The device is in the field of mechanisms for forming vacuum insulated structures. Specifically, the device includes a pressing mechanism incorporated within an insulation delivery system for simultaneously delivering and pressing insulative material.
In at least one aspect, an insulation delivery apparatus for forming an insulated appliance structure includes an insulated structure having an outer wrapper and an inner liner that cooperate to define an interior cavity. A hopper has a storage bin and a delivery mechanism, wherein the delivery mechanism selectively delivers an insulating medium from the storage bin, through an insulation conduit and into the interior cavity, wherein the delivery mechanism is operable between an idle state and a delivery state. A pressing mechanism is coupled with the insulation conduit, wherein the pressing mechanism is in selective engagement with the insulated structure, wherein the pressing mechanism is operable between a rest state and a compressing state. An inner support is in selective engagement with an outer surface of the inner liner and an operable outer support in selective engagement with a portion of an exterior surface of the outer wrapper, wherein the inner support and the operable outer support provides structural support to the insulated structure when the pressing mechanism is in the compressing state.
In at least another aspect, a method for forming a vacuum insulated structure includes disposing an insulation material into a hopper having a storage bin and a delivery mechanism, wherein a pressing mechanism is in communication with the hopper. An insulated structure is positioned on an inner support, wherein the insulated structure includes an inner liner and an outer wrapper that define an insulating cavity. Portions of an operable outer support are positioned against an exterior surface of the insulated structure, wherein the inner support and the operable outer support locate the insulated structure such that the delivery mechanism is in communication with the insulating cavity. The delivery mechanism is operated to dispose the insulation material within the insulating cavity of the insulated structure. The pressing mechanism is operated during operation of the delivery mechanism to compress the insulation material disposed within the insulating cavity to define a target density, wherein a back panel of the insulated structure is engaged with the pressing mechanism. The inner support and the operable outer support substantially limit outward deflection of the outer wrapper and inner liner during operation of the pressing mechanism. The back panel is sealed to the remainder of the insulated structure to define a hermetic seal. Gas is expressed from the interior cavity to define a vacuum insulated structure and portions of the operable outer support are moved away from the vacuum insulated structure. The vacuum insulated structure is removed from the inner support.
In at least another aspect, a method for forming a vacuum insulated structure includes disposing an insulation material into a hopper having a storage bin and a delivery mechanism, wherein a pressing mechanism is in communication with the hopper. An insulated structure is positioned proximate an operable outer support, wherein the insulated structure includes an insulating cavity. Portions of the operable outer support are positioned against an exterior surface of the insulated structure, wherein the operable outer support locates the insulated structure such that the delivery mechanism is in communication with the insulating cavity. The delivery mechanism is operated to dispose the insulation material within the insulating cavity of the insulated structure and the pressing mechanism is operated during operation of the delivery mechanism to compress the insulation material disposed within the insulating cavity to define a target density. The operable outer support substantially limits outward deflection of the outer wrapper and inner liner during operation of the pressing mechanism. The insulated structure is sealed with the insulating material disposed therein to define a hermetic seal and gas is expressed from the interior cavity to define a vacuum insulated structure. The portions of the operable outer support are moved away from the vacuum insulated structure.
These and other features, advantages, and objects of the present device will be further understood and appreciated by those skilled in the art upon studying the following specification, claims, and appended drawings.
In the drawings:
For purposes of description herein the terms “upper,” “lower,” “right,” “left,” “rear,” “front,” “vertical,” “horizontal,” and derivatives thereof shall relate to the device as oriented in
As illustrated in
Referring again to
Referring again to
Referring again to
Referring again to
According to the various embodiments, the delivery mechanism 30 can include various alternate, or additional mechanisms, which mechanisms can include, but are not limited to, conveyors, blowers, suction devices, gravity fed mechanisms, and other similar delivery mechanisms 30 for disposing the insulating medium 32 within the interior cavity 24 of the insulated structure 12. It is also contemplated that combinations of these delivery mechanisms 30 can be used simultaneously, sequentially, or in a predetermined pattern in order to provide the appropriate amount of insulating medium 32 into the interior cavity 24 of the insulated structure 12 to achieve the target density 82.
Referring again to
Additional compression of the insulating medium 32 can also be achieved through use of a vibrating mechanism placed in communication with the interior cavity 24. Such a vibrating mechanism can be an external vibrating table positioned against the outer wrapper 20 and/or the inner liner 22. The vibrating mechanism can also be a portable vibrating wand that can be disposed within the interior cavity 24. In various embodiments, the vibrating mechanism can be part of the pressing mechanism 40, wherein the pressing mechanism 40 operates to compress and also vibrate the insulating medium 32 to further compact the insulating medium 32 in the interior cavity 24.
According to various embodiments, it is also contemplated that a gas inlet valve 110 can be attached to a gas injector 112 that can be used in conjunction with the gas outlet valve 102 attached to the vacuum pump 100. In such an embodiment, as the vacuum pump 100 expresses the gas 104 from the interior cavity 24 of the insulated structure 12, the gas injector 112 can inject an insulating gas 114 to replace the expressed gas 104 to provide additional insulating characteristics to the insulating medium 32. Such insulating gasses 114 can include, but are not limited to, argon, neon, carbon dioxide, xenon, combinations thereof, and other similar insulating gasses 114. According to the various embodiments, the locations and number of gas outlet valves 102, gas inlet valves 110 and other access apertures for injecting or expressing material from the interior cavity 24 can vary depending on the particular design and/or the desired performance of the insulation system of the appliance 10.
Referring again to
According to the various embodiments, the one or more additives 122 that can be included and combined with the insulating medium 32 can include, but are not limited to, insulating glass spheres, insulating gas 114, additional powder-based insulation, granular insulation, glass fibers, combinations thereof, and other similar insulating additives 122. These additives 122 can be combined with the insulating medium 32, where the insulating medium 32 can include various components that can include, but are not limited to, various forms of silica, aerogel, one or more opacifiers, glass fiber, and insulating glass spheres. It is contemplated that in the additives 122 and/or the insulating medium 32, the glass spheres can take the form of solid or hollow glass spheres and can be of varying sizes including microspheres, nanospheres, and spheres of different sizes. It is further contemplated that the microspheres can include a hollow cavity, or a hollow cavity that includes an at least partial vacuum defined therein.
