 that defines a valveable passage 1070 is coupled to the lower portion 1060c of the expansion cone launcher 1060. In this manner, a region 1075 below the expansion cone 1045 and bounded by the expansion cone launcher 1060 and the shoe 1065 may be pressurized and fluidicly isolated from the annular region between the apparatus 1000 and the wellbore 10.


An expandable tubular member 1080 is coupled to the upper portion of the expansion cone launcher 1060. In several alternative embodiments, one or more sealing members are coupled to the exterior of the upper portion of the expandable tubular member 1080. In several alternative embodiments, the sealing members may include elastomeric elements and/or metallic elements and/or composite elements. In several alternative embodiments, one or more anchoring elements may substituted for, or used in addition to, the sealing members.


An expansion cone 1085 defining a passage 1090 for receiving the tubular support member 1005 includes an outer conical surface 1095. A tubular support member 1100 defining a passage 1105 for receiving the tubular support member 1005 is coupled to the bottom of the expansion cone 1085 for supporting and actuating the expansion cone.


In a preferred embodiment, the support members 1005 and 1035, the expansion cone 1045, the expansion cone launcher 1060, the shoe 1065, and the expandable tubular member 1080 are provided substantially as disclosed in one or more of the following: (1) U.S. patent application Ser. No. 09/454,139, filed on Dec. 3, 1999, (2) U.S. patent application Ser. No. 09/510,913, filed on Feb. 23, 2000, (3) U.S. patent application Ser. No. 09/502,350, filed on Feb. 10, 2000, (4) U.S. patent application Ser. No. 09/440,338, filed on Nov. 15, 1999, (5) U.S. patent application Ser. No. 09/523,460, filed on Mar. 10, 2000, (6) U.S. patent application Ser. No. 09/512,895, filed on Feb. 24, 2000, (7) U.S. patent application Ser. No. 09/511,941, filed on Feb. 24, 2000, (8) U.S. patent application Ser. No. 09/588,946, filed on Jun. 7, 2000, (9) U.S. patent application Ser. No. 09/559,122, filed on Apr. 26, 2000, (10) PCT patent application serial no. PCT/US00/18635, filed on Jul. 9, 2000, (11) U.S. provisional patent application Ser. No. 60/162,671, filed on Nov. 1, 1999, (12) U.S. provisional patent application Ser. No. 60/154,047, filed on Sep. 16, 1999, (13) U.S. provisional patent application Ser. No. 60/159,082, filed on Oct. 12, 1999, (14) U.S. provisional patent application Ser. No. 60/159,039, filed on Oct. 12, 1999, (15) U.S. provisional patent application Ser. No. 60/159,033, filed on Oct. 12, 1999, (16) U.S. provisional patent application Ser. No. 60/212,359, filed on Jun. 19, 2000, (17) U.S. provisional patent application Ser. No. 60/165,228, filed on Nov. 12, 1999, (18) U.S. provisional patent application Ser. No. 60/221,443, filed on Jul. 28, 2000, (19) U.S. provisional patent application Ser. No. 60/221,645, filed on Jul. 28, 2000, and (20) U.S. provisional patent application Ser. No. 60/233,638, filed on Sep. 18, 2000, the disclosures of which are incorporated herein by reference.


As illustrated in FIG. 8b, in a preferred embodiment, during placement of the apparatus 1000 within the wellbore 10, fluidic materials 1110 within the wellbore 10 are conveyed through the apparatus 1000 through the passages 1010, 1020, 1040 and 1070 to a location above the apparatus 1000. In this manner, surge pressures during placement of the apparatus 1000 within the wellbore 10 are reduced. In a preferred embodiment, the apparatus 1000 is initially positioned within the wellbore 10 such that the top portion of the tubular member 1080 overlaps with the recess 910 of the preexisting casing 900. In this manner, the upper portion of the expandable tubular member 1080 may be radially expanded into contact with and coupled to the recess 910 of the preexisting casing 900.


As illustrated in FIG. 8c, a fluidic material 1115 may then be injected through the apparatus 1000 through the passages 1010, 1020, 1040, and 1070 in order to test the proper operation of these passages.


As illustrated in FIG. 8d, a hardenable fluidic sealing material 1120 may then be injected through the apparatus 1000 through the passages 1010, 1020, 1040, and 1070 into the annulus between the apparatus and the wellbore 10. In this manner, an annular barrier to fluid migration into and out of the wellbore 10 may be formed around the radially expanded expansion cone launcher 1060 and expandable tubular member 1080. The hardenable fluidic sealing material may include, for example, a cement mixture. In several alternative embodiments, the injection of the hardenable fluidic sealing material 1120 may be omitted. In several alternative embodiments, the hardenable fluidic sealing material 1120 is compressible, before, during and/or after, the curing process.


As illustrated in FIG. 8e, a non-hardenable fluidic material 1125 may then be injected into the apparatus 1000 through the passages 1010, 1020 and 1040. A ball plug 1130, or other similar device, may then be injected with the fluidic material 1125 to thereby seal off the passage 1070. In this manner, the region 1075 may be pressurized by the continued injection of the fluidic material 1125 into the apparatus 1000. Furthermore, in this manner, the actuating chambers, 1025a and 1025b, of the locking device 1015 may be pressurized. In this manner, the tubular member 1080 may be held in a substantially stationary position by the locking device 1015.


As illustrated in FIG. 8f, the expansion cone 1085 may then be actuated in the downward direction by a direct application of axial force using the support member 1100 and/or through the application of fluid force. The axial displacement of the expansion cone 1085 may plastically deform and radially expand the upper portion of the expandable tubular member 1080. In this manner, the upper portion of the expandable tubular member 1080 may be precisely coupled to the recess 910 of the preexisting casing 900.


During the downward actuation of the expansion cone 1085, the locking member 1015 preferably prevents axial displacement of the tubular member 1080. In a preferred embodiment, the locking member 1015 is positioned proximate the upper portion of the tubular member 1080 in order to prevent buckling of the tubular member 1080 during the radial expansion of the upper portion of the tubular member. In an alternative embodiment, the locking member 1015 is omitted and the interference between the intermediate portion 1060b of the expansion cone launcher 1060 and the expansion cone 1045 prevents the axial displacement of the tubular member 1080 during the radial expansion of the upper portion of the tubular member.


As illustrated in FIG. 8g, the expansion cone 1085 and 1100 may then be raised out of the wellbore 10.


As illustrated in FIG. 8h, the continued injection of the fluidic material 1125 into the apparatus 1000 may then cause the expansion cone launcher 1060 and the expandable tubular member 1080 to be plastically deformed and radially expanded off of the expansion cone 1045. In this manner, the expansion cone 1045 is displaced relative to the expansion cone launcher 1060 and expandable tubular member 1080 in the axial direction. In a preferred embodiment, the axial forces created during the radial expansion process are greater than the axial forces generated by the locking device 1015. As will be recognized by persons having ordinary skill in the art, the precise relationship between these axial forces will vary as a function of the operating characteristics of the locking device 1015 and the metallurgical properties of the expansion cone launcher 1060 and expandable tubular 1080. In an alternative embodiment, the operating pressures of the actuating chambers, 1025a and 1025b, and the region 1075 are separately controllable by providing separate and dedicated fluid passages for pressurizing each.


As illustrated in FIG. 8i, after completing the plastic deformation and radial expansion of the tubular member 1080, the hardenable fluidic sealing material is allowed to cure to thereby form an annular body 1130 that provides a barrier to fluid flow into or out of the wellbore 10. The shoe 1065 may then removed by drilling out the shoe using a conventional drilling device. A new section of the wellbore 10 may also be drilled out in order to permit additional expandable tubular members to be coupled to the bottom portion of the plastically deformed and radially expanded tubular member 1080.


In an alternative embodiment, the annular body 1130 may be omitted. In several alternative embodiments, the annular body 1130 may be radially compressed before, during and/or after curing.


Referring to FIG. 8j, the tubular member 1080 may be radially expanded again using one or more of the methods described above to provide an mono-diameter wellbore casing.


Referring to FIG. 9a, a wellbore 1200 includes an upper preexisting casing 1205 and a lower preexisting casing 1210. The casings, 1205 and 1210, may further include outer annular layers of fluidic sealing materials such as, for example, cement. The ends of the casings, 1205 and 1210, are separated by a gap 1215.


Referring to FIG. 9b, a tubular member 1220 may then be coupled to the opposing ends of the casings, 1205 and 1210, to thereby bridge the gap 1215. In a preferred embodiment, the tubular member 1220 is coupled to the opposing ends of the casings, 1205 and 1210, by plastically deforming and radially expanding the tubular member 1220 using one or more of the methods and apparatus described and referenced above.


Referring to FIG. 9c, a radial expansion device 1225 may then be positioned within the tubular member 1220. In a preferred embodiment, the length of the radial expansion device 1225 is greater than or equal to the axial length of the tubular member 1220. In several alternative embodiments, the radial expansion device 1225 may be any number of conventional radial expansion devices such as, for example, expansion cones actuated by hydraulic and/or direct axial force, roller expansion devices, and/or expandable hydraulic bladders.


Referring to FIGS. 9d and 9e, after actuation and subsequent de-actuation and removal of the radial expansion device 1225, the inside diameters of the casings, 1205 and 1210, are substantially equal to the inside diameter of the tubular member 1220. In this manner, a mono-diameter wellbore casing may be formed.


Referring to FIG. 10, a wellbore 1300 includes an outer tubular member 1305 and an inner tubular member 1310. In a preferred embodiment, the tubular members, 1305 and 1310, are plastically deformed and radially expanded using one or more of the methods and apparatus described and referenced above. In this manner, a wellbore casing may be provided whose burst and collapse strength may be precisely controlled by varying the number, thickness, and/or material properties of the tubular members, 1305 and 1310.


Referring to FIG. 11a, a wellbore 1400 includes a casing 1405 that is coupled to a preexisting casing 1410. In a preferred embodiment, one or more sealing members 1415 are coupled to the exterior of the upper portion of the tubular member 1405 in order to optimally seal the interface between the tubular member 1405 and the preexisting casing 1410. In a preferred embodiment, the tubular member 1405 is plastically deformed and radially expanded using conventional methods and/or one or more of the methods and apparatus described and referenced above. In an exemplary embodiment, the outside diameter of the tubular member 1405 prior to the radial expansion process is OD0, the wall thickness of the tubular member 1405 prior to the radial expansion process is t0, the outside diameter of the tubular member following the radial expansion process is OD1, and the wall thickness of the tubular member following the radial expansion process is t1.


Referring to FIG. 11b, a tubular member 1420 may then be coupled to the lower portion of the tubular member 1405 by plastically deforming and radially expanding the tubular member 1420 using conventional methods and/or one or more of the methods and apparatus described and referenced above. In a preferred embodiment, the exterior surface of the upper portion of the tubular member 1420 includes one or more sealing members for sealing the interface between the tubular member 1420 and the tubular member 1405.


Referring to FIG. 11c, lower portion of the tubular member 1405 and the tubular member 1420 may be radially expanded again to provide a mono-diameter wellbore casing. The additional radial expansion may be provided using conventional methods and/or one or more of the methods and apparatus described and referenced above. In an exemplary embodiment, the outside diameter and wall thickness of the lower portion of the tubular member 1405 after the additional radial expansion process are OD2 and t2.


The radial expansion process of FIGS. 11b-11c can then be repeated to provide a mono-diameter wellbore casing of virtually unlimited length.


In several alternative embodiments, the ordering of the radial expansions of the tubular members, 1405 and 1420, may be changed. For example, the first tubular member 1405 may be plastically deformed and radially expanded to provide a lower portion having the outside diameter OD2 and the remaining portion having the outside diameter OD1. The tubular member 1420 may then be plastically deformed and radially expanded one or more times until the inside diameters of the tubular members, 1405 and 1420, are substantially equal. The plastic deformations and radial expansions of the tubular members, 1405 and 1420, may be provided using conventional methods and/or one or more of the methods and apparatus described and referenced above.


In an exemplary embodiment, the total expansion strain E of the tubular member 1405 may be expressed by the following equation:

E=(OD2−OD0)/OD0  (1)

    • where OD0=original outside diameter;
      • OD1=outside diameter after 1st radial expansion; and
      • OD2=outside diameter after 2nd radial expansion.


Furthermore, in an exemplary embodiment, where: (1) the exterior surface of the upper portion of the tubular member 1420 includes sealing members, and (2) the radial spacing between the tubular member 1405 and the wellbore 1400 prior to the first radial expansion is equal to d, the outside diameters, OD1 and OD2, of the tubular member 1405 following the first and second radial expansions may be expressed as:

OD1=OD0+2d+2t1  (2)
OD2=OD1+2R+2t2  (2)


where OD0=the original outside diameter of the tubular member 1405;


OD1=the outside diameter of the tubular member 1405 following the first radial expansion;


OD2=the outside diameter of the tubular member 1405 following the second radial expansion;


d=the radial spacing between the tubular member 1405 and the wellbore prior to the first radial expansion;


t1=the wall thickness of the tubular member 1405 after the first radial expansion;


t2=the wall thickness of the tubular member 1405 after the second radial expansion; and


R=the thickness of sealing member provided on the exterior surface of the tubular member 1420.


Furthermore, in an exemplary embodiment, for d approximately equal to 0.25 inches and R approximately equal to 0.1 inches, equation (1) can be approximated as:

E=(0.7″+3.7t0)/OD0  (4)

where t0=the original wall thickness of the tubular member 1405.


In an exemplary embodiment, the total expansion strain of the tubular member 1405 should be less than or equal to 0.3 in order to maximize the burst and collapse strength of the expandable tubular member. Therefore, from equation (4) the ratio of the original outside diameter to the original wall thickness (OD0/t0) may be expressed as:

OD0/t0≧3.8/(0.3−0.7/OD0)  (5)


Thus, in a preferred embodiment, for OD0 less than 10 inches, the optimal ratio of the original outside diameter to the original wall thickness (OD0/t0) may be expressed as:

OD0/t0≧16  (6)


In this manner, for typical tubular members, the burst and collapse strength of the tubular members following one or more radial expansions are maximized when the relationship in equation (6) is satisfied. Furthermore, the relationships expressed in equations (1) through (6) are valid regardless of the order or type of the radial expansions of the tubular member 1405. More generally, the relationships expressed in equations (1) through (6) may be applied to the radial expansion of structures having a wide range of profiles such as, for example, triangular, rectangular, and oval.


An apparatus for plastically deforming and radially expanding a tubular member has been described that includes means for plastically deforming and radially expanding a first portion of the tubular member to a first outside diameter, and means for plastically deforming and radially expanding a second portion of the tubular member to a second outside diameter. In a preferred embodiment, the first outside diameter is greater than the second outside diameter. In a preferred embodiment, the means for plastically deforming and radially expanding the first portion of the tubular member to the first outside diameter is removable. In a preferred embodiment, the means for plastically deforming and radially expanding the first portion of the tubular member to the first outside diameter is frangible. In a preferred embodiment, the means for plastically deforming and radially expanding the first portion of the tubular member to the first outside diameter is elastic. In a preferred embodiment, the means for plastically deforming and radially expanding the first portion of the tubular member to the first outside diameter includes means for applying a radial force to the first portion of the tubular member. In a preferred embodiment, the means for plastically deforming and radially expanding the first portion of the tubular member to the first outside diameter is inflatable. In a preferred embodiment, the means for plastically deforming and radially expanding the first portion of the tubular member to the first outside diameter includes rolling means for applying radial pressure to the first portion of the tubular member.


An apparatus for plastically deforming and radially expanding a tubular member has also been described that includes a tubular support member including a first fluid passage, an expansion cone coupled to the tubular support member having a second fluid passage fluidicly coupled to the first fluid passage and an outer conical surface, a removable annular conical sleeve coupled to the outer conical surface of the expansion cone, an annular expansion cone launcher coupled to the conical sleeve and a lower portion of the tubular member, and a shoe having a valveable passage coupled to an end of the expansion cone launcher. In a preferred embodiment, the conical sleeve is frangible. In a preferred embodiment, the conical sleeve is elastic. In a preferred embodiment, the conical sleeve includes a plurality of arcuate elements.


A method of plastically deforming and radially expanding a tubular member has also been described that includes plastically deforming and radially expanding a portion of the tubular member to a first outside diameter, and plastically deforming and radially expanding another portion of the tubular member to a second outside diameter. In a preferred embodiment, the first diameter is greater than the second diameter. In a preferred embodiment, plastically deforming and radially expanding the portion of the tubular member includes applying a radial force to the portion of the tubular member using a conical sleeve. In a preferred embodiment, conical sleeve is frangible. In a preferred embodiment, the conical sleeve is elastic. In a preferred embodiment, the conical sleeve includes a plurality of arcuate elements. In a preferred embodiment, plastically deforming and radially expanding the portion of the tubular member includes applying a radial force to the portion of the tubular member using an inflatable bladder. In a preferred embodiment, plastically deforming and radially expanding the portion of the tubular member includes applying a radial force to the portion of the tubular member using a roller expansion device.


A method of coupling a first tubular member to a second tubular member has also been described that includes plastically deforming and radially expanding a first portion of the first tubular member to a first outside diameter, plastically deforming and radially expanding another portion of the first tubular member to a second outside diameter, positioning the second tubular member inside the first tubular member in overlapping relation to the first portion of the first tubular member, plastically deforming and radially expanding the second tubular member to a third outside diameter, and plastically deforming and radially expanding the second tubular member to a fourth outside diameter. The inside diameters of the first and second tubular members after the plastic deformations and radial expansions are substantially equal. In a preferred embodiment, the first outside diameter is greater than the second outside diameter. In a preferred embodiment, plastically deforming and radially expanding the first portion of the first tubular member includes applying a radial force to the portion of the tubular member using a conical sleeve. In a preferred embodiment, the conical sleeve is frangible. In a preferred embodiment, the conical sleeve is elastic. In a preferred embodiment, the conical sleeve includes a plurality of arcuate elements. In a preferred embodiment, plastically deforming and radially expanding the first portion of the first tubular member includes applying a radial force to the first portion of the first tubular member using an inflatable bladder. In a preferred embodiment, plastically deforming and radially expanding the first portion of the first tubular member includes applying a radial force to the first portion of the first tubular member using a roller expansion device.