Referring again to
According to various embodiments, as exemplified in
Referring now to
It is contemplated that the various components of the insulated structure 12 can be made of various rigid materials that can include, but are not limited to, metals, plastics, combinations thereof, and other similar materials. Typically, the various components of the insulated structure 12 will be made of the same material, such as the inner liner 22, outer wrapper 20, and back panel 70, all being made of metal. It is also contemplated that these components can be made of different materials, although the methods for sealing different materials of the insulated structure 12 can require different types of sealing mechanisms and operations to define the hermetic seal 72 between the various components of the insulated structure 12.
After the outer wrapper 20 and inner liner 22 are sealed together, the operable outer support 52 can be selectively moved between a load position 140 and a fill position 142. The load position 140 can be defined by a position of the operable outer support 52 where the inner liner 22 and outer wrapper 20 can be disposed over the inner support 46 without interference from the operable outer support 52. As such, the load position 140 is defined by the operable outer support 52 being moved away from the inner support 46 such that the operable outer support 52 is free of engagement with the outer wrapper 20. Once the outer wrapper 20 and inner liner 22 are placed in position over the inner support 46 and sealed together, the operable outer support 52 can be moved to the fill position 142, wherein the operable outer support 52 is placed in engagement with the exterior surface 54 of the outer wrapper 20.
As discussed above, the inner support 46 and the operable outer support 52 buttress the inner liner 22 and outer wrapper 20 to prevent outward deflection of the insulated structure 12 during operation of the delivery mechanism 30 and pressing mechanism 40. As the delivery mechanism 30 and pressing mechanism 40 operates to increase the amount of insulating medium 32 and also increase the density of the insulating medium 32, these operations will tend to cause the insulated structure 12 to deflect outward as the density of the insulating medium 32 increases. The positioning of the inner support 46 and the operable outer support 52 serve to counteract this tendency to deflect such that the insulated structure 12 maintains its desired shape during operation of the insulation delivery apparatus 18.
Referring now to
It is contemplated that for each insulated structure 12 placed upon the insulation delivery apparatus 18, different parameters can be set for each insulated structure 12. Accordingly, various components of the insulation delivery apparatus 18 can be modified to accommodate a variety of designs for various vacuum insulated structures 12. By way of example, and not limitation, the inner support 46 can be modified in size to accommodate different sizes of insulated structures 12. The amount of insulating medium 32 can also be modified and the amount of compressive force applied to the insulating medium 32 can be modified for each insulated structure 12 such that insulated structures 12 having various design parameters can be manufactured on the same insulation delivery apparatus 18. It is also contemplated that each insulation delivery apparatus 18 can be programmed to manufacture a single type of insulated structure 12 having a predetermined set of parameters that are achieved during each operation of the insulation delivery apparatus 18.
Referring now to
Referring again to
According the various embodiments, the operable outer support 52 can include support components 150 that can be moved in varying directions toward and away from the inner support 46 to define the load position 140 and the fill position 142. Such movements of the support components 150 of the operable outer support 52 can include lateral movements, vertical movements, rotating movements, combinations thereof, and other similar movements that can place the support components 150 of the operable outer support 52 proximate to and distal from the inner support 46, and, accordingly, into and out of engagement with the insulated structure 12.
Referring now to
According to the various embodiments, the operation of the insulation delivery apparatus 18 can be used to fine-tune the density of the insulating medium 32 disposed within the insulated structure 12 to provide a substantially accurate density of the insulating medium 32 at a target density 82. As discussed herein, the various operations of the delivery mechanism 30, pressing mechanism 40, additive delivery mechanism 120, vacuum pump 100 and gas injector 112 can be used separately or in various combinations to achieve a substantially accurate target density 82 of the insulating medium 32 disposed within the insulated structure 12 of the appliance 10.
It will be understood by one having ordinary skill in the art that construction of the described device and other components is not limited to any specific material. Other exemplary embodiments of the device disclosed herein may be formed from a wide variety of materials, unless described otherwise herein.
For purposes of this disclosure, the term “coupled” (in all of its forms, couple, coupling, coupled, etc.) generally means the joining of two components (electrical or mechanical) directly or indirectly to one another. Such joining may be stationary in nature or movable in nature. Such joining may be achieved with the two components (electrical or mechanical) and any additional intermediate members being integrally formed as a single unitary body with one another or with the two components. Such joining may be permanent in nature or may be removable or releasable in nature unless otherwise stated.
It is also important to note that the construction and arrangement of the elements of the device as shown in the exemplary embodiments is illustrative only. Although only a few embodiments of the present innovations have been described in detail in this disclosure, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter recited. For example, elements shown as integrally formed may be constructed of multiple parts or elements shown as multiple parts may be integrally formed, the operation of the interfaces may be reversed or otherwise varied, the length or width of the structures and/or members or connector or other elements of the system may be varied, the nature or number of adjustment positions provided between the elements may be varied. It should be noted that the elements and/or assemblies of the system may be constructed from any of a wide variety of materials that provide sufficient strength or durability, in any of a wide variety of colors, textures, and combinations. Accordingly, all such modifications are intended to be included within the scope of the present innovations. Other substitutions, modifications, changes, and omissions may be made in the design, operating conditions, and arrangement of the desired and other exemplary embodiments without departing from the spirit of the present innovations.
It will be understood that any described processes or steps within described processes may be combined with other disclosed processes or steps to form structures within the scope of the present device. The exemplary structures and processes disclosed herein are for illustrative purposes and are not to be construed as limiting.
It is also to be understood that variations and modifications can be made on the aforementioned structures and methods without departing from the concepts of the present device, and further it is to be understood that such concepts are intended to be covered by the following claims unless these claims by their language expressly state otherwise.