An apparatus for coupling a first tubular member to a second tubular member has also been described that includes means for plastically deforming and radially expanding a first portion of the first tubular member to a first outside diameter, means for plastically deforming and radially expanding another portion of the first tubular member to a second outside diameter, means for positioning the second tubular member inside the first tubular member in overlapping relation to the first portion of the first tubular member, means for plastically deforming and radially expanding the second tubular member to a third outside diameter, and means for plastically deforming and radially expanding the second tubular member to a fourth outside diameter. The inside diameters of the first and second tubular members after the plastic deformations and radial expansions are substantially equal. In a preferred embodiment, the first outside diameter is greater than the second outside diameter. In a preferred embodiment, the means for plastically deforming and radially expanding the first portion of the first tubular member includes means for applying a radial force to the portion of the tubular member using a conical sleeve. In a preferred embodiment, the conical sleeve is frangible. In a preferred embodiment, the conical sleeve is elastic. In a preferred embodiment, the conical sleeve includes a plurality of arcuate elements. In a preferred embodiment, the means for plastically deforming and radially expanding the first portion of the first tubular member includes means for applying a radial force to the first portion of the first tubular member using an inflatable bladder. In a preferred embodiment, the means for plastically deforming and radially expanding the first portion of the first tubular member includes means for applying a radial force to the first portion of the first tubular member using a roller expansion device.


An apparatus for forming a wellbore casing within a wellbore has also been described that includes means for supporting a tubular member within the wellbore, means for plastically deforming and radially expanding a first portion of the tubular member to a first outside diameter, and means for plastically deforming and radially expanding a second portion of the tubular member to a second outside diameter. In a preferred embodiment, the first outside diameter is greater than the second outside diameter. In a preferred embodiment, the means for plastically deforming and radially expanding the first portion of the tubular member to the first outside diameter is removable. In a preferred embodiment, the means for plastically deforming and radially expanding the first portion of the tubular member to the first outside diameter is frangible. In a preferred embodiment, the means for plastically deforming and radially expanding the first portion of the tubular member to the first outside diameter is elastic. In a preferred embodiment, the means for plastically deforming and radially expanding the first portion of the tubular member to the first outside diameter includes means for applying a radial force to the first portion of the tubular member. In a preferred embodiment, the means for plastically deforming and radially expanding the first portion of the tubular member to the first outside diameter is inflatable. In a preferred embodiment, the means for plastically deforming and radially expanding the first portion of the tubular member to the first outside diameter includes rolling means for applying radial pressure to the first portion of the tubular member. In a preferred embodiment, the apparatus further includes means for forming an annular body of a fluidic sealing material within an annulus between the tubular member and the wellbore.


An apparatus for forming a wellbore casing within a wellbore has also been described that includes a tubular support member including a first fluid passage, an expansion cone coupled to the tubular support member having a second fluid passage fluidicly coupled to the first fluid passage and an outer conical surface, a removable annular conical sleeve coupled to the outer conical surface of the expansion cone, an annular expansion cone launcher coupled to the conical sleeve and a lower portion of the tubular member, and a shoe having a valveable passage coupled to an end of the expansion cone launcher. In a preferred embodiment, the conical sleeve is frangible. In a preferred embodiment, the conical sleeve is elastic. In a preferred embodiment, the conical sleeve includes a plurality of arcuate elements.


A method of forming a wellbore casing within a wellbore has also been described that includes supporting a tubular member within a wellbore, plastically deforming and radially expanding a portion of the tubular member to a first outside diameter, and plastically deforming and radially expanding another portion of the tubular member to a second outside diameter. In a preferred embodiment, the first diameter is greater than the second diameter. In a preferred embodiment, plastically deforming and radially expanding the portion of the tubular member includes applying a radial force to the portion of the tubular member using a conical sleeve. In a preferred embodiment, the conical sleeve is frangible. In a preferred embodiment, the conical sleeve is elastic. In a preferred embodiment, the conical sleeve includes a plurality of arcuate elements. In a preferred embodiment, plastically deforming and radially expanding the portion of the tubular member includes applying a radial force to the portion of the tubular member using an inflatable bladder. In a preferred embodiment, plastically deforming and radially expanding the portion of the tubular member includes applying a radial force to the portion of the tubular member using a roller expansion device. In a preferred embodiment, the method further includes injecting an annular body of a hardenable fluidic sealing material into an annulus between the tubular member and the wellbore. In a preferred embodiment, the method further includes curing the annular body of hardenable fluidic sealing material.


A method of forming a mono-diameter wellbore casing within a wellbore has also been described that includes supporting a first tubular member within the wellbore, plastically deforming and radially expanding a first portion of the first tubular member to a first outside diameter, plastically deforming and radially expanding another portion of the first tubular member to a second outside diameter, positioning the second tubular member inside the first tubular member in overlapping relation to the first portion of the first tubular member, plastically deforming and radially expanding the second tubular member to a third outside diameter, and plastically deforming and radially expanding the second tubular member to a fourth outside diameter. The inside diameters of the first and second tubular members after the plastic deformations and radial expansions are substantially equal. In a preferred embodiment, the first outside diameter is greater than the second outside diameter. In a preferred embodiment, plastically deforming and radially expanding the first portion of the first tubular member includes applying a radial force to the portion of the tubular member using a conical sleeve. In a preferred embodiment, the conical sleeve is frangible. In a preferred embodiment, the conical sleeve is elastic. In a preferred embodiment, the conical sleeve includes a plurality of arcuate elements. In a preferred embodiment, plastically deforming and radially expanding the first portion of the first tubular member includes applying a radial force to the first portion of the first tubular member using an inflatable bladder. In a preferred embodiment, plastically deforming and radially expanding the first portion of the first tubular member includes applying a radial force to the first portion of the first tubular member using a roller expansion device. In a preferred embodiment, the method further includes injecting an annular body of a hardenable fluidic sealing material into an annulus between the first tubular member and the wellbore. In a preferred embodiment, the method further includes curing the annular body of hardenable fluidic sealing material. In a preferred embodiment, the method further includes injecting an annular body of a hardenable fluidic sealing material into an annulus between the second tubular member and the wellbore. In a preferred embodiment, the method further includes curing the annular body of hardenable fluidic sealing material.


An apparatus for coupling a first tubular member to a second tubular member has also been described that includes means for plastically deforming and radially expanding a first portion of the first tubular member to a first outside diameter, means for plastically deforming and radially expanding another portion of the first tubular member to a second outside diameter, means for positioning the second tubular member inside the first tubular member in overlapping relation to the first portion of the first tubular member, means for plastically deforming and radially expanding the second tubular member to a third outside diameter, and means for plastically deforming and radially expanding the second tubular member to a fourth outside diameter. The inside diameters of the first and second tubular members after the plastic deformations and radial expansions are substantially equal. In a preferred embodiment, the first outside diameter is greater than the second outside diameter. In a preferred embodiment, the means for plastically deforming and radially expanding the first portion of the first tubular member includes means for applying a radial force to the portion of the tubular member using a conical sleeve. In a preferred embodiment, the conical sleeve is frangible. In a preferred embodiment, the conical sleeve is elastic. In a preferred embodiment, the conical sleeve includes a plurality of arcuate elements. In a preferred embodiment, the means for plastically deforming and radially expanding the first portion of the first tubular member includes means for applying a radial force to the first portion of the first tubular member using an inflatable bladder. In a preferred embodiment, the means for plastically deforming and radially expanding the first portion of the first tubular member includes means for applying a radial force to the first portion of the first tubular member using a roller expansion device. In a preferred embodiment, the apparatus further includes means for injecting an annular body of a hardenable fluidic sealing material into an annulus between the first tubular member and the wellbore. In a preferred embodiment, the apparatus further includes means for curing the annular body of hardenable fluidic sealing material. In a preferred embodiment, the apparatus further includes means for injecting an annular body of a hardenable fluidic sealing material into an annulus between the second tubular member and the wellbore. In a preferred embodiment, the apparatus further includes means for curing the annular body of hardenable fluidic sealing material.


An apparatus for plastically deforming and radially expanding a tubular member has also been described that includes means for providing a lipped portion in a portion of the tubular member, and means for plastically deforming and radially expanding another portion of the tubular member.


An apparatus for plastically deforming and radially expanding a tubular member has also been described that includes a tubular support member including a first fluid passage, an expansion cone coupled to the tubular support member having a second fluid passage fluidicly coupled to the first fluid passage and an outer conical surface, an annular expansion cone launcher including: a first annular portion coupled to a lower portion of the tubular member, a second annular portion coupled to the first annular portion that mates with the outer conical surface of the expansion cone, a third annular portion coupled to the second annular portion having a first outside diameter, and a fourth annular portion coupled to the third annular portion having a second outside diameter, wherein the second outside diameter is less than the first outside diameter, and a shoe having a valveable passage coupled to fourth annular portion of the expansion cone launcher.


A method of plastically deforming and radially expanding a tubular member has also been described that includes providing a lipped portion in a portion of the tubular member, and plastically deforming and radially expanding another portion of the tubular member.


A method of coupling a first tubular member to a second tubular member has also been described that includes providing a lipped portion in a portion of the first tubular member, plastically deforming and radially expanding another portion of the first tubular member, positioning the second tubular member inside the first tubular member in overlapping relation to the lipped portion of the first tubular member, and plastically deforming and radially expanding the second tubular member. The inside diameters of the first and second tubular members after the plastic deformations and radial expansions are substantially equal.


An apparatus for coupling a first tubular member to a second tubular member has also been described that includes means for providing a lipped in the first tubular member, means for plastically deforming and radially expanding another portion of the first tubular member, means for positioning the second tubular member inside the first tubular member in overlapping relation to the lipped portion of the first tubular member, and means for plastically deforming and radially expanding the second tubular member. The inside diameters of the first and second tubular members after the plastic deformations and radial expansions are substantially equal.


An apparatus for forming a wellbore casing within a wellbore has also been described that includes means for supporting a tubular member within the wellbore, means for providing a lipped portion in the tubular member, and means for plastically deforming and radially expanding another portion of the tubular member to a second outside diameter.


An apparatus for forming a wellbore casing within a wellbore has also been described that includes a tubular support member including a first fluid passage, an expansion cone coupled to the tubular support member having a second fluid passage fluidicly coupled to the first fluid passage and an outer conical surface, an annular expansion cone launcher including: a first annular portion coupled to a lower portion of the tubular member, a second annular portion coupled to the first annular portion that mates with the outer conical surface of the expansion cone, a third annular portion coupled to the second annular portion having a first outside diameter, and a fourth annular portion coupled to the third annular portion having a second outside diameter, wherein the second outside diameter is less than the first outside diameter, and a shoe having a valveable passage coupled to fourth annular portion of the expansion cone launcher.


A method of forming a wellbore casing in a wellbore has also been described that includes supporting a tubular member within the wellbore, providing a lipped portion in a portion of the tubular member, and plastically deforming and radially expanding another portion of the tubular member. In a preferred embodiment, the method further includes injecting a hardenable fluidic sealing material in an annulus between the tubular member and the wellbore. In a preferred embodiment, the method further includes curing the fluidic sealing material.


A method of forming a mono-diameter wellbore casing within a wellbore has also been described that includes supporting a first tubular member within the wellbore, providing a lipped portion in a portion of the first tubular member, plastically deforming and radially expanding another portion of the first tubular member, positioning the second tubular member inside the first tubular member in overlapping relation to the lipped portion of the first tubular member, and plastically deforming and radially expanding the second tubular member. The inside diameters of the first and second tubular members after the plastic deformations and radial expansions are substantially equal. In a preferred embodiment, the method further includes injecting a hardenable fluidic sealing material in an annulus between the first tubular member and the wellbore. In a preferred embodiment, the method further includes curing the fluidic sealing material. In a preferred embodiment, the method further includes injecting a hardenable fluidic sealing material in an annulus between the second tubular member and the wellbore. In a preferred embodiment, the method further includes curing the fluidic sealing material.


An apparatus for forming a mono-diameter wellbore casing within a wellbore has also been described that includes means for providing a lipped in the first tubular member, means for plastically deforming and radially expanding another portion of the first tubular member, means for positioning the second tubular member inside the first tubular member in overlapping relation to the lipped portion of the first tubular member, and means for plastically deforming and radially expanding the second tubular member. The inside diameters of the first and second tubular members after the plastic deformations and radial expansions are substantially equal. In a preferred embodiment, the apparatus further includes means for injecting a hardenable fluidic sealing material in an annulus between the first tubular member and the wellbore. In a preferred embodiment, the apparatus further includes means for curing the fluidic sealing material. In a preferred embodiment, the apparatus further includes means for injecting a hardenable fluidic sealing material in an annulus between the second tubular member and the wellbore. In a preferred embodiment, the apparatus further includes means for curing the fluidic sealing material.


An apparatus for plastically deforming and radially expanding a tubular member has also been described that includes means for plastically deforming and radially expanding a first end of the tubular member, and means for plastically deforming and radially expanding a second end of the tubular member. In a preferred embodiment, the apparatus further includes means for anchoring the tubular member during the radial expansion.


An apparatus for plastically deforming and radially expanding a tubular member has also been described that includes a tubular support member including a first passage, an expansion cone coupled to the tubular support having a second passage fluidicly coupled to the first passage and an outer conical surface, an annular expansion cone launcher movably coupled to outer conical surface of the expansion cone, an expandable tubular member coupled to an end of the annular expansion cone launcher, a shoe coupled to another end of the annular expansion cone launcher having a valveable fluid passage, and another annular expansion cone movably coupled to the tubular support member. The annular expansion cones are positioned in opposite orientations. In a preferred embodiment, the annular expansion cone is adapted to plastically deform and radially expand a first end of the expandable tubular member and the other annular expansion cone is adapted to plastically deform and radially expand a second end of the expandable tubular member. In a preferred embodiment, the apparatus further includes an anchoring member coupled to the tubular support member adapted to hold the expandable tubular.


A method of plastically deforming and radially expanding a tubular member has also been described that includes plastically deforming and radially expanding a first end of the tubular member, and plastically deforming and radially expanding a second end of the tubular member. In a preferred embodiment, the method further includes anchoring the tubular member during the radial expansion. In a preferred embodiment, the first end of the tubular member is plastically deformed and radially expanded before the second end. In a preferred embodiment, plastically deforming and radially expanding the second end of the tubular member includes injecting a fluidic material into the tubular member.


A method of coupling a first tubular member to a second tubular member has also been described that includes positioning the second tubular member inside the first tubular member in an overlapping relationship, plastically deforming and radially expanding the end of the second tubular member that overlaps with the first tubular member, and plastically deforming and radially expanding the remaining portion of the second tubular member. In a preferred embodiment, the method further includes plastically deforming and radially expanding at least a portion of the second tubular member. In a preferred embodiment, the inside diameters of the first and second tubular members are substantially equal after the radial expansions.


An apparatus for coupling a first tubular member to a second tubular member has also been described that includes means for positioning the second tubular member inside the first tubular member in an overlapping relationship, means for plastically deforming and radially expanding the end of the second tubular member that overlaps with the first tubular member, and means for plastically deforming and radially expanding the remaining portion of the second tubular member. In a preferred embodiment, the apparatus further includes means for plastically deforming and radially expanding at least a portion of the second tubular member. In a preferred embodiment, the inside diameters of the first and second tubular members are substantially equal after the radial expansions.


An apparatus for forming a wellbore casing within a wellbore has also been described that includes means for supporting a tubular member within the wellbore, means for plastically deforming and radially expanding a first end of the tubular member, and means for plastically deforming and radially expanding a second end of the tubular member. In a preferred embodiment, the apparatus further includes means for anchoring the tubular member during the radial expansion. In a preferred embodiment, the apparatus further includes means for injecting a hardenable fluidic sealing material into an annulus between the tubular member and the wellbore.


An apparatus for forming a wellbore casing within a wellbore has also been described that includes a tubular support member including a first passage, an expansion cone coupled to the tubular support having a second passage fluidicly coupled to the first passage and an outer conical surface, an annular expansion cone launcher movably coupled to outer conical surface of the expansion cone, an expandable tubular member coupled to an end of the annular expansion cone launcher, a shoe coupled to another end of the annular expansion cone launcher having a valveable fluid passage, and another annular expansion cone movably coupled to the tubular support member. The annular expansion cones are positioned in opposite orientations. In a preferred embodiment, the annular expansion cone is adapted to plastically deform and radially expand a first end of the expandable tubular member and the other annular expansion cone is adapted to plastically deform and radially expand a second end of the expandable tubular member. In a preferred embodiment, the apparatus further includes an anchoring member coupled to the tubular support member adapted to hold the expandable tubular.


A method of forming a wellbore casing within a wellbore has also been described that includes plastically deforming and radially expanding a first end of the tubular member, and plastically deforming and radially expanding a second end of the tubular member. In a preferred embodiment, the method further includes anchoring the tubular member during the radial expansion. In a preferred embodiment, the first end of the tubular member is plastically deformed and radially expanded before the second end. In a preferred embodiment, plastically deforming and radially expanding the second end of the tubular member includes injecting a fluidic material into the tubular member. In a preferred embodiment, the method further includes injecting a hardenable fluidic sealing material into an annulus between the tubular member and the wellbore.


A method of forming a wellbore casing within a wellbore has also been described that includes plastically deforming and radially expanding a first tubular member within the wellbore, positioning a second tubular member inside the first tubular member in an overlapping relationship, plastically deforming and radially expanding the end of the second tubular member that overlaps with the first tubular member, plastically deforming and radially expanding the remaining portion of the second tubular member. In a preferred embodiment, the method further includes plastically deforming and radially expanding at least a portion of the second tubular member. In a preferred embodiment, the inside diameters of the first and second tubular members are substantially equal after the radial expansions. In a preferred embodiment, the method further includes injecting a hardenable fluidic sealing material into an annulus between the first tubular member and the wellbore. In a preferred embodiment, the method further includes injecting a hardenable fluidic sealing material into an annulus between the second tubular member and the wellbore.


An apparatus for forming a wellbore casing within a wellbore has also been described that includes means for plastically deforming and radially expanding a first tubular member within the wellbore, means for positioning the second tubular member inside the first tubular member in an overlapping relationship, means for plastically deforming and radially expanding the end of the second tubular member that overlaps with the first tubular member, means for plastically deforming and radially expanding the remaining portion of the second tubular member. In a preferred embodiment, the apparatus further includes means for plastically deforming and radially expanding at least a portion of the second tubular member. In a preferred embodiment, the inside diameters of the first and second tubular members are substantially equal after the radial expansions. In a preferred embodiment, the apparatus further includes means for injecting a hardenable fluidic sealing material into an annulus between the first tubular member and the wellbore. In a preferred embodiment, the apparatus further includes means for injecting a hardenable fluidic sealing material into an annulus between the second tubular member and the wellbore.


An apparatus for bridging an axial gap between opposing pairs of wellbore casing within a wellbore has also been described that includes means for supporting a tubular member in overlapping relation to the opposing ends of the wellbore casings, means for plastically deforming and radially expanding the tubular member, and means for plastically deforming and radially expanding the tubular member and the opposing ends of the wellbore casings.


A method of bridging an axial gap between opposing pairs of wellbore casing within a wellbore has also been described that includes supporting a tubular member in overlapping relation to the opposing ends of the wellbore casings, plastically deforming and radially expanding the tubular member, and plastically deforming and radially expanding the tubular member and the opposing ends of the wellbore casings.


A method of forming a structure having desired strength characteristics has also been described that includes providing a first tubular member, and plastically deforming and radially expanding additional tubular members onto the interior surface of the first tubular member until the desired strength characteristics are achieved.


A method of forming a wellbore casing within a wellbore having desired strength characteristics has also been described that includes plastically deforming and radially expanding a first tubular member within the wellbore, and plastically deforming and radially expanding additional tubular members onto the interior surface of the first tubular member until the desired strength characteristics are achieved.


A method of coupling a first tubular member to a second tubular member, the first tubular member having an original outside diameter OD0 and an original wall thickness t0, has also been described that includes plastically deforming and radially expanding a first portion of the first tubular member to a first outside diameter, plastically deforming and radially expanding another portion of the first tubular member to a second outside diameter, positioning the second tubular member inside the first tubular member in overlapping relation to the first portion of the first tubular member, plastically deforming and radially expanding the second tubular member to a third outside diameter, and plastically deforming and radially expanding the second tubular member to a fourth outside diameter, wherein the inside diameters of the first and second tubular members after the plastic deformations and radial expansions are substantially equal, and


wherein the ratio of the original outside diameter OD0 of the first tubular member to the original wall thickness t0 of the first tubular member is greater than or equal to 16.


A method of forming a mono-diameter wellbore casing has also been described that includes positioning a first tubular member within a wellbore, the first tubular member having an original outside diameter OD0 and an original wall thickness t0, plastically deforming and radially expanding a first portion of the first tubular member to a first outside diameter, plastically deforming and radially expanding another portion of the first tubular member to a second outside diameter, positioning the second tubular member inside the first tubular member in overlapping relation to the first portion of the first tubular member, plastically deforming and radially expanding the second tubular member to a third outside diameter, and plastically deforming and radially expanding the second tubular member to a fourth outside diameter. The inside diameters of the first and second tubular members after the plastic deformations and radial expansions are substantially equal, and wherein the ratio of the original outside diameter OD0 of the first tubular member to the original wall thickness t0 of the first tubular member is greater than or equal to 16.


An apparatus has also been described that includes a plastically deformed and radially expanded tubular member having a first portion having a first outside diameter and a remaining portion having a second outside diameter, wherein the ratio of the original outside diameter OD0 of the first tubular member to the original wall thickness t0 of the first tubular member is greater than or equal to 16.


An apparatus has also been described that includes a plastically deformed and radially expanded first tubular member having a first portion having a first outside diameter and a remaining portion having a second outside diameter, and a plastically deformed and radially expanded second tubular member coupled to the first portion of the first tubular member. The ratio of the original outside diameter OD0 of the first tubular member to the original wall thickness t0 of the first tubular member is greater than or equal to 16. In a preferred embodiment, the inside diameters of the first and second tubular members are substantially equal.


A wellbore casing formed in a wellbore has also been described that includes a plastically deformed and radially expanded first tubular member having a first portion having a first outside diameter and a remaining portion having a second outside diameter, and a plastically deformed and radially expanded second tubular member coupled to the first portion of the first tubular member. The ratio of the original outside diameter OD0 of the first tubular member to the original wall thickness t0 of the first tubular member is greater than or equal to 16. In a preferred embodiment, the inside diameters of the first and second tubular members are substantially equal.


An apparatus has also been described that includes a plastically deformed and radially expanded tubular member. In a preferred embodiment, the ratio of the original outside diameter OD0 of the tubular member to the original wall thickness t0 of the tubular member is greater than or equal to 16.


In several alternative embodiments, the methods and apparatus described and referenced above may be used to form or repair wellbore casings, pipelines, and structural supports.


Although this detailed description has shown and described illustrative embodiments of the invention, this description contemplates a wide range of modifications, changes, and substitutions. In some instances, one may employ some features of the present invention without a corresponding use of the other features. Accordingly, it is appropriate that readers should construe the appended claims broadly, and in a manner consistent with the scope of the invention.