The above description is considered that of the illustrated embodiments only. Modifications of the device will occur to those skilled in the art and to those who make or use the device. Therefore, it is understood that the embodiments shown in the drawings and described above is merely for illustrative purposes and not intended to limit the scope of the device, which is defined by the following claims as interpreted according to the principles of patent law, including the Doctrine of Equivalents.
Number | Name | Date | Kind |
---|---|---|---|
948541 | Coleman | Feb 1910 | A |
1275511 | Welch | Aug 1918 | A |
1849369 | Frost | Mar 1932 | A |
1921576 | Muffly | Aug 1933 | A |
2108212 | Schellens | Feb 1938 | A |
2128336 | Torstensson | Aug 1938 | A |
2164143 | Munters | Jun 1939 | A |
2191659 | Hintze | Feb 1940 | A |
2318744 | Brown | May 1943 | A |
2356827 | Coss et al. | Aug 1944 | A |
2381454 | Huth | Aug 1945 | A |
2432042 | Richard | Dec 1947 | A |
2439602 | Heritage | Apr 1948 | A |
2439603 | Heritage | Apr 1948 | A |
2451884 | Stelzer | Oct 1948 | A |
2538780 | Hazard | Jan 1951 | A |
2559356 | Hedges | Jul 1951 | A |
2729863 | Kurtz | Jan 1956 | A |
2768046 | Evans | Oct 1956 | A |
2817123 | Jacobs | Dec 1957 | A |
2942438 | Schmeling | Jun 1960 | A |
2985075 | Knutsson-Hall | May 1961 | A |
3086830 | Malia | Apr 1963 | A |
3125388 | Constantini et al. | Mar 1964 | A |
3137900 | Carbary | Jun 1964 | A |
3218111 | Steiner | Nov 1965 | A |
3258883 | Campanaro et al. | Jul 1966 | A |
3290893 | Haldopoulos | Dec 1966 | A |
3338451 | Kesling | Aug 1967 | A |
3353301 | Heilweil et al. | Nov 1967 | A |
3353321 | Heilweil et al. | Nov 1967 | A |
3358059 | Snyder | Dec 1967 | A |
3379481 | Fisher | Apr 1968 | A |
3408316 | Mueller et al. | Oct 1968 | A |
3471416 | Fijal | Oct 1969 | A |
3597850 | Jenkins | Aug 1971 | A |
3632012 | Kitson | Jan 1972 | A |
3633783 | Aue | Jan 1972 | A |
3634971 | Kesling | Jan 1972 | A |
3635536 | Lackey et al. | Jan 1972 | A |
3670521 | Dodge, III et al. | Jun 1972 | A |
3688384 | Mizushima et al. | Sep 1972 | A |
3862880 | Feldman | Jan 1975 | A |
3868829 | Mann et al. | Mar 1975 | A |
3875683 | Waters | Apr 1975 | A |
3935787 | Fisher | Feb 1976 | A |
4005919 | Hoge et al. | Feb 1977 | A |
4006947 | Haag et al. | Feb 1977 | A |
4043624 | Lindenschmidt | Aug 1977 | A |
4050145 | Benford | Sep 1977 | A |
4067628 | Sherburn | Jan 1978 | A |
4170391 | Bottger | Oct 1979 | A |
4242241 | Rosen et al. | Dec 1980 | A |
4260876 | Hochheiser | Apr 1981 | A |
4303730 | Torobin | Dec 1981 | A |
4303732 | Torobin | Dec 1981 | A |
4325734 | Burrage et al. | Apr 1982 | A |
4330310 | Tate, Jr. et al. | May 1982 | A |
4332429 | Frick et al. | Jun 1982 | A |
4396362 | Thompson et al. | Aug 1983 | A |
4417382 | Schilf | Nov 1983 | A |
4492368 | DeLeeuw et al. | Jan 1985 | A |
4529368 | Makansi | Jul 1985 | A |
4548196 | Torobin | Oct 1985 | A |
4660271 | Lenhardt | Apr 1987 | A |
4671909 | Torobin | Jun 1987 | A |
4671985 | Rodrigues et al. | Jun 1987 | A |
4681788 | Barito et al. | Jul 1987 | A |
4745015 | Cheng et al. | May 1988 | A |
4777154 | Torobin | Oct 1988 | A |
4781968 | Kellerman | Nov 1988 | A |
4805293 | Buchser | Feb 1989 | A |
4865875 | Kellerman | Sep 1989 | A |
4870735 | Jahr et al. | Oct 1989 | A |
4914341 | Weaver et al. | Apr 1990 | A |
4917841 | Jenkins | Apr 1990 | A |
5007226 | Nelson | Apr 1991 | A |
5018328 | Cur et al. | May 1991 | A |
5033636 | Jenkins | Jul 1991 | A |
5066437 | Barito et al. | Nov 1991 | A |
5082335 | Cur et al. | Jan 1992 | A |
5084320 | Barito et al. | Jan 1992 | A |
5094899 | Rusek, Jr. | Mar 1992 | A |
5118174 | Benford et al. | Jun 1992 | A |
5121593 | Forslund | Jun 1992 | A |
5157893 | Benson et al. | Oct 1992 | A |
5168674 | Molthen | Dec 1992 | A |
5171346 | Hallett | Dec 1992 | A |
5175975 | Benson et al. | Jan 1993 | A |
5212143 | Torobin | May 1993 | A |
5221136 | Hauck et al. | Jun 1993 | A |
5227245 | Brands et al. | Jul 1993 | A |
5231811 | Andrepont et al. | Aug 1993 | A |
5248196 | Lynn et al. | Sep 1993 | A |
5251455 | Cur et al. | Oct 1993 | A |
5252408 | Bridges et al. | Oct 1993 | A |
5263773 | Gable et al. | Nov 1993 | A |
5273801 | Barry et al. | Dec 1993 | A |
5318108 | Benson et al. | Jun 1994 | A |
5340208 | Hauck et al. | Aug 1994 | A |
5353868 | Abbott | Oct 1994 | A |
5359795 | Mawby et al. | Nov 1994 | A |
5375428 | LeClear et al. | Dec 1994 | A |
5397759 | Torobin | Mar 1995 | A |
5418055 | Chen et al. | May 1995 | A |
5433056 | Benson et al. | Jul 1995 | A |
5477676 | Benson et al. | Dec 1995 | A |
5500305 | Bridges et al. | Mar 1996 | A |
5505810 | Kirby et al. | Apr 1996 | A |
5507999 | Copsey et al. | Apr 1996 | A |
5509248 | Dellby et al. | Apr 1996 | A |
5512345 | Tsutsumi et al. | Apr 1996 | A |
5532034 | Kirby et al. | Jul 1996 | A |
5533311 | Tirrell et al. | Jul 1996 | A |
5562154 | Benson et al. | Oct 1996 | A |
5586680 | Dellby et al. | Dec 1996 | A |
5599081 | Revlett et al. | Feb 1997 | A |
5600966 | Valence et al. | Feb 1997 | A |
5632543 | McGrath et al. | May 1997 | A |
5640828 | Reeves et al. | Jun 1997 | A |
5643485 | Potter et al. | Jul 1997 | A |
5652039 | Tremain et al. | Jul 1997 | A |
5716581 | Tirrell et al. | Feb 1998 | A |
5768837 | Sjoholm | Jun 1998 | A |
5792801 | Tsuda et al. | Aug 1998 | A |
5813454 | Potter | Sep 1998 | A |
5827385 | Meyer et al. | Oct 1998 | A |
5834126 | Sheu | Nov 1998 | A |
5843353 | DeVos et al. | Dec 1998 | A |
5866228 | Awata | Feb 1999 | A |
5866247 | Klatt et al. | Feb 1999 | A |
5868890 | Fredrick | Feb 1999 | A |
5900299 | Wynne | May 1999 | A |
5924295 | Park | Jul 1999 | A |
5952404 | Simpson et al. | Sep 1999 | A |
5966963 | Kovalaske | Oct 1999 | A |
5985189 | Lynn et al. | Nov 1999 | A |
6013700 | Asano et al. | Jan 2000 | A |
6063471 | Dietrich et al. | May 2000 | A |
6094922 | Ziegler | Aug 2000 | A |
6109712 | Haworth et al. | Aug 2000 | A |
6128914 | Tamaoki et al. | Oct 2000 | A |
6132837 | Boes et al. | Oct 2000 | A |
6158233 | Cohen et al. | Dec 2000 | A |
6163976 | Tada et al. | Dec 2000 | A |
6164030 | Dietrich | Dec 2000 | A |
6164739 | Schulz et al. | Dec 2000 | A |
6187256 | Aslan et al. | Feb 2001 | B1 |
6209342 | Banicevic et al. | Apr 2001 | B1 |
6210625 | Matsushita et al. | Apr 2001 | B1 |
6220473 | Lehman et al. | Apr 2001 | B1 |
6221456 | Pogorski et al. | Apr 2001 | B1 |
6224179 | Wenning et al. | May 2001 | B1 |
6244458 | Frysinger et al. | Jun 2001 | B1 |
6260377 | Tamaoki et al. | Jul 2001 | B1 |
6266970 | Nam et al. | Jul 2001 | B1 |
6294595 | Tyagi et al. | Sep 2001 | B1 |
6305768 | Nishimoto | Oct 2001 | B1 |
6485122 | Wolf et al. | Jan 2002 | B2 |
6390378 | Briscoe, Jr. et al. | May 2002 | B1 |
6406449 | Moore et al. | Jun 2002 | B1 |
6408841 | Hirath et al. | Jun 2002 | B1 |
6415623 | Jennings et al. | Jul 2002 | B1 |
6428130 | Banicevic et al. | Aug 2002 | B1 |
6430780 | Kim et al. | Aug 2002 | B1 |
6460955 | Vaughan et al. | Oct 2002 | B1 |
6519919 | Takenouchi et al. | Feb 2003 | B1 |
6623413 | Wynne | Sep 2003 | B1 |
6629429 | Kawamura et al. | Oct 2003 | B1 |
6651444 | Morimoto et al. | Nov 2003 | B2 |
6655766 | Hodges | Dec 2003 | B2 |
6689840 | Eustace et al. | Feb 2004 | B1 |
6716501 | Kovalchuk et al. | Apr 2004 | B2 |
6736472 | Banicevic | May 2004 | B2 |
6749780 | Tobias | Jun 2004 | B2 |
6773082 | Lee | Aug 2004 | B2 |
6858280 | Allen et al. | Feb 2005 | B2 |
6860082 | Yamamoto et al. | Mar 2005 | B1 |
6938968 | Tanimoto et al. | Sep 2005 | B2 |
6997530 | Avendano et al. | Feb 2006 | B2 |
7008032 | Chekal et al. | Mar 2006 | B2 |
7026054 | Ikegawa et al. | Apr 2006 | B2 |
7197792 | Moon | Apr 2007 | B2 |
7207181 | Murray et al. | Apr 2007 | B2 |
7210308 | Tanimoto et al. | May 2007 | B2 |
7234247 | Maguire | Jun 2007 | B2 |
7263744 | Kim et al. | Sep 2007 | B2 |
7278279 | Hirai et al. | Oct 2007 | B2 |
7284390 | Van Meter et al. | Oct 2007 | B2 |
7296432 | Muller et al. | Nov 2007 | B2 |
7316125 | Uekado et al. | Jan 2008 | B2 |
7343757 | Egan et al. | Mar 2008 | B2 |
7360371 | Feinauer et al. | Apr 2008 | B2 |
7386992 | Adamski et al. | Jun 2008 | B2 |
7449227 | Echigoya et al. | Nov 2008 | B2 |