Claims
  • 1. A method of coupling a first tubular member to a second tubular member, comprising: plastically deforming and radially expanding a first portion of the first tubular member to a first outside diameter;plastically deforming and radially expanding another portion of the first tubular member to a second outside diameter;positioning the second tubular member inside the plastically deformed and radially expanded first portion of the first tubular member in an overlapping relationship therewith;plastically deforming and radially expanding the second tubular member to a third outside diameter; andplastically deforming and radially expanding the second tubular member to a fourth outside diameter;wherein the inside diameters of the first and second tubular members alter the plastic deformations and radial expansions are substantially equal; andwherein plastically deforming and radially expanding the first portion of the first tubular member comprises:applying a radial force to the first portion of the first tubular member using an inflatable bladder.
  • 2. The method of claim 1 wherein the first and second tubular members comprise wellbore casing members.
  • 3. The method of claim 1 wherein the first and second tubular members comprise pipeline members.
  • 4. The method of claim 1 wherein the first and second tubular members comprise structural support members.
  • 5. A method of forming a mono-diameter wellbore casing within a wellbore, comprising: supporting a first tubular member within the wellbore;plastically deforming and radially expanding a first longitudinal portion of the first tubular member to a first outside diameter;plastically deforming and radially expanding a second longitudinal portion of the first tubular member to a second outside diameter;positioning a second tubular member inside the plastically deformed and radially expanded first longitudinal portion of the first tubular member in an overlapping relation therewith;plastically deforming and radially expanding the second tubular member to a third outside diameter; andplastically detouring and radially expanding the second tubular member to a, fourth outside diameter;wherein the inside diameters of the first and second tubular members after the plastic deformations and radial expansions are substantially equal; andwherein plastically deforming and radially expanding the first longitudinal portion of the first tubular member comprises:applying a radial force to the first portion of the first tubular member using an inflatable bladder.
  • 6. The method of claim 5 wherein the first and second tubular members comprise wellbore casing members.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a divisional of U.S. application Ser. No. 10/465,831, filed Jun. 13, 2003, now U.S. Pat. No. 7,100,685, which is the National Phase of the International Application No. PCT/US02/00093, filed Jan. 2, 2002, which is based on U.S. Application Ser. No. 60/259,486, filed on Jan. 3, 2001, which was a Continuation-In-Part of U.S. application Ser. No. 10/406,648 filed Mar. 31, 2003, (now allowed), which is a National Phase of the International Application No. PCT/US01/30256, filed Sep. 27, 2001, which is based on U.S. Application Ser. No. 60/237,334, filed on Oct. 2, 2000, the disclosure of which is incorporated herein by reference. This application is related to the following applications: (1) U.S. patent application Ser. No. 09/454,139, filed on Dec. 3, 1999, now U.S. Pat. No. 6,497,289, (2) U.S. patent application Ser. No. 09/510,913, filed on Feb. 23, 2000, (3) U.S. patent application Ser. No. 09/502,350, filed on Feb. 10, 2000, now U.S. Pat. No. 6,823,937 (4) U.S. patent application Ser. No. 09/440,338, filed on Nov. 15, 1999, now U.S. Pat. No. 6,328,113 (5) U.S. patent application Ser. No. 09/523,460, filed on Mar. 10, 2000, now U.S. Pat. No. 6,640,903 (6) U.S. patent application Ser. No. 09/512,895, filed on Feb. 24, 2000, now U.S. Pat. No. 6,568,471 (7) U.S. patent application Ser. No. 09/511,941, filed on Feb. 24, 2000, now U.S. Pat. No. 6,575,240 (8) U.S. patent application Ser. No. 09/588,946, filed on Jun. 7, 2000, now U.S. Pat. No. 6,557,640 (9) U.S. patent application Ser. No. 09/559,122, filed on Apr. 26, 2000, now U.S. Pat. No. 6,604,763 (10) PCT patent application Ser. No. PCT/US00/18635, filed on Jul. 9, 2000, (11) U.S. provisional patent application Ser. No. 60/162,671, filed on Nov. 1, 1999, (12) U.S. provisional patent application Ser. No. 60/154,047, filed on Sep. 16, 1999, (13) U.S. Pat. No. 6,564,875, which was filed as application Ser. No. 09/679,907, on Oct. 5, 2000, which claims priority from U.S. provisional patent application Ser. No. 60/159,082, filed on Oct. 12, 1999, (14) U.S. patent application Ser. No. 10/089,419, filed on Mar. 27 2002, now U.S. Pat. No. 6,695,012 which issued Feb. 24 2004, which claims priority from U.S. provisional patent application Ser. No. 60/159,039, filed on Oct. 12, 1999, (15) U.S. provisional patent application Ser. No. 60/159,033, filed on Oct. 12, 1999, (16) U.S. provisional patent application Ser. No. 60/212,359, filed on Jun. 19, 2000, (17) U.S. provisional patent application Ser. No. 60/165,228, filed on Nov. 12, 1999, (18) U.S. provisional patent application Ser. No. 60/221,443, filed on Jul. 28, 2000, (19) U.S. provisional patent application Ser. No. 60/221,645, filed on Jul. 28, 2000, (20) U.S. patent application Ser. No. 10/322,947, filed on Jan. 22, 2003, now U.S. Pat. No. 6,976,541 which issued Dec. 20, 2005, which claims priority from U.S. provisional patent application Ser. No. 60/233,638, filed on Sep. 18, 2000, and (21) U.S. provisional patent application Ser. No. 60/237,334, filed on Oct. 2, 2000. Applicants incorporate by reference the disclosures of these applications. This application is also related to each of the following: (1) U.S. utility patent application Ser. No. 11/068,595, filed on Feb. 28, 2005; (2) U.S. utility patent application Ser. No. 11/069,698, filed on Mar. 1, 2005; (3) U.S. utility patent application Ser. No. 11/071,409, filed on Mar. 2, 2005; (4) U.S. utility patent application Ser. No. 11/071,557, filed on Mar. 3, 2005; (5) U.S. utility patent application Ser. No. 11/072,578, filed on Mar. 4, 2005; (6) U.S. utility patent application Ser. No. 11/072,893, filed on Mar. 4, 2005; (7) U.S. utility patent application Ser. No. 11/072,594, filed on Mar. 4, 2005; (8) U.S. utility patent application Ser. No. 11/074,366, filed on Mar. 7, 2005; and (9) U.S. utility patent application Ser. No. 11/074,266, filed on Mar. 7, 2005. This application is related to the following co-pending applications: (1) U.S. Pat. No. 6,497,289, which was filed as U.S. patent application Ser. No. 09/454,139, filed on Dec. 3, 1999, which claims priority from provisional application 60/111,293, filed on Dec. 7, 1998, (2) U.S. patent application Ser. No. 09/510,913, filed on Feb. 23, 2000, which claims priority from provisional application 60/121,702, filed on Feb. 25, 1999, (3) U.S. patent application Ser. No. 09/502,350, filed on Feb. 10, 2000, now U.S. Pat. No. 6,823,937 which issued Nov. 30, 2004, which claims priority from provisional application 60/119,611, filed on Feb. 11, 1999, (4) U.S. Pat. No. 6,328,113, which was filed as U.S. patent application Ser. No. 09/440,338, filed on Nov. 15, 1999, which claims priority from provisional application 60/108,558, filed on Nov. 16, 1998, (5) U.S. patent application Ser. No. 10/169,434, filed on Jul. 1, 2002, which claims priority from provisional application 60/183,546, filed on Feb. 18, 2000, (6) U.S. Pat. No. 6,640,903 which was filed as U.S. patent application Ser. No. 09/523,468, filed on Mar. 10, 2000, which claims priority from provisional application 60/124,042, filed on Mar. 11, 1999, (7) U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999 (8) U.S. Pat. No. 6,575,240, which was filed as patent application Ser. No. 09/511,941, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,907, filed on Feb. 26, 1999, (9) U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, filed on Jun. 7, 2000, which claims priority from provisional application 60/137,998, filed on Jun. 7, 1999, (10) U.S. patent application Ser. No. 09/981,916, filed on Oct. 18, 2001 as a continuation-in-part application of U.S. Pat. No. 6,328,113,which was filed as U.S. patent application Ser. No. 09/440,338, filed on Nov. 15, 1999, which claims priority from provisional application 60/108,558, filed on Nov. 16, 1998, (11) U.S. Pat. No. 6,604,763, which was filed as application Ser. No. 09/559,122, filed on Apr. 26, 2000, which claims priority from provisional application 60/131,106, filed on Apr. 26, 1999, (12) U.S. patent application Ser. No. 10/030,593, filed on Jan. 8, 2002, which claims priority from provisional application 60/146,203, filed on Jul. 29, 1999, (13) U.S. provisional patent application Ser. No. 60/143,039, filed on Jul. 9, 1999, (14) U.S. patent application Ser. No. 10/111,982, filed on Apr. 30, 2002, which claims priority from provisional patent application Ser. No. 60/162,671, filed on Nov. 1, 1999, (15) U.S. provisional patent application Ser. No. 60/154,047, filed on Sep. 16, 1999, (16) U.S. provisional patent application Ser. No. 60/438,828, filed on Jan. 9, 2003, (17) U.S. Pat. No. 6,564,875, which was filed as application Ser. No. 09/679,907, on Oct. 5, 2000, which claims priority from provisional patent application Ser. No. 60/159,082, filed on Oct. 12, 1999, (18) U.S. patent application Ser. No. 10/089,419, filed on Mar. 27, 2002, now U.S. Pat. No. 6,695,012 which issued Feb. 24 2004, which claims priority from provisional patent application Ser. No. 60/159,039, filed on Oct. 12, 1999, (19) U.S. patent application Ser. No. 09/679,906, filed on Oct. 5, 2000, which claims priority from provisional patent application Ser. No. 60/159,033, filed on Oct. 12, 1999, (20) U.S. patent application Ser. No. 10/303,992, filed on Nov. 22, 2002, which claims priority from provisional patent application Ser. No. 60/212,359, filed on Jun. 19, 2000, (21) U.S. provisional patent application Ser. No. 60/165,228, filed on Nov. 12, 1999, (22) U.S. provisional patent application Ser. No. 60/455,051, filed on Mar. 14, 2003, (23) PCT application US02/2477, filed on Jun. 26, 2002, which claims priority from U.S. provisional patent application Ser. No. 60/303,711, filed on Jul. 6, 2001, (24) U.S. patent application Ser. No. 10/311,412, filed on Dec. 12, 2002, which claims priority from provisional patent application Ser. No. 60/221,443, filed on Jul. 28, 2000, (25) U.S. patent application Ser. No. 10/322,947, filed on Dec. 18, 2002, which claims priority from provisional patent application Ser. No. 60/221,645, filed on Jul. 28, 2000, (26) U.S. patent application Ser. No. 10/322,947, filed on Jan. 22, 2003, now U.S. Pat. No. 6,976,541 which issued Dec. 20, 2005, which claims priority from provisional patent application Ser. No. 60/233,638, filed on Sep. 18, 2000, (27) U.S. patent application Ser. No. 10/406,648, filed on Mar. 31, 2003, which claims priority from provisional patent application Ser. No. 60/237,334, filed on Oct. 2, 2000, (28) PCT application US02/04353, filed on Feb. 14, 2002, which claims priority from U.S. provisional patent application Ser. No. 60/270,007, filed on Feb. 20, 2001, (29) U.S. patent application Ser. No. 10/465,835, filed on Jun. 13, 2003, which claims priority from provisional patent application Ser. No. 60/262,434, filed on Jan. 17, 2001, (30) U.S. patent application Ser. No. 10/465,831, filed on Jun. 13, 2003, which claims priority from U.S. provisional patent application Ser. No. 60/259,486, filed on Jan. 3, 2001, (31) U.S. provisional patent application Ser. No. 60/452,303, filed on Mar. 5, 2003, (32) U.S. Pat. No. 6,470,966, which was filed as patent application Ser. No. 09/850,093, filed on May 7, 2001, as a divisional application of U.S. Pat. No. 6,497,289, which was filed as U.S. patent application Ser. No. 09/454,139, filed on Dec. 3, 1999, which claims priority from provisional application 60/111,293, filed on Dec. 7, 1998, (33) U.S. Pat. No. 6,561,227, which was filed as patent application Ser. No. 09/852,026, filed on May 9, 2001, as a divisional application of U.S. Pat. No. 6,497,289, which was filed as U.S. patent application Ser. No. 09/454,139, filed on Dec. 3, 1999, which claims priority from provisional application 60/111,293, filed on Dec. 7, 1998, (34) U.S. patent application Ser. No. 09/852,027, filed on May 9, 2001, as a divisional application of U.S. Pat. No. 6,497,289, which was filed as U.S. patent application Ser. No. 09/454,139, filed on Dec. 3, 1999, which claims priority from provisional application 60/111,293, filed on Dec. 7, 1998, (35) PCT Application US02/25608, filed on Aug. 13, 2002, which claims priority from provisional application 60/318,021, filed on Sep. 7, 2001, (36) PCT Application US02/24399, filed on Aug. 1, 2002, which claims priority from U.S. provisional patent application Ser. No. 60/313,453, filed on Aug. 20, 2001, (37) PCT Application US02/29856, filed on Sep. 19, 2002, which claims priority from U.S. provisional patent application Ser. No. 60/326,886, filed on Oct. 3, 2001, (38) PCT Application US02/20256, filed on Jun. 26, 2002, which claims priority from U.S. provisional patent application Ser. No. 60/303,740, filed on Jul. 6, 2001, (39) U.S. patent application Ser. No. 09/962,469, filed on Sep. 25, 2001, now U.S. Pat. No. 6,892,819 which issued May 17, 2005, which is a divisional of U.S. patent application Ser. No. 09/523,468, filed on Mar. 10, 2000, (now U.S. Pat. No. 6,640,903 which issued Nov. 4, 2003), which claims priority from provisional application 60/124,042, filed on Mar. 11, 1999, (40) U.S. patent application Ser. No. 09/962,470, filed on Sep. 25, 2001, which is a divisional of U.S. patent application Ser. No. 09/523,468, filed on Mar. 10, 2000, (now U.S. Pat. No. 6,640,903 which issued Nov. 4, 2003), which claims priority from provisional application 60/124,042, filed on Mar. 11, 1999, (41) U.S. patent application Ser. No. 09/962,471, filed on Sep. 25, 2001, now U.S. Pat. No. 6,739,392 which issued May 25, 2004, which is a divisional of U.S. patent application Ser. No. 09/523,468, filed on Mar. 10, 2000, (now U.S. Pat. No. 6,640,903 which issued Nov. 4, 2003), which claims priority from provisional application 60/124,042, filed on Mar. 11, 1999, (42) U.S. patent application Ser. No. 09/962,467, filed on Sep. 25, 2001, now U.S. Pat. No. 6,725,919 which issued Apr. 27, 2004, which is a divisional of U.S. patent application Ser. No. 09/523,468, filed on Mar. 10, 2000, (now U.S. Pat. No. 6,640,903 which issued Nov. 4, 2003), which claims priority from provisional application 60/124,042, filed on Mar. 11, 1999, (43) U.S. patent application Ser. No. 09/962,468, filed on Sep. 25, 2001, now U.S. Pat. No. 6,758,278 which issued Jul. 6, 2004, which is a divisional of U.S. patent application Ser. No. 09/523,468, filed on Mar. 10, 2000, (now U.S. Pat. No. 6,640,903 which issued Nov. 4, 2003), which claims priority from provisional application 60/124,042, filed on Mar. 11, 1999, (44) PCT application US 02/25727, filed on Aug. 14, 2002, which claims priority from U.S. provisional patent application Ser. No. 60/317,985, filed on Sep. 6, 2001, and U.S. provisional patent application Ser. No. 60/318,386, filed on Sep. 10, 2001, (45) PCT application US 02/39425, filed on Dec. 10, 2002, which claims priority from U.S. provisional patent application Ser. No. 60/343,674, filed on Dec. 27, 2001, (46) U.S. utility patent application Ser. No. 09/969,922, filed on Oct. 3, 2001, (now U.S. Pat. No. 6,634,431 which issued Oct. 21, 2003), which is a continuation-in-part application of U.S. Pat. No. 6,328,113, which was filed as U.S. patent application Ser. No. 09/440,338, filed on Nov. 15, 1999, which claims priority from provisional application 60/108,558, filed on Nov. 16, 1998, (47) U.S. utility patent application Ser. No. 10/516,467, now U.S. Pat. No. 6,745,845 which issued Jun. 8, 2004, filed on Dec. 10, 2001, which is a continuation application of U.S. utility patent application Ser. No. 09/969,922, filed on Oct. 3, 2001, (now U.S. Pat. No. 6,634,431 which issued Oct. 21, 2003), which is a continuation-in-part application of U.S. Pat. No. 6,328,113, which was filed as U.S. patent application Ser. No. 09/440,338, filed on Nov. 15, 1999, which claims priority from provisional application 60/108,558, filed on Nov. 16, 1998, (48) PCT application US 03/00609, filed on Jan. 9, 2003, which claims priority from U.S. provisional patent application Ser. No. 60/357,372, filed on Feb. 15, 2002, (49) U.S. patent application Ser. No. 10/074,703, now U.S. Pat. No. 6,705,395 which issued Mar. 16, 2004, filed on Feb. 12, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (50) U.S. patent application Ser. No. 10/074,244, filed on Feb. 12, 2002, now U.S. Pat. No. 6,631,759 which issued Oct. 14, 2003, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (51) U.S. patent application Ser. No. 10/076,660, filed on Feb. 15, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (52) U.S. patent application Ser. No. 10/076,661, filed on Feb. 15, 2002, now U.S. Pat. No. 6,631,769 which issued Oct. 14, 2003, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (53) U.S. patent application Ser. No. 10/076,659, filed on Feb. 15, 2002, now U.S. Pat. 7,063,142, which issued Jun. 20, 2006, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (54) U.S. patent application Ser. No. 10/078,928, filed on Feb. 20, 2002, now U.S. Pat. No. 6,684,947 which issued Feb. 3, 2004, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (55) U.S. patent application Ser. No. 10/078,922, filed on Feb. 20, 2002, now U.S. Pat. No. 6,966,370 which issued Nov. 22, 2005, which is a divisional of U.S. patent No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (56) U.S. patent application Ser. No. 10/078,921, filed on Feb. 20, 2002, now U.S. Pat. No. 7,044,221 which issued May 16, 2006, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (57) U.S. patent application Ser. No. 10/261,928, filed on Oct. 1, 2002, now U.S. Pat. No. 7,011,161 which issued Mar. 14, 2006, which is a divisional of U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, filed on Jun. 7, 2000, which claims priority from provisional application 60/137,998, filed on Jun. 7, 1999, (58) U.S. patent application Ser. No. 10/079,276, filed on Feb. 20, 2002, now U.S. Pat. No. 7,040,396 which issued May 9, 2006, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (59) U.S. patent application Ser. No. 10/262,009, filed on Oct. 1, 2002, now U.S. Pat. No. 7,048,062 which issued May 23, 2006, which is a divisional of U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, filed on Jun. 7, 2000, which claims priority from provisional application 60/137,998, filed on Jun. 7, 1999, (60) U.S. patent application Ser. No. 10/092,481, filed on Mar. 7, 2002, now U.S. Pat. No. 6,857,473 which issued Feb. 22, 2005, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (61) U.S. patent application Ser. No. 10/261,926, filed on Oct. 1, 2002, which is a divisional of U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, filed on Jun. 7, 2000, which claims priority from provisional application 60/137,998, filed on Jun. 7, 1999, (62) PCT application US 02/36157, filed on Nov. 12, 2002, which claims priority from U.S. provisional patent application Ser. No. 60/338,996, filed on Nov. 12, 2001, (63) PCT application US 02/36267, filed on Nov. 12, 2002, which claims priority from U.S. provisional patent application Ser. No. 60/339,013, filed on Nov. 12, 2001, (64) PCT application US 03/11765, filed on Apr. 16, 2003, which claims priority from U.S. provisional patent application Ser. No. 60/383,917, filed on May 29, 2002, (65) PCT application US 03/15020, filed on May 12, 2003, which claims priority from U.S. provisional patent application Ser. No. 60/391,703, filed on Jun. 26, 2002, (66) PCT application US 02/39418, filed on Dec. 10, 2002, which claims priority from U.S. provisional patent application Ser. No. 60/346,309, filed on Jan. 7, 2002, (67) PCT application US 03/06544, filed on Mar. 4, 2003, which claims priority from U.S. provisional patent application Ser. No. 60/372,048, filed on Apr. 12, 2002, (68) U.S. patent application Ser. No. 10/331,718, filed on Dec. 30, 2002, which is a divisional U.S. patent application Ser. No. 09/679,906, filed on Oct. 5, 2000, which claims priority from provisional patent application Ser. No. 60/159,033, filed on Oct. 12, 1999, (69) PCT application US 03/04837, filed on Feb. 29, 2003, which claims priority from U.S. provisional patent application Ser. No. 60/363,829, filed on Mar. 13, 2002, (70) U.S. patent application Ser. No. 10/261,927, filed on Oct. 1, 2002, now U.S. Pat. No. 7,077,213 which issued Jul. 18, 2006, which is a divisional of U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, filed on Jun. 7, 2000, which claims priority from provisional application 60/137,998, filed on Jun. 7, 1999, (71) U.S. patent application Ser. No. 10/262,008, filed on Oct. 1, 2002, now U.S. Pat. No. 7,036,582 which issued May 2, 2006, which is a divisional of U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, filed on Jun. 7, 2000, which claims priority from provisional application 60/137,998, filed on Jun. 7, 1999, (72) U.S. patent application Ser. No. 10/261,925, filed on Oct. 1, 2002, now U.S. Pat. No. 7,044,218 which issued May 16, 2006, which is a divisional of U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, filed on Jun. 7, 2000, which claims priority from provisional application 60/137,998, filed on Jun. 7, 1999, (73) U.S. patent application Ser. No. 10/199,524, filed on Jul. 19, 2002, which is a continuation of U.S. Pat. No. 6,497,289, which was filed as U.S. patent application Ser. No. 09/454,139, filed on Dec. 3, 1999, which claims priority from provisional application 60/111,293, filed on Dec. 7, 1998, (74) PCT application US 03/10144, filed on Mar. 28, 2003, which claims priority from U.S. provisional patent application Ser. No. 60/372,632, filed on Apr. 15, 2002, (75) U.S. provisional patent application Ser. No. 60/412,542, filed on Sep. 20, 2002, (76) PCT application US 03/14153, filed on May 6, 2003, which claims priority from U.S. provisional patent application Ser. No. 60/380,147, filed on May 6, 2002, (77) PCT application US 03/19993, filed on Jun. 24, 2003, which claims priority from U.S. provisional patent application Ser. No. 60/397,284, filed on Jul. 19, 2002, (78) PCT application US 03/13787, filed on May 5, 2003, which claims priority from U.S. provisional patent application Ser. No. 60/387,486, filed on Jun. 10, 2002, (79) PCT application US 03/18530, filed on Jun. 11, 2003, which claims priority from U.S. provisional patent application Ser. No. 60/387,961, filed on Jun. 12, 2002, (80) PCT application US 03/20694, filed on Jul. 1, 2003, which claims priority from U.S. provisional patent application Ser. No. 60/398,061, filed on Jul. 24, 2002, (81) PCT application US 03/20870, filed on Jul. 2, 2003, which claims priority from U.S. provisional patent application Ser. No. 60/399,240, filed on Jul. 29, 2002, (82) U.S. provisional patent application Ser. No. 60/412,487, filed on Sep. 20, 2002, (83) U.S. provisional patent application Ser. No. 60/412,488, filed on Sep. 20, 2002, (84) U.S. patent application Ser. No. 10/280,356, filed on Oct. 25, 2002, which is a continuation of U.S. Pat. No. 6,470,966, which was filed as patent application Ser. No. 09/850,093, filed on May 7, 2001, as a divisional application of U.S. Pat. No. 6,497,289, which was filed as U.S. patent application Ser. No. 09/454,139, filed on Dec. 3, 1999, which claims priority from provisional application 60/111,293, filed on Dec. 7, 1998, (85) U.S. provisional patent application Ser. No. 60/412,177, filed on Sep. 20, 2002, (86) U.S. provisional patent application Ser. No. 60/412,653, filed on Sep. 20, 2002, (87) U.S. provisional patent application Ser. No. 60/405,610, filed on Aug. 23, 2002, (88) U.S. provisional patent application Ser. No. 60/405,394, filed on Aug. 23, 2002, (89) U.S. provisional patent application Ser. No. 60/412,544, filed on Sep. 20, 2002, (90) PCT application US 03/24779, filed on Aug. 8, 2003, which claims priority from U.S. provisional patent application Ser. No. 60/407,442, filed on Aug. 30, 2002, (91) U.S. provisional patent application Ser. No. 60/423,363, filed on Dec. 10, 2002, (92) U.S. provisional patent application Ser. No. 60/412,196, filed on Sep. 20, 2002, (93) U.S. provisional patent application Ser. No. 60/412,187, filed on Sep. 20, 2002, (94) U.S. provisional patent application Ser. No. 60/412,371, filed on Sep. 20, 2002, (95) U.S. patent application Ser. No. 10/382,325, filed on Mar. 5, 2003, which is a continuation of U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, filed on Jun. 7, 2000, which claims priority from provisional application 60/137,998, filed on Jun. 7, 1999, (96) U.S. patent application Ser. No. 10/624,842, filed on Jul. 22, 2003, which is a divisional of U.S. patent application Ser. No. 09/502,350, filed on Feb. 10, 2000, now U.S. Pat. No. 6,823,937 which issued Nov. 30, 2004, which claims priority from provisional application 60/119,611, filed on Feb. 11, 1999, (97) U.S. provisional patent application Ser. No. 60/431,184, filed on Dec. 5, 2002, (98) U.S. provisional patent application Ser. No. 60/448,526, filed on Feb. 18, 2003, (99) U.S. provisional patent application Ser. No. 60/461,539, filed on Apr. 9, 2003, (100) U.S. provisional patent application Ser. No. 60/462,750, filed on Apr. 14, 2003, (101) U.S. provisional patent application Ser. No. 60/436,106, filed on Dec. 23, 2002, (102) U.S. provisional patent application Ser. No. 60/442,942, filed on Jan. 27, 2003, (103) U.S. provisional patent application Ser. No. 60/442,938, filed on Jan. 27, 2003, (104) U.S. patent application Ser. No. 10/418,687, filed on Apr. 18, 2003, now U.S. Pat. No. 7,021,390 which issued Apr. 4, 2006, (105) U.S. provisional patent application Ser. No. 60/454,896, filed on Mar. 14, 2003, (106) U.S. provisional patent application Ser. No. 60/450,504, filed on Feb. 26, 2003, (107) U.S. provisional patent application Ser. No. 60/451,152, filed on Mar. 9, 2003, (108) U.S. provisional patent application Ser. No. 60/455,124, filed on Mar. 17, 2003, (109) U.S. provisional patent application Ser. No. 60/453,678, filed on Mar. 11, 2003, (110) U.S. patent application Ser. No. 10/421,682, filed on Apr. 23, 2003, which is a continuation of U.S. patent application Ser. No. 09/523,468, filed on Mar. 10, 2000, (now U.S. Pat. No. 6,640,903 which issued Nov. 4, 2003), which claims priority from provisional application 60/124,042, filed on Mar. 11, 1999, (111) U.S. provisional patent application Ser. No. 60/457,965, filed on Mar. 27, 2003, (112) U.S. provisional patent application Ser. No. 60/455,718, filed on Mar. 18, 2003, (113) U.S. Pat. No. 6,550,821, which was filed as patent application Ser. No. 09/811,734, filed on Mar. 19, 2001, (114) U.S. patent application Ser. No. 10/436,467, filed on May 12, 2003, now U.S. Pat. No. 6,968,618 which issued Nov. 29, 2005, which is a continuation of U.S. Pat. No. 6,604,763, which was filed as application Ser. No. 09/559,122, filed on Apr. 26, 2000, which claims priority from provisional application 60/131,106, filed on Apr. 26, 1999, (115) U.S. provisional patent application Ser. No. 60/459,776, filed on Apr. 2, 2003, (116) U.S. provisional patent application Ser. No. 60/461,094, filed on Apr. 8, 2003, (117) U.S. provisional patent application Ser. No. 60/461,038, filed on Apr. 7, 2003, (118) U.S. provisional patent application Ser. No. 60/463,586, filed on Apr. 17, 2003, (119) U.S. provisional patent application Ser. No. 60/472,240, filed on May 20, 2003, (120) U.S. patent application Ser. No. 10/619,285, filed on Jul. 14, 2003, which is a continuation-in-part of U.S. utility patent application Ser. No. 09/969,922, filed on Oct. 3, 2001, (now U.S. Pat. 6,634,431 which issued Oct. 21, 2003), which is a continuation-in-part application of U.S. Pat. No. 6,328,113, which was filed as U.S. patent application Ser. No. 09/440,338, filed on Nov. 15, 1999, which claims priority from provisional application 60/108,558, filed on Nov. 16, 1998, (121) U.S. utility patent application Ser. No. 10/418,688, now U.S. Pat. No. 7,055,608 which issued Jun. 6, 2006, which was filed on Apr. 18, 2003, as a division of U.S. utility patent application Ser. No. 09/523,468, filed on Mar. 10, 2000, (now U.S. Pat. No. 6,640,903 which issued Nov. 4, 2003), which claims priority from provisional application 60/124,042, filed on Mar. 11, 1999; (122) PCT patent application serial no. PCT/US2004/06246, filed on Feb. 26, 2004; (123) PCT patent application serial number PCT/US2004/08170, filed on Mar. 15, 2004; (124) PCT patent application serial number PCT/US2004/08171, filed on Mar. 15, 2004; (125) PCT patent application serial number PCT/US2004/08073, filed on Mar. 18, 2004; (126) PCT patent application serial number PCT/US2004/07711, filed on Mar. 11, 2004; (127) PCT patent application serial number PCT/US2004/029025, filed on Mar. 26, 2004; (128) PCT patent application serial number PCT/US2004/010317, filed on Apr. 2, 2004; (129) PCT patent application serial number PCT/US2004/010712, filed on Apr. 6, 2004; (130) PCT patent application serial number PCT/US2004/010762, filed on Apr. 6, 2004; (131) PCT patent application serial number PCT/US2004/011973, filed on Apr. 15, 2004; (132) U.S. provisional patent application Ser. No. 60/495,056, filed on Aug. 14, 2003; (133) U.S. provisional patent application Ser. No. 60/600,679, filed on Aug. 11, 2004; (134) PCT patent application serial number PCT/US2005/027318, filed on Jul. 29, 2005; (135) PCT patent application serial number PCT/US2005/028936, filed on Aug. 12, 2005; (136) PCT patent application serial number PCT/US2005/028669, filed on Aug. 11, 2005; (137) PCT patent application serial number PCT/US2005/028453, filed on Aug. 11, 2005; (138) PCT patent application serial number PCT/US2005/028641, filed on Aug. 11, 2005; (139) PCT patent application serial number PCT/US2005/028819, filed on Aug. 11, 2005; (140) PCT patent application serial number PCT/US2005/028446, filed on Aug. 11, 2005; (141) PCT patent application serial number PCT/US2005/028642, filed on Aug. 11, 2005; (142) PCT patent application serial number PCT/US2005/028451, filed on Aug. 11, 2005, and (143). PCT patent application serial number PCT/US2005/028473, filed on Aug. 11, 2005, (144) U.S. utility patent application Ser. No. 10/546,082, filed on Aug. 16, 2005, (145) U.S. utility patent application Ser. No. 10/546,076, filed on Aug. 16, 2005, (146) U.S. utility patent application Ser. No. 10/545,936, filed on Aug. 16, 2005, (147) U.S. utility patent application Ser. No. 10/546,079, filed on Aug. 16, 2005 (148) U.S. utility patent application Ser. No. 10/545,941, filed on Aug. 16, 2005, (149) U.S. utility patent application Ser. No. 546078, filed on Aug. 16, 2005, filed on Aug. 11, 2005, (150) U.S. utility patent application Ser. No. 10/545,941, filed on Aug. 16, 2005, (151) U.S. utility patent application Ser. No. 11/249,967, filed on Oct. 13, 2005, (152) U.S. provisional patent application Ser. No. 60/734,302, filed on Nov. 7, 2005, (153) U.S. provisional patent application Ser. No. 60/725,181, filed on Oct. 11, 2005, (154) PCT patent application serial number PCT/US2005/023391, filed Jun. 29, 2005 which claims priority from U.S. provisional patent application Ser. No. 60/585,370, filed on Jul. 2, 2004, (155) U.S. provisional patent application Ser. No. 60/721,579, filed on Sep. 28, 2005, (156) U.S. provisional patent application Ser. No. 60/717,391, filed on Sep. 15, 2005, (157) U.S. provisional patent application Ser. No. 60/702,935, filed on Jul. 27, 2005, (158) U.S. provisional patent application Ser. No. 60/663,913, filed on Mar. 21, 2005, (159) U.S. provisional patent application Ser. No. 60/652,564, filed on Feb. 14, 2005, (160) U.S. provisional patent application Ser. No. 60/645,840, filed on Jan. 21, 2005, (161) PCT patent application serial number PCT/US2005/043122, filed on Nov. 29, 2005 which claims priority from U.S. provisional patent application Ser. No. 60/631,703, filed on Nov. 30, 2004, (162) U.S. provisional patent application Ser. No. 60/752,787, filed on Dec. 22, 2005, (163) U.S. National Stage application Ser. No. 10/548,934, filed on Sep. 12, 2005; (164) U.S. National Stage application Ser. No. 10/549,410, filed on Sep. 13, 2005; (165) U.S. Provisional Patent Application No. 60/717,391, filed on Sep. 15, 2005; (166) U.S. National Stage application Ser. No. 10/550,906, filed on Sep. 27, 2005; (167) U.S. National Stage application Ser. No. 10/551,880, filed on Sep. 30, 2005; (168) U.S. National Stage application Ser. No. 10/552,253, filed on Oct. 4, 2005; (169) U.S. National Stage application Ser. No. 10/552,790, filed on Oct. 11, 2005; (170) U.S. Provisional Patent Application No. 60/725,181, filed on Oct. 11, 2005; (171) U.S. National Stage application Ser. No. 10/553,094, filed on Oct. 13, 2005; (172) U.S. National Stage application Ser. No. 10/553,566, filed on Oct. 17, 2005; (173) PCT Patent Application No. PCT/US2006/002449, filed on Jan. 20, 2006, (174) PCT Patent Application No. PCT/US2006/004809, filed on Feb. 9, 2006; (175) U.S. Utility patent application Ser. No. 11/356,899, filed on Feb. 17, 2006, (176) U.S. National Stage application Ser. No. 10/568,200, filed on Feb. 13, 2006, (177) U.S. National Stage application Ser. No. 10/568,719, filed on Feb. 16, 2006, filed on Feb. 16, 2006, (178) U.S. National Stage application Ser. No. 10/569,323, filed on Feb. 17, 2006, (179) U.S. National State patent application Ser. No. 10/571,041, filed on Mar. 3, 2006; (180) U.S. National State patent application Ser. No. 10/571,017, filed on Mar. 3, 2006; (181) U.S. National State patent application Ser. No. 10/571,086, filed on Mar. 6, 2006; and (182) U.S. National State patent application Ser. No. 10/571,085, filed on Mar. 6, 2006, (183) U.S. utility patent application Ser. No. 10/938,788, filed on Sep. 10, 2004, (184) U.S. utility patent application Ser. No. 10/938,225, filed on Sep. 10, 2004, (185) U.S. utility patent application Ser. No. 10/952,288, filed on Sep. 28, 2004, (186) U.S. utility patent application Ser. No. 10/952,416, filed on Sep. 28, 2004, (187) U.S. utility patent application Ser. No. 10/950,749, filed on Sep. 27, 2004, (188) U.S. utility patent application Ser. No. 10/950,869, filed on Sep. 27, 2004; (189) U.S. provisional patent application Ser. No. 60/761,324, filed on Jan. 23, 2006, (190) U.S. provisional patent application Ser. No. 60/754,556, filed on Dec. 28, 2005, (191) U.S. utility patent application Ser. No. 11/380,051, filed on Apr. 25, 2006, (192) U.S. utility patent application Ser. No. 11/380,055, filed on Apr. 25, 2006, (193) U.S. utility patent application Ser. No. 10/522,039, filed on Mar. 10, 2006; (194) U.S. provisional patent application Ser. No. 60/746,813, filed on May 9, 2006; (195) U.S. utility patent application Ser. No. 11/456,584, filed on Jul. 11, 2006; and (196) U.S. utility patent application Ser. No. 11/456,587, filed on Jul. 11, 2006; (197) PCT Patent Application No. PCT/US2006/009886, filed on Mar. 21, 2006; (198) PCT Patent Application No. PCT/US2006/010674, filed on Mar. 21, 2006; (199) U.S. Pat. No. 6,409,175 which issued Jun. 25, 2002, (200) U.S. Pat. No. 6,550,821 which issued Apr. 22, 2003, (201) U.S. patent application Ser. No. 10/767,953, filed Jan. 29, 2004, now U.S. Pat. No. 7,077,211 which issued Jul. 18, 2006; (202) U.S. patent application Ser. No. 10/769,726, filed Jan. 30, 2004, (203) U.S. patent application Ser. No. 10/770,363 filed Feb. 2, 2004, (204) U.S. utility patent application Ser. No. 11/068,595, filed on Feb. 28, 2005; (205) U.S. utility patent application Ser. No. 11/070,147, filed on Mar. 2, 2005; (206) U.S. utility patent application Ser. No. 11/071,409, filed on Mar. 2, 2005; (207) U.S. utility patent application Ser. No. 11/071,557, filed on Mar. 3, 2005; (208) U.S. utility patent application Ser. No. 11/072,578, filed on Mar. 4, 2005; (209) U.S. utility patent application Ser. No. 11/072,893, filed on Mar. 4, 2005; (210) U.S. utility patent application Ser. No. 11/072,594, filed on Mar. 4, 2005; (211) U.S. utility patent application Ser. No. 11/074,366, filed on Mar. 7, 2005; (212) U.S. utility patent application Ser. No. 11/074,266, filed on Mar. 7, 2005, (213) U.S. provisional patent application Ser. No. 60/832,909, filed on Jul. 24, 2006, and (214) U.S. utility patent application Ser. No. 11/536,302, filed Sep. 28, 2006,