7475562 | Jackovin | Jan 2009 | B2 |
7517031 | Laible | Apr 2009 | B2 |
7517576 | Echigoya et al. | Apr 2009 | B2 |
7537817 | Tsunetsugu et al. | May 2009 | B2 |
7614244 | Venkatakrishnan et al. | Nov 2009 | B2 |
7625622 | Teckoe et al. | Dec 2009 | B2 |
7641298 | Hirath et al. | Jan 2010 | B2 |
7703217 | Tada et al. | Apr 2010 | B2 |
7703824 | Kittelson et al. | Apr 2010 | B2 |
7762634 | Tenra et al. | Jul 2010 | B2 |
7794805 | Aumaugher et al. | Sep 2010 | B2 |
7815269 | Wenning et al. | Oct 2010 | B2 |
7842269 | Schachtely et al. | Nov 2010 | B2 |
7845745 | Gorz et al. | Dec 2010 | B2 |
7861538 | Welle et al. | Jan 2011 | B2 |
7886559 | Hell et al. | Feb 2011 | B2 |
7893123 | Luisi | Feb 2011 | B2 |
7905614 | Aoki | Mar 2011 | B2 |
7908873 | Cur et al. | Mar 2011 | B1 |
7930892 | Vonderhaar | Apr 2011 | B1 |
7938148 | Carlier et al. | May 2011 | B2 |
7992257 | Kim | Aug 2011 | B2 |
8049518 | Wern et al. | Nov 2011 | B2 |
8079652 | Laible et al. | Dec 2011 | B2 |
8083985 | Luisi et al. | Dec 2011 | B2 |
8108972 | Bae et al. | Feb 2012 | B2 |
8113604 | Olson et al. | Feb 2012 | B2 |
8117865 | Allard et al. | Feb 2012 | B2 |
8162415 | Hagele et al. | Apr 2012 | B2 |
8163080 | Meyer et al. | Apr 2012 | B2 |
8176746 | Allard et al. | May 2012 | B2 |
8182051 | Laible et al. | May 2012 | B2 |
8197019 | Kim | Jun 2012 | B2 |
8202599 | Henn | Jun 2012 | B2 |
8211523 | Fujimori et al. | Jul 2012 | B2 |
8266923 | Bauer et al. | Sep 2012 | B2 |
8281558 | Hiemeyer et al. | Oct 2012 | B2 |
8299545 | Chen et al. | Oct 2012 | B2 |
8299656 | Allard et al. | Oct 2012 | B2 |
8343395 | Hu et al. | Jan 2013 | B2 |
8353177 | Adamski et al. | Jan 2013 | B2 |
8382219 | Hottmann et al. | Feb 2013 | B2 |
8434317 | Besore | May 2013 | B2 |
8439460 | Laible et al. | May 2013 | B2 |
8453476 | Kendall et al. | Jun 2013 | B2 |
8456040 | Allard et al. | Jun 2013 | B2 |
8491070 | Davis et al. | Jul 2013 | B2 |
8522563 | Allard et al. | Sep 2013 | B2 |
8528284 | Aspenson et al. | Sep 2013 | B2 |
8717029 | Chae et al. | May 2014 | B2 |
8726690 | Cur et al. | May 2014 | B2 |
8733123 | Adamski et al. | May 2014 | B2 |
8739567 | Junge | Jun 2014 | B2 |
8739568 | Allard et al. | Jun 2014 | B2 |
8752918 | Kang | Jun 2014 | B2 |
8752921 | Gorz et al. | Jun 2014 | B2 |
8756952 | Adamski et al. | Jun 2014 | B2 |
8763847 | Mortarotti | Jul 2014 | B2 |
8764133 | Park et al. | Jul 2014 | B2 |
8770682 | Lee et al. | Jul 2014 | B2 |
8776390 | Hanaoka et al. | Jul 2014 | B2 |
8790477 | Tenra et al. | Jul 2014 | B2 |
8840204 | Bauer et al. | Sep 2014 | B2 |
8852708 | Kim et al. | Oct 2014 | B2 |
8870034 | Suzuki | Oct 2014 | B2 |
8871323 | Kim et al. | Oct 2014 | B2 |
8881398 | Hanley et al. | Oct 2014 | B2 |
8899068 | Jung et al. | Dec 2014 | B2 |
8927084 | Jeon et al. | Jan 2015 | B2 |
8943770 | Sanders et al. | Feb 2015 | B2 |
8944541 | Allard et al. | Feb 2015 | B2 |
8986483 | Cur et al. | Mar 2015 | B2 |
9009969 | Choi et al. | Apr 2015 | B2 |
RE45501 | Maguire | May 2015 | E |
9038403 | Cur et al. | May 2015 | B2 |
9056952 | Eilbracht et al. | Jun 2015 | B2 |
9071907 | Kuehl et al. | Jun 2015 | B2 |
9074811 | Korkmaz | Jul 2015 | B2 |
9080808 | Choi et al. | Jul 2015 | B2 |
9102076 | Doshi et al. | Aug 2015 | B2 |
9140480 | Kuehl et al. | Sep 2015 | B2 |
9140481 | Curr et al. | Sep 2015 | B2 |
9170045 | Oh et al. | Oct 2015 | B2 |
9170046 | Jung et al. | Oct 2015 | B2 |
9182158 | Wu | Nov 2015 | B2 |
9188382 | Kim et al. | Nov 2015 | B2 |
9221210 | Wu et al. | Dec 2015 | B2 |
9252570 | Allard et al. | Feb 2016 | B2 |
9267727 | Lim et al. | Feb 2016 | B2 |
9303915 | Kim et al. | Apr 2016 | B2 |
9328951 | Shin et al. | May 2016 | B2 |
9353984 | Kim et al. | May 2016 | B2 |
9410732 | Choi et al. | Aug 2016 | B2 |
9423171 | Betto et al. | Aug 2016 | B2 |
9429356 | Kim et al. | Aug 2016 | B2 |
9448004 | Kim et al. | Sep 2016 | B2 |
9463917 | Wu et al. | Oct 2016 | B2 |
9482463 | Choi et al. | Nov 2016 | B2 |
9506689 | Carbajal et al. | Nov 2016 | B2 |
9518777 | Lee et al. | Dec 2016 | B2 |
9568238 | Kim et al. | Feb 2017 | B2 |