US Referenced Citations (899)
Number Name Date Kind
46818 Patterson Mar 1865 A
331940 Bole Dec 1885 A
332184 Bole Dec 1885 A
341237 Healey May 1886 A
519805 Bavier May 1894 A
802880 Phillips, Jr. Oct 1905 A
806156 Marshall Dec 1905 A
958517 Mettler May 1910 A
984449 Stewart Feb 1911 A
1166040 Burlingham Dec 1915 A
1233888 Leonard Jul 1917 A
1494128 Primrose May 1924 A
1589781 Anderson Jun 1926 A
1590357 Feisthamel Jun 1926 A
1597212 Spengler Aug 1926 A
1613461 Johnson Jan 1927 A
1756531 Aldeen et al. Apr 1930 A
1880218 Simmons Oct 1932 A
1981525 Price Nov 1934 A
2046870 Clasen et al. Jul 1936 A
2087185 Dillom Jul 1937 A
2122757 Scott Jul 1938 A
2145168 Flagg Jan 1939 A
2160263 Fletcher May 1939 A
2187275 McLennan Jan 1940 A
2204586 Grau Jun 1940 A
2211173 Shaffer Aug 1940 A
2214226 English Sep 1940 A
2226804 Carroll Dec 1940 A
2246038 Graham Jun 1941 A
2273017 Boynton Feb 1942 A
2301495 Abegg Nov 1942 A
2305282 Taylor, Jr. et al. Dec 1942 A
2371840 Otis Mar 1945 A
2383214 Prout Aug 1945 A
2447629 Beissinger et al. Aug 1948 A
2500276 Church Mar 1950 A
2546295 Boice Mar 1951 A
2583316 Bannister Jan 1952 A
2609258 Taylor, Jr. et al. Nov 1952 A
2627891 Clark Feb 1953 A
2647847 Black et al. Aug 1953 A
2664952 Losey Jan 1954 A
2691418 Connolly Oct 1954 A
2723721 Corsette Nov 1955 A
2734580 Layne Feb 1956 A
2796134 Binkley Jun 1957 A
2812025 Teague et al. Nov 1957 A
2877822 Buck Mar 1959 A
2907589 Knox Oct 1959 A
2919741 Strock et al. Jan 1960 A
2929741 Strock et al. Jan 1960 A
3015362 Moosman Jan 1962 A
3015500 Barnett Jan 1962 A
3018547 Marskell Jan 1962 A
3039530 Condra Jun 1962 A
3067801 Sortor Dec 1962 A
3067819 Gore Dec 1962 A
3068563 Reverman Dec 1962 A
3104703 Rike et al. Sep 1963 A
3111991 O'Neal Nov 1963 A
3162245 Howard et al. Dec 1964 A
3167122 Lang Jan 1965 A
3175618 Lang et al. Mar 1965 A
3179168 Vincent Apr 1965 A
3188816 Koch Jun 1965 A
3191677 Kinley Jun 1965 A
3191680 Vincent Jun 1965 A
3203451 Vincent Aug 1965 A
3203483 Vincent Aug 1965 A
3209546 Lawton Oct 1965 A
3210102 Joslin Oct 1965 A
3233315 Levake Feb 1966 A
3245471 Howard Apr 1966 A
3270817 Papaila Sep 1966 A
3297092 Jennings Jan 1967 A
3326293 Skipper Jun 1967 A
3343252 Reesor Sep 1967 A
3353599 Swift Nov 1967 A
3354955 Berry Nov 1967 A
3358760 Blagg Dec 1967 A
3358769 Berry Dec 1967 A
3364993 Skipper Jan 1968 A
3371717 Chenoweth Mar 1968 A
3397745 Owens et al. Aug 1968 A
3412565 Lindsey et al. Nov 1968 A
3419080 Lebourg Dec 1968 A
3422902 Bouchillon Jan 1969 A
3424244 Kinley Jan 1969 A
3427707 Nowosadko Feb 1969 A
3463228 Heam Aug 1969 A
3477506 Malone Nov 1969 A
3489220 Kinley Jan 1970 A
3489437 Duret Jan 1970 A
3498376 Sizer et al. Mar 1970 A
3504515 Reardon Apr 1970 A
3508771 Duret Apr 1970 A
3520049 Lysenko et al. Jul 1970 A
3528498 Carothers Sep 1970 A
3532174 Diamantides et al. Oct 1970 A
3568773 Chancellor Mar 1971 A
3572777 Blose et al. Mar 1971 A
3574357 Alexandru et al. Apr 1971 A
3578081 Bodine May 1971 A
3579805 Kast May 1971 A
3581817 Kammerer, Jr. Jun 1971 A
3605887 Lambie Sep 1971 A
3631926 Young Jan 1972 A
3665591 Kowal May 1972 A
3667547 Ahlstone Jun 1972 A
3669190 Sizer et al. Jun 1972 A
3678727 Jackson Jul 1972 A
3682256 Stuart Aug 1972 A
3687196 Mullins Aug 1972 A
3691624 Kinley Sep 1972 A
3693717 Wuenschel Sep 1972 A
3704730 Witzig Dec 1972 A
3709306 Curlington Jan 1973 A
3711123 Arnold Jan 1973 A
3712376 Owen et al. Jan 1973 A
3746068 Deckert et al. Jul 1973 A
3746091 Owen et al. Jul 1973 A
3746092 Land Jul 1973 A
3764168 Kisling, III et al. Oct 1973 A
3776307 Young Dec 1973 A
3779025 Godley et al. Dec 1973 A
3780562 Kinley Dec 1973 A
3781966 Lieberman Jan 1974 A
3785193 Kinley et al. Jan 1974 A
3797259 Kammerer, Jr. Mar 1974 A
3805567 Agius-Sincero Apr 1974 A
3812912 Wuenschel May 1974 A
3818734 Bateman Jun 1974 A
3826124 Baksay Jul 1974 A
3830294 Swanson Aug 1974 A
3830295 Crowe Aug 1974 A
3834742 McPhillips Sep 1974 A
3848668 Sizer et al. Nov 1974 A
3866954 Stator et al. Feb 1975 A
3874446 Crowe Apr 1975 A
3885298 Pogonowski May 1975 A
3887006 Pitts Jun 1975 A
3893718 Powell Jul 1975 A
3898163 Mott Aug 1975 A
3915476 Al et al. Oct 1975 A
3915763 Jennings et al. Oct 1975 A
3935910 Gaudy et al. Feb 1976 A
3942824 Sable Mar 1976 A
3945444 Knudson Mar 1976 A
3948321 Owen et al. Apr 1976 A
3963076 Winslow Jun 1976 A
3970336 O'Sickey et al. Jul 1976 A
3977473 Page, Jr. Aug 1976 A
3989280 Schwarz Nov 1976 A
3997193 Tsuda et al. Dec 1976 A
3999605 Braddick Dec 1976 A
4011652 Black Mar 1977 A
4018634 Fencl Apr 1977 A
4019579 Thuse Apr 1977 A
4026583 Gottlieb May 1977 A
4053247 Marsh, Jr. Oct 1977 A
4069573 Rogers, Jr. et al. Jan 1978 A
4076287 Bill et al. Feb 1978 A
4096913 Kenneday et al. Jun 1978 A
4098334 Crowe Jul 1978 A
4099563 Hutchison et al. Jul 1978 A
4125937 Brown et al. Nov 1978 A
4152821 Scott May 1979 A
4168747 Youmans Sep 1979 A
4190108 Webber Feb 1980 A
4195390 Amen Apr 1980 A
4204312 Tooker May 1980 A
4205422 Hardwick Jun 1980 A
4226449 Cole Oct 1980 A
4253687 Maples Mar 1981 A
4257155 Hunter Mar 1981 A
4274665 Marsh, Jr. Jun 1981 A
RE30802 Rogers, Jr. Nov 1981 E
4304428 Grigorian et al. Dec 1981 A
4328983 Gibson May 1982 A
4355664 Cook et al. Oct 1982 A
4358511 Smith, Jr. et al. Nov 1982 A
4359889 Kelly Nov 1982 A
4363358 Ellis Dec 1982 A
4366971 Lula Jan 1983 A
4368571 Cooper, Jr. Jan 1983 A
4379471 Kuenzel Apr 1983 A
4380347 Sable Apr 1983 A
4384625 Roper et al. May 1983 A
4388752 Vinciguerra et al. Jun 1983 A
4391325 Baker et al. Jul 1983 A
4393931 Muse et al. Jul 1983 A
4396061 Tamplen et al. Aug 1983 A
4397484 Miller Aug 1983 A
4401325 Tsuchiya et al. Aug 1983 A
4402372 Cherrington Sep 1983 A
4407681 Ina et al. Oct 1983 A
4411435 McStravick Oct 1983 A
4413395 Garnier Nov 1983 A
4413682 Callihan et al. Nov 1983 A
4420866 Mueller Dec 1983 A
4421169 Dearth et al. Dec 1983 A
4422317 Mueller Dec 1983 A
4422507 Reimert Dec 1983 A
4423889 Weise Jan 1984 A
4423986 Skogberg Jan 1984 A
4424865 Payton, Jr. Jan 1984 A
4429741 Hyland Feb 1984 A
4440233 Baugh et al. Apr 1984 A
4442586 Ridenour Apr 1984 A
4444250 Keithahn et al. Apr 1984 A
4449713 Ishido et al. May 1984 A
4458925 Raulins et al. Jul 1984 A
4462471 Hipp Jul 1984 A
4467630 Kelly Aug 1984 A
4468309 White Aug 1984 A
4469356 Duret et al. Sep 1984 A
4473245 Raulins et al. Sep 1984 A
4483399 Colgate Nov 1984 A
4485847 Wentzell Dec 1984 A
4491001 Yoshida Jan 1985 A
4495073 Beimgraben Jan 1985 A
4501327 Retz Feb 1985 A
4505017 Schukei Mar 1985 A
4505987 Yamada et al. Mar 1985 A
4506432 Smith Mar 1985 A
4507019 Thompson Mar 1985 A
4508129 Brown Apr 1985 A
4508167 Weinberg et al. Apr 1985 A
4511289 Herron Apr 1985 A
4513995 Niehaus et al. Apr 1985 A
4519456 Cochran May 1985 A
4521258 Tamehiro et al. Jun 1985 A
4526232 Hughson et al. Jul 1985 A
4526839 Herman et al. Jul 1985 A
4527815 Frick Jul 1985 A
4530231 Main Jul 1985 A
4531552 Kim Jul 1985 A
4537429 Landriault Aug 1985 A
4538442 Reed Sep 1985 A
4538840 DeLange Sep 1985 A
4541655 Hunter Sep 1985 A
4550782 Lawson Nov 1985 A
4550937 Duret Nov 1985 A
4553776 Dodd Nov 1985 A
4573248 Hackett Mar 1986 A
4576386 Benson et al. Mar 1986 A
4581817 Kelly Apr 1986 A
4582348 Dearden et al. Apr 1986 A
4590227 Nakamura et al. May 1986 A
4590995 Evans May 1986 A
4592577 Ayres et al. Jun 1986 A
4595063 Jennings et al. Jun 1986 A
4596913 Takechi Jun 1986 A
4598938 Boss et al. Jul 1986 A
4601343 Lindsey, Jr. et al. Jul 1986 A
4603889 Welsh Aug 1986 A
4605063 Ross Aug 1986 A
4611662 Harrington Sep 1986 A
4614233 Menard Sep 1986 A
4616392 Snyder Oct 1986 A
4629218 Dubois Dec 1986 A
4629224 Landriault Dec 1986 A
4630849 Fukui et al. Dec 1986 A
4632944 Thompson Dec 1986 A
4634317 Skogberg et al. Jan 1987 A
4635333 Finch Jan 1987 A
4637436 Stewart, Jr. et al. Jan 1987 A
4646787 Rush et al. Mar 1987 A
4649492 Sinha et al. Mar 1987 A
4651831 Baugh Mar 1987 A
4651836 Richards Mar 1987 A
4656779 Fedeli Apr 1987 A
4660863 Bailey et al. Apr 1987 A
4662446 Brisco et al. May 1987 A
4669541 Bissonnette Jun 1987 A
4674572 Gallus Jun 1987 A
4676563 Curlett et al. Jun 1987 A
4682797 Hildner Jul 1987 A
4685191 Mueller et al. Aug 1987 A
4685834 Jordan Aug 1987 A
4693498 Baugh et al. Sep 1987 A
4711474 Patrick Dec 1987 A
4714117 Dech Dec 1987 A
4724595 Snyder Feb 1988 A
4724693 Tedder Feb 1988 A
4730851 Watts Mar 1988 A
4732416 Dearden et al. Mar 1988 A
4735444 Skipper Apr 1988 A
4739654 Pilkington et al. Apr 1988 A
4739916 Ayres et al. Apr 1988 A
4754781 Putter Jul 1988 A
4758025 Frick Jul 1988 A
4762344 Perkins et al. Aug 1988 A
4776394 Lynde et al. Oct 1988 A
4778088 Miller Oct 1988 A
4779445 Rabe Oct 1988 A
4793382 Szalvay Dec 1988 A
4796668 Depret Jan 1989 A
4799544 Curlett Jan 1989 A
4817710 Edwards et al. Apr 1989 A
4817712 Bodine Apr 1989 A
4817716 Taylor et al. Apr 1989 A
4822081 Blose Apr 1989 A
4825674 Tanaka et al. May 1989 A
4826347 Baril et al. May 1989 A
4827594 Cartry et al. May 1989 A
4828033 Frison May 1989 A
4830109 Wedel May 1989 A
4832382 Kapgan May 1989 A
4836278 Stone et al. Jun 1989 A
4836579 Wester et al. Jun 1989 A
4838349 Berzin Jun 1989 A
4842082 Springer Jun 1989 A
4848459 Blackwell et al. Jul 1989 A
4854338 Grantham Aug 1989 A
4856592 Van Bilderbeek et al. Aug 1989 A
4865127 Koster Sep 1989 A
4871199 Ridenour et al. Oct 1989 A
4872253 Carstensen Oct 1989 A
4887646 Groves Dec 1989 A
4888975 Soward et al. Dec 1989 A
4892337 Gunderson et al. Jan 1990 A
4893658 Kimura et al. Jan 1990 A
4904136 Matsumoto Feb 1990 A
4907828 Change Mar 1990 A
4911237 Melenyzer Mar 1990 A
4913758 Koster Apr 1990 A
4915177 Claycomb Apr 1990 A
4915426 Skipper Apr 1990 A
4917409 Reeves Apr 1990 A
4919989 Colangelo Apr 1990 A
4921045 Richardson May 1990 A
4924949 Curlett May 1990 A
4930573 Lane et al. Jun 1990 A
4934038 Caudill Jun 1990 A
4934312 Koster et al. Jun 1990 A
4938291 Lynde et al. Jul 1990 A
4941512 McParland Jul 1990 A
4941532 Hurt et al. Jul 1990 A
4942925 Themig Jul 1990 A
4942926 Lessi Jul 1990 A
4958691 Hipp Sep 1990 A
4968184 Reid Nov 1990 A
4971152 Koster et al. Nov 1990 A
4976322 Abdrakhmanov et al. Dec 1990 A
4981250 Persson Jan 1991 A
4995464 Watkins et al. Feb 1991 A
5014779 Meling et al. May 1991 A
5015017 Geary May 1991 A
5026074 Hoes et al. Jun 1991 A
5031370 Jewett Jul 1991 A
5031699 Artynov et al. Jul 1991 A
5040283 Pelgrom Aug 1991 A
5044676 Burton et al. Sep 1991 A
5048871 Pfeiffer et al. Sep 1991 A
5052483 Hudson Oct 1991 A
5059043 Kuhne Oct 1991 A
5064004 Lundell Nov 1991 A
5079837 Vanselow Jan 1992 A
5083608 Abdrakhmanov et al. Jan 1992 A
5093015 Oldiges Mar 1992 A
5095991 Milberger Mar 1992 A
5097710 Palynchuk Mar 1992 A
5101653 Hermes et al. Apr 1992 A
5105888 Pollock et al. Apr 1992 A
5107221 N'Guyen et al. Apr 1992 A
5119661 Abdrakhmanov et al. Jun 1992 A
5134891 Canevet Aug 1992 A
5150755 Cassel et al. Sep 1992 A
5156043 Ose Oct 1992 A
5156213 George et al. Oct 1992 A
5156223 Hipp Oct 1992 A
5174340 Peterson et al. Dec 1992 A
5174376 Singeetham Dec 1992 A
5181571 Mueller et al. Jan 1993 A
5195583 Toon et al. Mar 1993 A
5197553 Leturno Mar 1993 A
5209600 Koster May 1993 A
5226492 Solaeche P. et al. Jul 1993 A
5242017 Hailey Sep 1993 A
5249628 Surjaatmadja Oct 1993 A
5253713 Gregg et al. Oct 1993 A
RE34467 Reeves Dec 1993 E
5275242 Payne Jan 1994 A
5282508 Ellingsen et al. Feb 1994 A
5286393 Oldiges et al. Feb 1994 A
5306101 Rockower et al. Apr 1994 A
5309621 O'Donnell et al. May 1994 A
5314014 Tucker May 1994 A
5314209 Kuhne May 1994 A
5318122 Murray et al. Jun 1994 A
5318131 Baker Jun 1994 A
5325923 Surjaatmadja et al. Jul 1994 A
5326137 Lorenz et al. Jul 1994 A
5327964 O'Donnell et al. Jul 1994 A
5330850 Suzuki et al. Jul 1994 A
5332038 Tapp et al. Jul 1994 A
5332049 Tew Jul 1994 A
5333692 Baugh et al. Aug 1994 A
5335736 Windsor Aug 1994 A
5337808 Graham Aug 1994 A
5337823 Nobileau Aug 1994 A
5337827 Hromas et al. Aug 1994 A
5339894 Stotler Aug 1994 A
5343949 Ross et al. Sep 1994 A
5346007 Dillon et al. Sep 1994 A
5348087 Williamson, Jr. Sep 1994 A
5348093 Wood et al. Sep 1994 A
5348095 Worrall et al. Sep 1994 A
5348668 Oldiges et al. Sep 1994 A
5351752 Wood et al. Oct 1994 A
5360239 Klementich Nov 1994 A
5360292 Allen et al. Nov 1994 A
5361836 Sorem et al. Nov 1994 A
5361843 Shy et al. Nov 1994 A
5366010 Zwart Nov 1994 A
5366012 Lohbeck Nov 1994 A
5368075 Bäro et al. Nov 1994 A
5370425 Dougherty et al. Dec 1994 A
5375661 Daneshy et al. Dec 1994 A
5388648 Jordan, Jr. Feb 1995 A
5390735 Williamson, Jr. Feb 1995 A
5390742 Dines et al. Feb 1995 A
5396957 Surjaatmadja et al. Mar 1995 A
5399301 Menendez et al. Mar 1995 A
5400827 Baro et al. Mar 1995 A
5405171 Allen et al. Apr 1995 A
5411301 Moyer et al. May 1995 A
5413180 Ross et al. May 1995 A
5425559 Nobileau Jun 1995 A
5426130 Thurber et al. Jun 1995 A
5431831 Vincent Jul 1995 A
5435395 Connell Jul 1995 A
5439320 Abrams Aug 1995 A
5443129 Bailey et al. Aug 1995 A
5447201 Mohn Sep 1995 A
5454419 Vloedman Oct 1995 A
5456319 Schmidt et al. Oct 1995 A
5458194 Brooks Oct 1995 A
5462120 Gondouin Oct 1995 A
5467822 Zwart Nov 1995 A
5472055 Simson et al. Dec 1995 A
5474334 Eppink Dec 1995 A
5492173 Kilgore et al. Feb 1996 A
5494106 Gueguen et al. Feb 1996 A
5507343 Carlton et al. Apr 1996 A
5511620 Baugh et al. Apr 1996 A
5524937 Sides, III et al. Jun 1996 A
5535824 Hudson Jul 1996 A
5536422 Oldiges et al. Jul 1996 A
5540281 Round Jul 1996 A
5554244 Ruggles et al. Sep 1996 A
5566772 Coone et al. Oct 1996 A
5567335 Baessler et al. Oct 1996 A
5576485 Serata Nov 1996 A
5584512 Carstensen Dec 1996 A
5606792 Schafer Mar 1997 A
5611399 Richard et al. Mar 1997 A
5613557 Blount et al. Mar 1997 A
5617918 Cooksey et al. Apr 1997 A
5642560 Tabuchi et al. Jul 1997 A
5642781 Richard Jul 1997 A
5662180 Coffman et al. Sep 1997 A
5664327 Swars Sep 1997 A
5667011 Gill et al. Sep 1997 A
5667252 Schafer et al. Sep 1997 A
5678609 Washburn Oct 1997 A
5685369 Ellis et al. Nov 1997 A
5689871 Carstensen Nov 1997 A
5695008 Bertet et al. Dec 1997 A
5695009 Hipp Dec 1997 A
5697442 Baldridge Dec 1997 A
5697449 Hennig et al. Dec 1997 A
5718288 Bertet et al. Feb 1998 A
5738146 Abe Apr 1998 A
5743335 Bussear Apr 1998 A
5749419 Coronado et al. May 1998 A
5749585 Lembcke May 1998 A
5755895 Tamehiro et al. May 1998 A
5775422 Wong et al. Jul 1998 A
5785120 Smalley et al. Jul 1998 A
5787933 Russ et al. Aug 1998 A
5791419 Valisalo Aug 1998 A