D781641 | Incukur | Mar 2017 | S |
D781642 | Incukur | Mar 2017 | S |
9605891 | Lee et al. | Mar 2017 | B2 |
9696085 | Seo et al. | Jul 2017 | B2 |
9702621 | Cho et al. | Jul 2017 | B2 |
9791204 | Kim et al. | Oct 2017 | B2 |
9833942 | Wu et al. | Dec 2017 | B2 |
20020004111 | Matsubara et al. | Jan 2002 | A1 |
20020114937 | Albert et al. | Aug 2002 | A1 |
20020144482 | Henson et al. | Oct 2002 | A1 |
20020168496 | Morimoto et al. | Nov 2002 | A1 |
20030008100 | Horn | Jan 2003 | A1 |
20030041612 | Piloni et al. | Mar 2003 | A1 |
20030056334 | Finkelstein | Mar 2003 | A1 |
20030157284 | Tanimoto et al. | Aug 2003 | A1 |
20030167789 | Tanimoto et al. | Sep 2003 | A1 |
20040144130 | Jung | Jul 2004 | A1 |
20040178707 | Avendano | Sep 2004 | A1 |
20040180176 | Rusek | Sep 2004 | A1 |
20040226141 | Yates et al. | Nov 2004 | A1 |
20040253406 | Hayashi et al. | Dec 2004 | A1 |
20050042247 | Gomoll et al. | Feb 2005 | A1 |
20050229614 | Ansted | Oct 2005 | A1 |
20050235682 | Hirai et al. | Oct 2005 | A1 |
20060064846 | Espindola et al. | Mar 2006 | A1 |
20060076863 | Echigoya et al. | Apr 2006 | A1 |
20060201189 | Adamski et al. | Sep 2006 | A1 |
20060261718 | Miseki et al. | Nov 2006 | A1 |
20060263571 | Tsunetsugu et al. | Nov 2006 | A1 |
20060266075 | Itsuki et al. | Nov 2006 | A1 |
20070001563 | Park et al. | Jan 2007 | A1 |
20070099502 | Ferinauer | May 2007 | A1 |
20070176526 | Gomoll et al. | Aug 2007 | A1 |
20070266654 | Noale | Nov 2007 | A1 |
20080044488 | Zimmer et al. | Feb 2008 | A1 |
20080048540 | Kim | Feb 2008 | A1 |
20080054024 | Kubota | Mar 2008 | A1 |
20080138458 | Ozasa et al. | Jun 2008 | A1 |
20080196441 | Ferreira | Aug 2008 | A1 |
20080300356 | Meyer et al. | Dec 2008 | A1 |
20080309210 | Luisi et al. | Dec 2008 | A1 |
20090032541 | Rogala et al. | Feb 2009 | A1 |
20090056367 | Neumann | Mar 2009 | A1 |
20090058244 | Cho et al. | Mar 2009 | A1 |
20090113925 | Korkmaz | May 2009 | A1 |
20090131571 | Fraser et al. | May 2009 | A1 |
20090179541 | Smith et al. | Jul 2009 | A1 |
20090324871 | Henn | Dec 2009 | A1 |
20100218543 | Duchame | Sep 2010 | A1 |
20100231109 | Matzke et al. | Sep 2010 | A1 |
20100287843 | Oh | Nov 2010 | A1 |
20100287974 | Cur et al. | Nov 2010 | A1 |
20100293984 | Adamski et al. | Nov 2010 | A1 |
20100295435 | Kendall et al. | Nov 2010 | A1 |
20110011119 | Kuehl et al. | Jan 2011 | A1 |
20110023527 | Kwon et al. | Feb 2011 | A1 |
20110030894 | Tenra et al. | Feb 2011 | A1 |
20110095669 | Moon et al. | Apr 2011 | A1 |
20110146325 | Lee | Jun 2011 | A1 |
20110146335 | Jung et al. | Jun 2011 | A1 |
20110165367 | Kojima et al. | Jul 2011 | A1 |
20110215694 | Fink et al. | Sep 2011 | A1 |
20110220662 | Kim et al. | Sep 2011 | A1 |
20110241513 | Nomura et al. | Oct 2011 | A1 |
20110241514 | Nomura et al. | Oct 2011 | A1 |
20110260351 | Corradi et al. | Oct 2011 | A1 |
20110290808 | Bai et al. | Dec 2011 | A1 |
20110315693 | Cur et al. | Dec 2011 | A1 |
20120000234 | Adamski et al. | Jan 2012 | A1 |
20120011879 | Gu | Jan 2012 | A1 |
20120103006 | Jung et al. | May 2012 | A1 |
20120104923 | Jung et al. | May 2012 | A1 |
20120118002 | Kim et al. | May 2012 | A1 |
20120137501 | Allard et al. | Jun 2012 | A1 |
20120152151 | Meyer et al. | Jun 2012 | A1 |
20120196059 | Fujimori et al. | Aug 2012 | A1 |
20120231204 | Jeon et al. | Sep 2012 | A1 |
20120237715 | McCracken | Sep 2012 | A1 |
20120273111 | Nomura et al. | Nov 2012 | A1 |
20120279247 | Katu et al. | Nov 2012 | A1 |
20120285971 | Junge et al. | Nov 2012 | A1 |
20120297813 | Hanley et al. | Nov 2012 | A1 |
20120324937 | Adamski et al. | Dec 2012 | A1 |
20130026900 | Oh et al. | Jan 2013 | A1 |
20130033163 | Kang | Feb 2013 | A1 |
20130068990 | Eilbracht et al. | Mar 2013 | A1 |
20130111941 | Yu et al. | May 2013 | A1 |
20130221819 | Wing | Aug 2013 | A1 |
20130255304 | Cur et al. | Oct 2013 | A1 |
20130256318 | Kuehl et al. | Oct 2013 | A1 |
20130256319 | Kuehl et al. | Oct 2013 | A1 |
20130257256 | Allard et al. | Oct 2013 | A1 |
20130257257 | Cur et al. | Oct 2013 | A1 |
20130264439 | Allard et al. | Oct 2013 | A1 |
20130270732 | Wu et al. | Oct 2013 | A1 |
20130285527 | Choi et al. | Oct 2013 | A1 |
20130305535 | Cur et al. | Nov 2013 | A1 |
20130328472 | Shim et al. | Dec 2013 | A1 |
20140132144 | Kim et al. | May 2014 | A1 |
20140166926 | Lee et al. | Jun 2014 | A1 |
20140171578 | Meyer et al. | Jun 2014 | A1 |
20140190978 | Bowman et al. | Jul 2014 | A1 |
20140196305 | Smith | Jul 2014 | A1 |
20140216706 | Melton et al. | Aug 2014 | A1 |
20140232250 | Kim et al. | Aug 2014 | A1 |
20140260332 | Wu | Sep 2014 | A1 |
20140346942 | Kim et al. | Nov 2014 | A1 |
20140364527 | Matthias et al. | Dec 2014 | A1 |
20150011668 | Kolb et al. | Jan 2015 | A1 |
20150015133 | Carbajal et al. | Jan 2015 | A1 |
20150017386 | Kolb et al. | Jan 2015 | A1 |
20150027628 | Cravens et al. | Jan 2015 | A1 |
20150147514 | Shinohara et al. | May 2015 | A1 |
20150159936 | Oh et al. | Jun 2015 | A1 |
20150168050 | Cur et al. | Jun 2015 | A1 |
20150176888 | Cur et al. | Jun 2015 | A1 |
20150184923 | Jeon | Jul 2015 | A1 |
20150190840 | Muto et al. | Jul 2015 | A1 |
20150224685 | Amstutz | Aug 2015 | A1 |
20150241118 | Wu | Aug 2015 | A1 |
20150285551 | Aiken et al. | Oct 2015 | A1 |
20160084567 | Fernandez et al. | Mar 2016 | A1 |
20160116100 | Thiery et al. | Apr 2016 | A1 |
20160123055 | Ueyama | May 2016 | A1 |
20160178267 | Hao et al. | Jun 2016 | A1 |
20160178269 | Hiemeyer et al. | Jun 2016 | A1 |
20160240839 | Umeyama et al. | Aug 2016 | A1 |
20160258671 | Allard et al. | Sep 2016 | A1 |
20160290702 | Sexton et al. | Oct 2016 | A1 |
20160348957 | Hitzelberger et al. | Dec 2016 | A1 |
20170038126 | Lee et al. | Feb 2017 | A1 |
20170157809 | Deka et al. | Jun 2017 | A1 |
20170176086 | Kang | Jun 2017 | A1 |
20170184339 | Liu et al. | Jun 2017 | A1 |
20170191746 | Seo | Jul 2017 | A1 |
Number | Date | Country |
---|---|---|
626838 | May 1961 | CA |
1320631 | Jul 1993 | CA |
2259665 | Jan 1998 | CA |
2640006 | Aug 2007 | CA |
1158509 | Jul 2004 | CN |
1970185 | May 2007 | CN |
100359272 | Jan 2008 | CN |
101437756 | May 2009 | CN |
201680116 | Dec 2010 | CN |
201748744 | Feb 2011 | CN |
102296714 | May 2012 | CN |
102452522 | May 2012 | CN |
102717578 | Oct 2012 | CN |
102720277 | Oct 2012 | CN |
103072321 | May 2013 | CN |
202973713 | Jun 2013 | CN |
203331442 | Dec 2013 | CN |
104816478 | Aug 2015 | CN |
105115221 | Dec 2015 | CN |
2014963379 | Jan 2016 | CN |
1150190 | Jun 1963 | DE |
4110292 | Oct 1992 | DE |
4409091 | Sep 1995 | DE |
19818890 | Nov 1999 | DE |
19914105 | Sep 2000 | DE |
19915311 | Oct 2000 | DE |
102008026528 | Dec 2009 | DE |
102009046810 | May 2011 | DE |
102010024951 | Dec 2011 | DE |
102011051178 | Dec 2012 | DE |
102012223536 | Jun 2014 | DE |
102012223541 | Jun 2014 | DE |
0260699 | Mar 1988 | EP |
0480451 | Apr 1992 | EP |
0645576 | Mar 1995 | EP |
0691518 | Jan 1996 | EP |
0860669 | Aug 1998 | EP |
1087186 | Mar 2001 | EP |
1200785 | May 2002 | EP |
1243880 | Sep 2002 | EP |
1496322 | Jan 2005 | EP |
1505359 | Feb 2005 | EP |
1602425 | Dec 2005 | EP |
1624263 | Aug 2006 | EP |
1484563 | Oct 2008 | EP |
2342511 | Aug 2012 | EP |
2607073 | Jun 2013 | EP |
2789951 | Oct 2014 | EP |
2878427 | Jun 2015 | EP |
2980963 | Apr 2013 | FR |
2991698 | Dec 2013 | FR |
837929 | Jun 1960 | GB |
1214548 | Jun 1960 | GB |
4828353 | Aug 1973 | JP |
51057777 | May 1976 | JP |
59191588 | Dec 1984 | JP |
03013779 | Jan 1991 | JP |
404165197 | Jun 1992 | JP |
04165197 | Oct 1992 | JP |
04309778 | Nov 1992 | JP |
06159922 | Jun 1994 | JP |
7001479 | Jan 1995 | JP |
H07167377 | Jul 1995 | JP |
08300052 | Nov 1996 | JP |
H08303686 | Nov 1996 | JP |
H09166271 | Jun 1997 | JP |
10113983 | May 1998 | JP |
11159693 | Jun 1999 | JP |
11311395 | Nov 1999 | JP |
11336990 | Dec 1999 | JP |
2000097390 | Apr 2000 | JP |
2000117334 | Apr 2000 | JP |
2001038188 | Feb 2001 | JP |
2001116437 | Apr 2001 | JP |
2001336691 | Dec 2001 | JP |
2001343176 | Dec 2001 | JP |
2002068853 | Mar 2002 | JP |
3438948 | Aug 2003 | JP |
03478771 | Dec 2003 | JP |
2004303695 | Oct 2004 | JP |
2005069596 | Mar 2005 | JP |
2005098637 | Apr 2005 | JP |