5794702 Nobileau Aug 1998 A
5797454 Hipp Aug 1998 A
5829520 Johnson Nov 1998 A
5829524 Flanders et al. Nov 1998 A
5829797 Yamamoto et al. Nov 1998 A
5833001 Song et al. Nov 1998 A
5845945 Carstensen Dec 1998 A
5849188 Voll et al. Dec 1998 A
5857524 Harris et al. Jan 1999 A
5862866 Springer Jan 1999 A
5875851 Vick, Jr. et al. Mar 1999 A
5885941 Sateva et al. Mar 1999 A
5895079 Carstensen et al. Apr 1999 A
5901789 Donnelly et al. May 1999 A
5907965 Krausser Jun 1999 A
5918677 Head Jul 1999 A
5924745 Campbell Jul 1999 A
5931511 DeLange et al. Aug 1999 A
5933945 Thomeer et al. Aug 1999 A
5944100 Hipp Aug 1999 A
5944107 Ohmer Aug 1999 A
5944108 Baugh et al. Aug 1999 A
5951207 Chen Sep 1999 A
5957195 Bailey et al. Sep 1999 A
5964288 Leighton et al. Oct 1999 A
5971443 Noel et al. Oct 1999 A
5975587 Wood et al. Nov 1999 A
5979560 Nobileau Nov 1999 A
5984369 Crook et al. Nov 1999 A
5984568 Lohbeck Nov 1999 A
6012521 Zunkel et al. Jan 2000 A
6012522 Donnelly et al. Jan 2000 A
6012523 Campbell et al. Jan 2000 A
6012874 Groneck et al. Jan 2000 A
6015012 Reddick Jan 2000 A
6017168 Fraser et al. Jan 2000 A
6009611 Richardson et al. Feb 2000 A
6021850 Woo et al. Feb 2000 A
6024181 Richardson et al. Feb 2000 A
6027145 Tsuru et al. Feb 2000 A
6029748 Forsyth et al. Feb 2000 A
6035954 Hipp Mar 2000 A
6044906 Saltel Apr 2000 A
6047505 Willow Apr 2000 A
6047774 Allen Apr 2000 A
6050341 Metcalf Apr 2000 A
6050346 Hipp Apr 2000 A
6056059 Ohmer May 2000 A
6056324 Reimert et al. May 2000 A
6062324 Hipp May 2000 A
6065500 Metcalfe May 2000 A
6070671 Cumming et al. Jun 2000 A
6073332 Turner Jun 2000 A
6073692 Wood et al. Jun 2000 A
6073698 Shultz et al. Jun 2000 A
6074133 Kelsey Jun 2000 A
6078031 Bliault et al. Jun 2000 A
6079495 Ohmer Jun 2000 A
6085838 Vercaemer et al. Jul 2000 A
6089320 LaGrange Jul 2000 A
6098717 Bailey et al. Aug 2000 A
6102119 Raines Aug 2000 A
6109355 Reid Aug 2000 A
6112818 Campbell Sep 2000 A
6131265 Bird Oct 2000 A
6135208 Gano et al. Oct 2000 A
6138761 Freeman et al. Oct 2000 A
6142230 Smalley et al. Nov 2000 A
6155613 Quadflieg et al. Dec 2000 A
6158785 Beaulier et al. Dec 2000 A
6158963 Hollis et al. Dec 2000 A
6167970 Stout Jan 2001 B1
6182775 Hipp Feb 2001 B1
6183013 Mackenzie et al. Feb 2001 B1
6183573 Fujiwara et al. Feb 2001 B1
6196336 Fincher et al. Mar 2001 B1
6216509 Lotspaih et al. Apr 2001 B1
6220306 Omura et al. Apr 2001 B1
6226855 Maine May 2001 B1
6231086 Tierling May 2001 B1
6237967 Yamamoto et al. May 2001 B1
6250385 Montaron Jun 2001 B1
6253846 Nazzai et al. Jul 2001 B1
6253850 Nazzai et al. Jul 2001 B1
6263966 Haut et al. Jul 2001 B1
6263968 Freeman et al. Jul 2001 B1
6263972 Richard et al. Jul 2001 B1
6267181 Rhein-Knudsen et al. Jul 2001 B1
6273634 Lohbeck Aug 2001 B1
6275556 Kinney et al. Aug 2001 B1
6283211 Vloedman Sep 2001 B1
6286558 Quigley et al. Sep 2001 B1
6302211 Nelson et al. Oct 2001 B1
6311792 Scott et al. Nov 2001 B1
6315040 Donnelly Nov 2001 B1
6315043 Farrant et al. Nov 2001 B1
6318457 Den Boer et al. Nov 2001 B1
6318465 Coon et al. Nov 2001 B1
6322109 Campbell et al. Nov 2001 B1
6325148 Trahan et al. Dec 2001 B1
6328113 Cook Dec 2001 B1
6334351 Tsuchiya Jan 2002 B1
6343495 Cheppe et al. Feb 2002 B1
6343657 Baugh et al. Feb 2002 B1
6345373 Chakradhar et al. Feb 2002 B1
6345431 Greig Feb 2002 B1
6349521 McKeon et al. Feb 2002 B1
6352112 Mills Mar 2002 B1
6354373 Vercaemer et al. Mar 2002 B1
6390720 LeBegue et al. May 2002 B1
6405761 Shimizu et al. Jun 2002 B1
6406063 Pfeiffer Jun 2002 B1
6409175 Evans et al. Jun 2002 B1
6419025 Lohbeck et al. Jul 2002 B1
6419026 MacKenzie et al. Jul 2002 B1
6419033 Hahn et al. Jul 2002 B1
6419147 Daniel Jul 2002 B1
6425444 Metcalfe et al. Jul 2002 B1
6431277 Cox et al. Aug 2002 B1
6439018 Hellgren et al. Aug 2002 B1
6443247 Wardley Sep 2002 B1
6446724 Baugh et al. Sep 2002 B2
6447025 Smith Sep 2002 B1
6450261 Baugh Sep 2002 B1
6454013 Metcalfe Sep 2002 B1
6454024 Nackerud Sep 2002 B1
6457532 Simpson Oct 2002 B1
6457533 Metcalfe Oct 2002 B1
6457749 Heijnen Oct 2002 B1
6460615 Heijnen Oct 2002 B1
6464008 Roddy et al. Oct 2002 B1
6464014 Bernat Oct 2002 B1
6470966 Cook et al. Oct 2002 B2
6470996 Kyle et al. Oct 2002 B1
6478092 Voll et al. Nov 2002 B2
6491108 Slup et al. Dec 2002 B1
6497289 Cook et al. Dec 2002 B1
6513243 Bignucolo et al. Feb 2003 B1
6516887 Nguyen et al. Feb 2003 B2
6517126 Peterson et al. Feb 2003 B1
6527049 Metcalfe et al. Mar 2003 B2
6543545 Chatterji et al. Apr 2003 B1
6543552 Metcalfe et al. Apr 2003 B1
6550539 Maguire et al. Apr 2003 B2
6550821 DeLange et al. Apr 2003 B2
6557640 Cook et al. May 2003 B1
6557906 Carcagno May 2003 B1
6561227 Cook et al. May 2003 B2
6561279 MacKenzie et al. May 2003 B2
6564875 Bullock May 2003 B1
6568471 Cook et al. May 2003 B1
6568488 Wentworth et al. May 2003 B2
6575240 Cook et al. Jun 2003 B1
6578630 Simpson et al. Jun 2003 B2
6585053 Coon Jun 2003 B2
6585299 Quadflieg et al. Jul 2003 B1
6591905 Coon Jul 2003 B2
6598677 Baugh et al. Jul 2003 B1
6598678 Simpson Jul 2003 B1
6604763 Cook et al. Aug 2003 B1
6607220 Sivley, IV Aug 2003 B2
6609735 DeLange et al. Aug 2003 B1
6619696 Baugh et al. Sep 2003 B2
6622797 Sivley, IV Sep 2003 B2
6629567 Lauritzen et al. Oct 2003 B2
6631759 Cook et al. Oct 2003 B2
6631760 Cook et al. Oct 2003 B2
6631765 Baugh et al. Oct 2003 B2
6631769 Cook et al. Oct 2003 B2
6634431 Cook et al. Oct 2003 B2
6640895 Murray Nov 2003 B2
6640903 Cook et al. Nov 2003 B1
6648075 Badrak et al. Nov 2003 B2
6659509 Goto et al. Dec 2003 B2
6662876 Lauritzen Dec 2003 B2
6668937 Murray Dec 2003 B1
6672759 Feger Jan 2004 B2
6679328 Davis et al. Jan 2004 B2
6681862 Freeman Jan 2004 B2
6684947 Cook et al. Feb 2004 B2
6688397 McClurkin et al. Feb 2004 B2
6695012 Ring et al. Feb 2004 B1
6695065 Simpson et al. Feb 2004 B2
6698517 Simpson Mar 2004 B2
6701598 Chen et al. Mar 2004 B2
6702030 Simpson Mar 2004 B2
6705395 Cook et al. Mar 2004 B2
6708767 Harrall et al. Mar 2004 B2
6712154 Cook et al. Mar 2004 B2
6712401 Coulon et al. Mar 2004 B2
6719064 Price-Smith et al. Apr 2004 B2
6722427 Gano et al. Apr 2004 B2
6722437 Vercaemer et al. Apr 2004 B2
6722443 Metcalfe Apr 2004 B1
6725917 Metcalfe Apr 2004 B2
6725919 Cook et al. Apr 2004 B2
6725934 Coronado et al. Apr 2004 B2
6725939 Richard Apr 2004 B2
6732806 Mauldin et al. May 2004 B2
6739392 Cook et al. May 2004 B2
6745845 Cook et al. Jun 2004 B2
6755447 Galle, Jr. et al. Jun 2004 B2
6758278 Cook et al. Jul 2004 B2
6772841 Gano Aug 2004 B2
6796380 Xu Sep 2004 B2
6814147 Baugh Nov 2004 B2
6817633 Brill et al. Nov 2004 B2
6820690 Vercaemer et al. Nov 2004 B2
6823937 Cook et al. Nov 2004 B1
6832649 Bode et al. Dec 2004 B2
6834725 Whanger et al. Dec 2004 B2
6843322 Burtner et al. Jan 2005 B2
6857473 Cook et al. Feb 2005 B2
6880632 Tom et al. Apr 2005 B2
6892819 Cook et al. May 2005 B2
6902000 Simpson et al. Jun 2005 B2
6907652 Heijnen Jun 2005 B1
6923261 Metcalfe et al. Aug 2005 B2
6935429 Badrack Aug 2005 B2
6935430 Harrell et al. Aug 2005 B2
6966370 Cook et al. Nov 2005 B2
6976539 Metcalfe et al. Dec 2005 B2
6976541 Brisco et al. Dec 2005 B2
7000953 Berghaus Feb 2006 B2
7007760 Lohbeck Mar 2006 B2
7021390 Cook et al. Apr 2006 B2
7036582 Cook et al. May 2006 B2
7044218 Cook et al. May 2006 B2
7044221 Cook et al. May 2006 B2
7048062 Ring et al. May 2006 B2
7066284 Wylie et al. Jun 2006 B2
7077211 Cook et al. Jul 2006 B2
7077213 Cook et al. Jul 2006 B2
7086475 Cook Aug 2006 B2
7100684 Cook et al. Sep 2006 B2
7100685 Cook et al. Sep 2006 B2
7108061 Cook et al. Sep 2006 B2
7108072 Cook et al. Sep 2006 B2
7121337 Cook et al. Oct 2006 B2
7121352 Cook et al. Oct 2006 B2
7124821 Metcalfe et al. Oct 2006 B2
7124823 Oosterling Oct 2006 B2
7124826 Simpson Oct 2006 B2
7146702 Cook et al. Dec 2006 B2
7147053 Cook et al. Dec 2006 B2
7159665 Cook et al. Jan 2007 B2
7159667 Cook et al. Jan 2007 B2
7168496 Cook et al. Jan 2007 B2
7168499 Cook et al. Jan 2007 B2
7172019 Cook et al. Feb 2007 B2
7172021 Cook et al. Feb 2007 B2
7172024 Cook et al. Feb 2007 B2
7174694 Cook et al. Feb 2007 B2
7201223 Cook et al. Apr 2007 B2
7225879 Wylie et al. Jun 2007 B2
7231985 Cook et al. Jun 2007 B2
7234531 Kendziora et al. Jun 2007 B2
7240729 Cook et al. Jul 2007 B2
7246667 Cook et al. Jul 2007 B2
20010002626 Frank et al. Jun 2001 A1
20010020532 Baugh et al. Sep 2001 A1
20010045284 Simpson et al. Nov 2001 A1
20010045289 Cook et al. Nov 2001 A1
20010047870 Cook et al. Dec 2001 A1
20020011339 Murray Jan 2002 A1
20020014339 Ross Feb 2002 A1
20020020524 Gano Feb 2002 A1
20020020531 Ohmer Feb 2002 A1
20020033261 Metcalfe Mar 2002 A1
20020060068 Cook et al. May 2002 A1
20020062956 Murray et al. May 2002 A1
20020066576 Cook et al. Jun 2002 A1
20020066578 Broome Jun 2002 A1
20020070023 Turner et al. Jun 2002 A1
20020070031 Voll et al. Jun 2002 A1
20020079101 Baugh et al. Jun 2002 A1
20020084070 Voll et al. Jul 2002 A1
20020092654 Coronado et al. Jul 2002 A1
20020108756 Harrall et al. Aug 2002 A1
20020139540 Lauritzen Oct 2002 A1
20020144822 Hackworth et al. Oct 2002 A1
20020148612 Cook et al. Oct 2002 A1
20020185274 Simpson et al. Dec 2002 A1
20020189816 Cook et al. Dec 2002 A1
20020195252 Maguire et al. Dec 2002 A1
20020195256 Metcalfe et al. Dec 2002 A1
20030024708 Ring et al. Feb 2003 A1
20030024711 Simpson et al. Feb 2003 A1
20030034177 Chitwood et al. Feb 2003 A1
20030042022 Lauritzen et al. Mar 2003 A1
20030047322 Maguire et al. Mar 2003 A1
20030047323 Jackson et al. Mar 2003 A1
20030056991 Hahn et al. Mar 2003 A1
20030066655 Cook et al. Apr 2003 A1
20030067166 Maguire Apr 2003 A1
20030075337 Sivley, IV Apr 2003 A1
20030075338 Sivley, IV Apr 2003 A1
20030075339 Gano et al. Apr 2003 A1
20030094277 Cook et al. May 2003 A1
20030094278 Cook et al. May 2003 A1
20030094279 Ring et al. May 2003 A1
20030098154 Cook et al. May 2003 A1
20030098162 Cook May 2003 A1
20030107217 Daigle et al. Jun 2003 A1
20030111234 McClurkin et al. Jun 2003 A1
20030116318 Metcalfe Jun 2003 A1
20030116325 Cook et al. Jun 2003 A1
20030121558 Cook et al. Jul 2003 A1
20030121655 Lauritzen et al. Jul 2003 A1
20030121669 Cook et al. Jul 2003 A1
20030140673 Marr et al. Jul 2003 A1
20030150608 Smith, Jr. et al. Aug 2003 A1
20030168222 Maguire et al. Sep 2003 A1
20030173090 Cook et al. Sep 2003 A1
20030192705 Cook et al. Oct 2003 A1
20030221841 Burtner et al. Dec 2003 A1
20030222455 Cook et al. Dec 2003 A1
20040011534 Simonds et al. Jan 2004 A1
20040045616 Cook et al. Mar 2004 A1
20040045718 Brisco et al. Mar 2004 A1
20040060706 Stephenson Apr 2004 A1
20040065446 Tran et al. Apr 2004 A1
20040069499 Cook et al. Apr 2004 A1
20040112589 Cook et al. Jun 2004 A1
20040112606 Lewis et al. Jun 2004 A1
20040118574 Cook et al. Jun 2004 A1
20040123983 Cook et al. Jul 2004 A1
20040123988 Cook et al. Jul 2004 A1
20040129431 Jackson Jul 2004 A1
20040149431 Wylie et al. Aug 2004 A1
20040159446 Haugen et al. Aug 2004 A1
20040174017 Brill et al. Sep 2004 A1
20040188099 Cook et al. Sep 2004 A1
20040194278 Brill et al. Oct 2004 A1
20040194966 Zimmerman Oct 2004 A1
20040216873 Frost, Jr. et al. Nov 2004 A1
20040221996 Burge Nov 2004 A1
20040228679 Reavis et al. Nov 2004 A1
20040231839 Ellington et al. Nov 2004 A1
20040231855 Cook et al. Nov 2004 A1
20040238181 Cook et al. Dec 2004 A1
20040244968 Cook et al. Dec 2004 A1
20040262014 Cook et al. Dec 2004 A1
20050011641 Cook et al. Jan 2005 A1
20050015963 Costa et al. Jan 2005 A1
20050028988 Cook et al. Feb 2005 A1
20050039910 Lohbeck Feb 2005 A1
20050039928 Cook et al. Feb 2005 A1
20050045324 Cook et al. Mar 2005 A1
20050045341 Cook et al. Mar 2005 A1
20050045342 Luke et al. Mar 2005 A1
20050056433 Watson et al. Mar 2005 A1
20050056434 Ring et al. Mar 2005 A1
20050077051 Cook et al. Apr 2005 A1
20050081358 Cook et al. Apr 2005 A1
20050087337 Brisco et al. Apr 2005 A1
20050098323 Cook et al. May 2005 A1
20050103502 Watson et al. May 2005 A1
20050123639 Ring et al. Jun 2005 A1
20050133225 Oosterling Jun 2005 A1
20050138790 Cook et al. Jun 2005 A1
20050144771 Cook et al. Jul 2005 A1
20050144772 Cook et al. Jul 2005 A1
20050144777 Cook et al. Jul 2005 A1
20050150098 Cook et al. Jul 2005 A1
20050150660 Cook et al. Jul 2005 A1
20050161228 Cook et al. Jul 2005 A1
20050166387 Cook et al. Aug 2005 A1
20050166388 Cook et al. Aug 2005 A1
20050173108 Cook et al. Aug 2005 A1
20050175473 Cook et al. Aug 2005 A1
20050183863 Cook et al. Aug 2005 A1
20050205253 Cook et al. Sep 2005 A1
20050217768 Asahi et al. Oct 2005 A1
20050217865 Ring et al. Oct 2005 A1
20050217866 Watson et al. Oct 2005 A1
20050223535 Cook et al. Oct 2005 A1
20050224225 Cook et al. Oct 2005 A1
20050230102 Cook et al. Oct 2005 A1
20050230103 Cook et al. Oct 2005 A1
20050230104 Cook et al. Oct 2005 A1
20050230123 Cook et al. Oct 2005 A1
20050236159 Cook et al. Oct 2005 A1
20050236163 Cook et al. Oct 2005 A1
20050244578 Van Egmond et al. Nov 2005 A1
20050246883 Alliot et al. Nov 2005 A1
20050247453 Shuster et al. Nov 2005 A1
20050265788 Renkema Dec 2005 A1
20050269107 Cook et al. Dec 2005 A1
20060027371 Gorrara Feb 2006 A1
20060032640 Costa et al. Feb 2006 A1
20060048948 Noel Mar 2006 A1
20060054330 Metcalfe et al. Mar 2006 A1
20060065403 Watson et al. Mar 2006 A1
20060065406 Shuster et al. Mar 2006 A1
20060096762 Brisco May 2006 A1
20060102360 Brisco et al. May 2006 A1
20060112768 Shuster et al. Jun 2006 A1
20060113086 Costa et al. Jun 2006 A1
20060162937 Costa et al. Jul 2006 A1
20060169460 Brisco Aug 2006 A1
20060196679 Brisco et al. Sep 2006 A1
20060207760 Watson et al. Sep 2006 A1
20060208488 Costa Sep 2006 A1
20060213668 Cook et al Sep 2006 A1
20060219414 Shuster Oct 2006 A1
20060225892 Watson et al. Oct 2006 A1
20060243444 Brisco Nov 2006 A1
20060266527 Brisco et al. Nov 2006 A1
20060272826 Shuster et al. Dec 2006 A1
20070012456 Cook Jan 2007 A1
20070017572 Cook Jan 2007 A1
20070029095 Brisco Feb 2007 A1
20070034383 Shuster et al. Feb 2007 A1
20070039742 Costa Feb 2007 A1
Foreign Referenced Citations (673)
Number Date Country
767364 Feb 2004 AU
773168 May 2004 AU
770008 Jul 2004 AU
770359 Jul 2004 AU
771884 Aug 2004 AU
776580 Jan 2005 AU
780123 Mar 2005 AU
2001269810 Aug 2005 AU
782901 Sep 2005 AU
783245 Oct 2005 AU
2001294802 Oct 2005 AU
2002239857 Jun 2006 AU
2001283026 Jul 2006 AU
2001292695 Oct 2006 AU
736288 Jun 1966 CA
771462 Nov 1967 CA
1171310 Jul 1984 CA
2292171 Jun 2000 CA
2497854 Jun 2000 CA
2298139 Aug 2000 CA
2234386 Mar 2003 CA
2414449 Sep 2006 CA
2398001 Oct 2006 CA
2289811 Jan 2007 CA
174521 Apr 1953 DE
2458188 Jun 1975 DE
203767 Nov 1983 DE
233607 Mar 1986 DE
278517 May 1990 DE
0084940 Aug 1983 EP
0272511 Dec 1987 EP
0294264 May 1988 EP
0553566 Dec 1992 EP
0633391 Jan 1995 EP
0713953 Nov 1995 EP
0823534 Feb 1998 EP
0881354 Dec 1998 EP
0881359 Dec 1998 EP
0899420 Mar 1999 EP
0937861 Aug 1999 EP
0952305 Oct 1999 EP
0952306 Oct 1999 EP
1141515 Oct 2001 EP
1152120 Nov 2001 EP
1152120 Nov 2001 EP
1235972 Sep 2002 EP
1555386 Jul 2005 EP
1325596 Jun 1962 FR
2583398 Dec 1986 FR
2717855 Sep 1995 FR
2741901 Jun 1997 FR
2771133 Oct 1997 FR
2780751 Jan 2000 FR
2841626 Jan 2004 FR
557823 Dec 1943 GB
788150 Dec 1957 GB
851096 Oct 1960 GB
961750 Jun 1964 GB
1000383 Oct 1965 GB
1062610 Mar 1967 GB
1111536 May 1968 GB
1448304 Sep 1976 GB
1460864 Jan 1977 GB
1520552 Aug 1978 GB
1542847 Mar 1979 GB
1563740 Mar 1980 GB
1582767 Jan 1981 GB
2058877 Apr 1981 GB
2108228 May 1983 GB
2115860 Sep 1983 GB
2125876 Mar 1984 GB
2211573 Jul 1989 GB
2216926 Oct 1989 GB
2243191 Oct 1991 GB
2256910 Dec 1992 GB
2257184 Jun 1993 GB
2305682 Apr 1997 GB
2325949 May 1998 GB
2322655 Sep 1998 GB
2326896 Jan 1999 GB
2329916 Apr 1999 GB
2329918 Apr 1999 GB
2331103 May 1999 GB
2336383 Oct 1999 GB
2427885 Jan 2000 GB
2355738 Apr 2000 GB
2343691 May 2000 GB
2344606 Jun 2000 GB
2345308 Jul 2000 GB
2368865 Jul 2000 GB
2346165 Aug 2000 GB
2346632 Aug 2000 GB
2398319 Aug 2000 GB
2347445 Sep 2000 GB
2347446 Sep 2000 GB
2347950 Sep 2000 GB
2347952 Sep 2000 GB
2348223 Sep 2000 GB
2348657 Oct 2000 GB
2357099 Dec 2000 GB
2356651 May 2001 GB
2350137 Aug 2001 GB
2361724 Oct 2001 GB
2365898 Feb 2002 GB
2359837 Apr 2002 GB
2370301 Jun 2002 GB
2371064 Jul 2002 GB
2371574 Jul 2002 GB
2373524 Sep 2002 GB
2367842 Oct 2002 GB
2374098 Oct 2002 GB
2374622 Oct 2002 GB
2375560 Nov 2002 GB
2380213 Apr 2003 GB
2380503 Apr 2003 GB
2381019 Apr 2003 GB
2343691 May 2003 GB
2382364 May 2003 GB
2382828 Jun 2003 GB
2344606 Aug 2003 GB
2347950 Aug 2003 GB
2380213 Aug 2003 GB
2380214 Aug 2003 GB
2380215 Aug 2003 GB
2348223 Sep 2003 GB
2347952 Oct 2003 GB
2348657 Oct 2003 GB
2384800 Oct 2003 GB
2384801 Oct 2003 GB
2384802 Oct 2003 GB
2384803 Oct 2003 GB
2384804 Oct 2003 GB
2384805 Oct 2003 GB
2384806 Oct 2003 GB
2384807 Oct 2003 GB
2384808 Oct 2003 GB
2385353 Oct 2003 GB
2385354 Oct 2003 GB
2385355 Oct 2003 GB
2385356 Oct 2003 GB
2385357 Oct 2003 GB
2385358 Oct 2003 GB
2385359 Oct 2003 GB
2385360 Oct 2003 GB
2385361 Oct 2003 GB
2385362 Oct 2003 GB
2385363 Oct 2003 GB
2385619 Oct 2003 GB
2385620 Oct 2003 GB
2385621 Oct 2003 GB
2385622 Oct 2003 GB
2385623 Oct 2003 GB
2387405 Oct 2003 GB
2387861 Oct 2003 GB
2388134 Nov 2003 GB
2388860 Nov 2003 GB
2355738 Dec 2003 GB
2374622 Dec 2003 GB
2388391 Dec 2003 GB
2388392 Dec 2003 GB
2388393 Dec 2003 GB
2388394 Dec 2003 GB
2388395 Dec 2003 GB
2391028 Jan 2004 GB
2356651 Feb 2004 GB
2368865 Feb 2004 GB
2388860 Feb 2004 GB
2388861 Feb 2004 GB
2388862 Feb 2004 GB
2391886 Feb 2004 GB
2390628 Mar 2004 GB
2391033 Mar 2004 GB
2392686 Mar 2004 GB
2393199 Mar 2004 GB
2373524 Apr 2004 GB
2390387 Apr 2004 GB
2392686 Apr 2004 GB
2392691 Apr 2004 GB
2391575 May 2004 GB
2394979 May 2004 GB
2395506 May 2004 GB
2392932 Jun 2004 GB
2395734 Jun 2004 GB
2396635 Jun 2004 GB
2396639 Jun 2004 GB
2396640 Jun 2004 GB
2396641 Jun 2004 GB
2396642 Jun 2004 GB
2396643 Jun 2004 GB
2396644 Jun 2004 GB
2396646 Jun 2004 GB
2373468 Jul 2004 GB
2396869 Jul 2004 GB
2397261 Jul 2004 GB
2397262 Jul 2004 GB
2397263 Jul 2004 GB
2397264 Jul 2004 GB
2397265 Jul 2004 GB
2398087 Aug 2004 GB
2398317 Aug 2004 GB
2398318 Aug 2004 GB
2398320 Aug 2004 GB
2398321 Aug 2004 GB
2398322 Aug 2004 GB
2398323 Aug 2004 GB
2398326 Aug 2004 GB
2382367 Sep 2004 GB
2396641 Sep 2004 GB
2396643 Sep 2004 GB
2397261 Sep 2004 GB
2397262 Sep 2004 GB
2397263 Sep 2004 GB
2397264 Sep 2004 GB
2397265 Sep 2004 GB
2399120 Sep 2004 GB
2399579 Sep 2004 GB
2399580 Sep 2004 GB
2399848 Sep 2004 GB
2399849 Sep 2004 GB
2399850 Sep 2004 GB
2384502 Oct 2004 GB
2396644 Oct 2004 GB
2400126 Oct 2004 GB
2400393 Oct 2004 GB
2400624 Oct 2004 GB
2396640 Nov 2004 GB
2396642 Nov 2004 GB
2401136 Nov 2004 GB
2401137 Nov 2004 GB
2401138 Nov 2004 GB
2401630 Nov 2004 GB
2401631 Nov 2004 GB
2401632 Nov 2004 GB
2401633 Nov 2004 GB
2401634 Nov 2004 GB
2401635 Nov 2004 GB
2401636 Nov 2004 GB
2401637 Nov 2004 GB
2401638 Nov 2004 GB
2401639 Nov 2004 GB
2381019 Dec 2004 GB
2382368 Dec 2004 GB
2394979 Dec 2004 GB
2401136 Dec 2004 GB
2401137 Dec 2004 GB
2401138 Dec 2004 GB
2403970 Jan 2005 GB
2403971 Jan 2005 GB
2403972 Jan 2005 GB
2400624 Feb 2005 GB
2404402 Feb 2005 GB
2404676 Feb 2005 GB
2404680 Feb 2005 GB
2384807 Mar 2005 GB
2388134 Mar 2005 GB
2398320 Mar 2005 GB
2398323 Mar 2005 GB
2399120 Mar 2005 GB
2399848 Mar 2005 GB
2399849 Mar 2005 GB
2405893 Mar 2005 GB
2406117 Mar 2005 GB
2406118 Mar 2005 GB
2406119 Mar 2005 GB
2406120 Mar 2005 GB
2406125 Mar 2005 GB
2406126 Mar 2005 GB
2410518 Mar 2005 GB
2406599 Apr 2005 GB
2389597 May 2005 GB
2399119 May 2005 GB
2399580 May 2005 GB
2401630 May 2005 GB
2401631 May 2005 GB
2401632 May 2005 GB
2401633 May 2005 GB
2401634 May 2005 GB
2401635 May 2005 GB
2401636 May 2005 GB
2401637 May 2005 GB
2401638 May 2005 GB
2401639 May 2005 GB
2408277 May 2005 GB
2408278 May 2005 GB
2399579 Jun 2005 GB
2409216 Jun 2005 GB
2409218 Jun 2005 GB
2401893 Jul 2005 GB
2414749 Jul 2005 GB
2414750 Jul 2005 GB
2414751 Jul 2005 GB
2398362 Aug 2005 GB
2403970 Aug 2005 GB
2403971 Aug 2005 GB
2403972 Aug 2005 GB
2380503 Oct 2005 GB
2382828 Oct 2005 GB
2398317 Oct 2005 GB
2398318 Oct 2005 GB
2398319 Oct 2005 GB
2398321 Oct 2005 GB
2398322 Oct 2005 GB
2412681 Oct 2005 GB
2412682 Oct 2005 GB
2413136 Oct 2005 GB
2414493 Nov 2005 GB
2409217 Dec 2005 GB
2410518 Dec 2005 GB
2415003 Dec 2005 GB
2415219 Dec 2005 GB
2395506 Jan 2006 GB
2412681 Jan 2006 GB
2412682 Jan 2006 GB
2415979 Jan 2006 GB
2415983 Jan 2006 GB
2415987 Jan 2006 GB
2415988 Jan 2006 GB
2416177 Jan 2006 GB
2416361 Jan 2006 GB
2416556 Feb 2006 GB
2416794 Feb 2006 GB
2416795 Feb 2006 GB
2417273 Feb 2006 GB
2417275 Feb 2006 GB
2418216 Mar 2006 GB
2418217 Mar 2006 GB
2418690 Apr 2006 GB
2418941 Apr 2006 GB
2418942 Apr 2006 GB
2418943 Apr 2006 GB
2418944 Apr 2006 GB
2419907 May 2006 GB
2419913 May 2006 GB
2400126 Jun 2006 GB
2414749 Jun 2006 GB
2420810 Jun 2006 GB
2421257 Jun 2006 GB
2421258 Jun 2006 GB
2421259 Jun 2006 GB
2421262 Jun 2006 GB
2421529 Jun 2006 GB
2422164 Jul 2006 GB
2406599 Aug 2006 GB
2418690 Aug 2006 GB
2418944 Aug 2006 GB
2421257 Aug 2006 GB
2421258 Aug 2006 GB
2421259 Aug 2006 GB
2422859 Aug 2006 GB
2422860 Aug 2006 GB
2423317 Aug 2006 GB
2404676 Sep 2006 GB
2414493 Sep 2006 GB
2418941 Sep 2006 GB
2418942 Sep 2006 GB
2418943 Sep 2006 GB
2424077 Sep 2006 GB
2405893 Oct 2006 GB
2417273 Oct 2006 GB
2418216 Oct 2006 GB
2419907 Oct 2006 GB
2422860 Oct 2006 GB
2406125 Nov 2006 GB
2415004 Dec 2006 GB
2422859 Dec 2006 GB
2423317 Dec 2006 GB
2426993 Dec 2006 GB
2427636 Dec 2006 GB
2427636 Jan 2007 GB
2427886 Jan 2007 GB
044.3922005 Sep 2005 ID
208458 Oct 1985 JP
6475715 Mar 1989 JP
102875 Apr 1995 JP
11-169975 Jun 1999 JP
94068 Apr 2000 JP
107870 Apr 2000 JP
162192 Jun 2000 JP
2001-47161 Feb 2001 JP
9001081 Dec 1991 NL
113267 May 1998 RO
1786241 Jan 1993 RU
1804543 Mar 1993 RU
1810482 Apr 1993 RU
1818459 May 1993 RU
2016345 Jul 1994 RU
1295799 Feb 1995 RU
2039214 Jul 1995 RU
2056201 Mar 1996 RU
2064357 Jul 1996 RU
2068940 Nov 1996 RU
2068943 Nov 1996 RU
2079633 May 1997 RU
2083798 May 1997 RU
2091655 Sep 1997 RU
2095179 Nov 1997 RU
2105128 Feb 1998 RU
2108445 Apr 1998 RU
2144128 Jan 2000 RU
350833 Sep 1972 SU
511468 Sep 1976 SU
607950 May 1978 SU
612004 May 1978 SU
620582 Jul 1978 SU
641070 Jan 1979 SU
909114 May 1979 SU
874952 Jun 1979 SU
832049 May 1981 SU
853089 Aug 1981 SU
894169 Jan 1982 SU
899850 Jan 1982 SU
907220 Feb 1982 SU
953172 Aug 1982 SU
959878 Sep 1982 SU
976019 Nov 1982 SU
976020 Nov 1982 SU
989038 Jan 1983 SU
1002514 Mar 1983 SU
1041671 Sep 1983 SU
1051222 Oct 1983 SU
1086118 Apr 1984 SU
1077803 Jul 1984 SU
1158400 May 1985 SU
1212575 Feb 1986 SU
1250637 Aug 1986 SU
1324722 Jul 1987 SU
1441434 Jul 1988 SU
1430498 Oct 1988 SU
1432190 Oct 1988 SU
1601330 Oct 1990 SU
1627663 Feb 1991 SU
1659621 Jun 1991 SU
1663179 Jul 1991 SU
1663180 Jul 1991 SU
1677225 Sep 1991 SU
1677248 Sep 1991 SU
1686123 Oct 1991 SU
1686124 Oct 1991 SU
1686125 Oct 1991 SU
1698413 Dec 1991 SU
1710694 Feb 1992 SU
1730429 Apr 1992 SU
1745873 Jul 1992 SU
1747673 Jul 1992 SU
1749267 Jul 1992 SU
WO8100132 Jan 1981 WO
WO9005598 Mar 1990 WO
WO9201859 Feb 1992 WO
WO9208875 May 1992 WO
WO9325799 Dec 1993 WO
WO9325800 Dec 1993 WO
WO9421887 Sep 1994 WO
WO9425655 Nov 1994 WO
WO9503476 Feb 1995 WO
WO9601937 Jan 1996 WO
WO9621083 Jul 1996 WO
WO9626350 Aug 1996 WO
WO9637681 Nov 1996 WO
WO9706346 Feb 1997 WO
WO9711306 Mar 1997 WO
WO9717524 May 1997 WO
WO9717526 May 1997 WO
WO9717527 May 1997 WO
WO9720130 Jun 1997 WO
WO9721901 Jun 1997 WO
WO9735084 Sep 1997 WO
WO9800626 Jan 1998 WO
WO9807957 Feb 1998 WO
WO9809053 Mar 1998 WO
WO9822690 May 1998 WO
WO9826152 Jun 1998 WO
WO9842947 Oct 1998 WO
WO9849423 Nov 1998 WO
WO9902818 Jan 1999 WO
WO9904135 Jan 1999 WO
WO9906670 Feb 1999 WO
WO9908827 Feb 1999 WO
WO9908828 Feb 1999 WO
WO9918328 Apr 1999 WO
WO9923354 May 1999 WO
WO9925524 May 1999 WO
WO9925951 May 1999 WO
WO9935368 Jul 1999 WO
WO9943923 Sep 1999 WO
WO0001926 Jan 2000 WO
WO0004271 Jan 2000 WO
WO0008301 Feb 2000 WO
WO0026500 May 2000 WO
WO0026501 May 2000 WO
WO0026502 May 2000 WO
WO0031375 Jun 2000 WO
WO0037766 Jun 2000 WO
WO0037767 Jun 2000 WO
WO0037768 Jun 2000 WO
WO0037771 Jun 2000 WO
WO0037772 Jun 2000 WO
WO0039432 Jul 2000 WO
WO0046484 Aug 2000 WO
WO0050727 Aug 2000 WO
WO0050732 Aug 2000 WO
WO0050733 Aug 2000 WO
WO0077431 Dec 2000 WO
WO0104520 Jan 2001 WO
WO0104535 Jan 2001 WO
WO0118354 Mar 2001 WO
WO0121929 Mar 2001 WO
WO0126860 Apr 2001 WO
WO0133037 May 2001 WO
WO0138693 May 2001 WO
WO0160545 Aug 2001 WO
WO0183943 Nov 2001 WO
WO0198623 Dec 2001 WO
WO0201102 Jan 2002 WO
WO0210550 Feb 2002 WO
WO0210551 Feb 2002 WO
WO 0220941 Mar 2002 WO
WO0223007 Mar 2002 WO
WO0225059 Mar 2002 WO
WO0229199 Apr 2002 WO
WO0240825 May 2002 WO
WO02053867 Jul 2002 WO
WO02053867 Jul 2002 WO
WO02059456 Aug 2002 WO
WO02066783 Aug 2002 WO
WO02068792 Sep 2002 WO
WO02073000 Sep 2002 WO
WO02075107 Sep 2002 WO
WO2005081803 Sep 2002 WO
WO02077411 Oct 2002 WO
WO02081863 Oct 2002 WO
WO02081864 Oct 2002 WO
WO02086285 Oct 2002 WO
WO02086286 Oct 2002 WO
WO02090713 Nov 2002 WO
WO02095181 Nov 2002 WO
WO02103150 Dec 2002 WO
WO03004819 Jan 2003 WO
WO03004819 Jan 2003 WO
WO03004820 Jan 2003 WO
WO03004820 Jan 2003 WO
WO03008756 Jan 2003 WO
WO03012255 Feb 2003 WO
WO03016669 Feb 2003 WO
WO03016669 Feb 2003 WO
WO03023178 Mar 2003 WO
WO03023178 Mar 2003 WO
WO03023179 Mar 2003 WO
WO03023179 Mar 2003 WO
WO02038343 Apr 2003 WO
WO03029607 Apr 2003 WO
WO03029608 Apr 2003 WO
WO03036018 May 2003 WO
WO03042486 May 2003 WO
WO03042486 May 2003 WO
WO03042487 May 2003 WO
WO03042487 May 2003 WO
WO03042489 May 2003 WO
WO03048520 Jun 2003 WO
WO03048521 Jun 2003 WO
WO03055616 Jul 2003 WO
WO03058022 Jul 2003 WO
WO03058022 Jul 2003 WO
WO03059549 Jul 2003 WO
WO03064813 Aug 2003 WO
WO03069115 Aug 2003 WO
WO03071086 Aug 2003 WO
WO03071086 Aug 2003 WO
WO03078785 Sep 2003 WO
WO03078785 Sep 2003 WO
WO03086675 Oct 2003 WO
WO03086675 Oct 2003 WO
WO03089161 Oct 2003 WO
WO03089161 Oct 2003 WO
WO03093623 Nov 2003 WO
WO03093623 Nov 2003 WO
WO03102365 Dec 2003 WO
WO03104601 Dec 2003 WO
WO03104601 Dec 2003 WO
WO03106130 Dec 2003 WO
WO03106130 Dec 2003 WO
WO2004003337 Jan 2004 WO
WO2004009950 Jan 2004 WO
WO2004010039 Jan 2004 WO
WO2004010039 Jan 2004 WO
WO2004011776 Feb 2004 WO
WO2004011776 Feb 2004 WO
WO2004018823 Mar 2004 WO
WO2004018823 Mar 2004 WO
WO2004018824 Mar 2004 WO
WO2004018824 Mar 2004 WO
WO2004020895 Mar 2004 WO
WO2004020895 Mar 2004 WO
WO2004023014 Mar 2004 WO
WO2004023014 Mar 2004 WO
WO2004026017 Apr 2004 WO
WO2004026017 Apr 2004 WO
WO2004026073 Apr 2004 WO
WO2004026073 Apr 2004 WO
WO2004026500 Apr 2004 WO
WO2004026500 Apr 2004 WO
WO2004027200 Apr 2004 WO
WO2004027200 Apr 2004 WO
WO2004027204 Apr 2004 WO
WO2004027204 Apr 2004 WO
WO2004027205 Apr 2004 WO
WO2004027392 Apr 2004 WO
WO2004027786 Apr 2004 WO
WO2004027786 Apr 2004 WO
WO2004053434 Jun 2004 WO
WO2004053434 Jun 2004 WO
WO2004057715 Jul 2004 WO
WO2004057715 Jul 2004 WO
WO2004067961 Aug 2004 WO
WO2004067961 Aug 2004 WO
WO2004072436 Aug 2004 WO
WO2004074622 Sep 2004 WO
WO2004074622 Sep 2004 WO
WO2004076798 Sep 2004 WO
WO2004076798 Sep 2004 WO
WO2004081346 Sep 2004 WO
WO2004083591 Sep 2004 WO
WO2004083591 Sep 2004 WO
WO2004083592 Sep 2004 WO
WO2004083592 Sep 2004 WO
WO2004083593 Sep 2004 WO
WO2004083594 Sep 2004 WO
WO2004083594 Sep 2004 WO
WO2004085790 Oct 2004 WO
WO2004089608 Oct 2004 WO
WO2004092527 Oct 2004 WO
WO2004092528 Oct 2004 WO
WO2004092528 Oct 2004 WO
WO2004092530 Oct 2004 WO
WO2004092530 Oct 2004 WO
WO2004094766 Nov 2004 WO
WO2004094766 Nov 2004 WO
WO2005017303 Feb 2005 WO
WO2005021921 Mar 2005 WO
WO2005021921 Mar 2005 WO
WO2005021922 Mar 2005 WO
WO2005021922 Mar 2005 WO
WO2005024141 Mar 2005 WO
WO2005024170 Mar 2005 WO
WO2005024170 Mar 2005 WO
WO2005024171 Mar 2005 WO
WO2005028803 Mar 2005 WO
WO2004027205 Apr 2005 WO
WO2005071212 Apr 2005 WO
WO2005079186 Sep 2005 WO
WO2005079186 Sep 2005 WO
WO2005086614 Sep 2005 WO
WO2006014333 Feb 2006 WO
WO2006020723 Feb 2006 WO
WO2006020726 Feb 2006 WO
WO2006020734 Feb 2006 WO
WO2006020809 Feb 2006 WO
WO2006020810 Feb 2006 WO
WO2006020827 Feb 2006 WO
WO2006020827 Feb 2006 WO
WO2006020913 Feb 2006 WO
WO2006020913 Feb 2006 WO
WO2006020960 Feb 2006 WO
WO2006033720 Mar 2006 WO
WO2004089608 Jul 2006 WO
WO2006079072 Jul 2006 WO
WO2006020810 Aug 2006 WO
WO2006088743 Aug 2006 WO
WO2006102171 Sep 2006 WO
WO2006102556 Sep 2006 WO
WO2006020734 Nov 2006 WO
WO2006020810 Nov 2006 WO
WO2006060387 Feb 2007 WO
WO2007014339 Feb 2007 WO
Related Publications (1)
Number Date Country
20050144771 A1 Jul 2005 US
Provisional Applications (2)
Number Date Country
60259486 Jan 2001 US
60237334 Oct 2000 US
Divisions (1)
Number Date Country
Parent 10465831 US
Child 11070147 US
Continuation in Parts (1)
Number Date Country
Parent 10406648 US
Child 10465831 US