2005114015 | Apr 2005 | JP |
2005164193 | Jun 2005 | JP |
2005256849 | Sep 2005 | JP |
2006077792 | Mar 2006 | JP |
2006161834 | Jun 2006 | JP |
2006161945 | Jun 2006 | JP |
03792801 | Jul 2006 | JP |
2006200685 | Aug 2006 | JP |
2007263186 | Oct 2007 | JP |
4111096 | Jul 2008 | JP |
2008157431 | Jul 2008 | JP |
2008190815 | Aug 2008 | JP |
2009063064 | Mar 2009 | JP |
2009162402 | Jul 2009 | JP |
2009524570 | Jul 2009 | JP |
2010017437 | Jan 2010 | JP |
2010071565 | Apr 2010 | JP |
2010108199 | May 2010 | JP |
2010145002 | Jul 2010 | JP |
04545126 | Sep 2010 | JP |
2010236770 | Oct 2010 | JP |
2010276309 | Dec 2010 | JP |
2011002033 | Jan 2011 | JP |
2011069612 | Apr 2011 | JP |
04779684 | Sep 2011 | JP |
2011196644 | Oct 2011 | JP |
2012026493 | Feb 2012 | JP |
04897473 | Mar 2012 | JP |
2012063029 | Mar 2012 | JP |
2012087993 | May 2012 | JP |
2012163258 | Aug 2012 | JP |
2012189114 | Oct 2012 | JP |
2012242075 | Dec 2012 | JP |
2013002484 | Jan 2013 | JP |
2013050242 | Mar 2013 | JP |
2013088036 | May 2013 | JP |
2013195009 | Sep 2013 | JP |
20020057547 | Jul 2002 | KR |
20020080938 | Oct 2002 | KR |
20030083812 | Nov 2003 | KR |
20040000126 | Jan 2004 | KR |
20050095357 | Sep 2005 | KR |
100620025 | Sep 2006 | KR |
20070044024 | Apr 2007 | KR |
1020070065743 | Jun 2007 | KR |
1020080103845 | Nov 2008 | KR |
20090026045 | Mar 2009 | KR |
1017776 | Feb 2011 | KR |
20120007241 | Jan 2012 | KR |
2012046621 | May 2012 | KR |
2012051305 | May 2012 | KR |
20150089495 | Aug 2015 | KR |
547614 | May 1977 | RU |
2061925 | Jun 1996 | RU |
2077411 | Apr 1997 | RU |
2081858 | Jun 1997 | RU |
2132522 | Jun 1999 | RU |
2162576 | Jan 2001 | RU |
2166158 | Apr 2001 | RU |
2234645 | Aug 2004 | RU |
2252377 | May 2005 | RU |
2349618 | Mar 2009 | RU |
2414288 | Mar 2011 | RU |
2422598 | Jun 2011 | RU |
142892 | Jul 2014 | RU |
2571031 | Dec 2015 | RU |
203707 | Dec 1967 | SU |
00476407 | Jul 1975 | SU |
476407 | Nov 1975 | SU |
648780 | Feb 1979 | SU |
01307186 | Apr 1987 | SU |
9614207 | May 1996 | WO |
9721767 | Jun 1997 | WO |
1998049506 | Nov 1998 | WO |
02060576 | Apr 1999 | WO |
9614207 | Apr 1999 | WO |
9920961 | Apr 1999 | WO |
9920964 | Apr 1999 | WO |
199920964 | Apr 1999 | WO |
200160598 | Aug 2001 | WO |
200202987 | Jan 2002 | WO |
2002052208 | Apr 2002 | WO |
02060576 | Aug 2002 | WO |
03072684 | Sep 2003 | WO |
03089729 | Oct 2003 | WO |
2004010042 | Jan 2004 | WO |
2006045694 | May 2006 | WO |
2006073540 | Jul 2006 | WO |
2007033836 | Mar 2007 | WO |
2007085511 | Aug 2007 | WO |
2007106067 | Sep 2007 | WO |
2008065453 | Jun 2008 | WO |
2008077741 | Jul 2008 | WO |
2008118536 | Oct 2008 | WO |
2008122483 | Oct 2008 | WO |
2009013106 | Jan 2009 | WO |
2009112433 | Sep 2009 | WO |
2009147106 | Dec 2009 | WO |
2010007783 | Jan 2010 | WO |
2010007783 | Jan 2010 | WO |
2010029730 | Mar 2010 | WO |
2010043009 | Apr 2010 | WO |
2010092627 | Aug 2010 | WO |
2010127947 | Nov 2010 | WO |
2010127947 | Nov 2010 | WO |
2011003711 | Jan 2011 | WO |
2011058678 | May 2011 | WO |
2011058678 | May 2011 | WO |
2011081498 | Jul 2011 | WO |
2010007783 | Jan 2012 | WO |
2012023705 | Feb 2012 | WO |
2012026715 | Mar 2012 | WO |
2012031885 | Mar 2012 | WO |
2012044001 | Apr 2012 | WO |
2012043990 | May 2012 | WO |
2012085212 | Jun 2012 | WO |
2012119892 | Sep 2012 | WO |
2012152646 | Nov 2012 | WO |
2013116103 | Aug 2013 | WO |
2013116302 | Aug 2013 | WO |
2014038150 | Mar 2014 | WO |
2014038150 | Mar 2014 | WO |
2014095542 | Jun 2014 | WO |
2014121893 | Aug 2014 | WO |
2014184393 | Nov 2014 | WO |
2014184393 | Nov 2014 | WO |
2013140816 | Aug 2015 | WO |
2016082907 | Jun 2016 | WO |
2017029782 | Feb 2017 | WO |
Entry |
---|
BASF, “Balindur™ Solutions for fixing Vaccum Insulated Panels,” web page, 4 pages, date unknown, http://performance-materials.basf.us/products/view/family/balindur, at least as early as Dec. 21, 2015. |
BASF, “Balindur™,” web page, 2 pages, date unknown, http://product-finder.basf.com/group/corporate/product-finder/en/brand/BALINDUR, at least as early as Dec. 21, 2015. |
PU Solutions Elastogram, “Balindur™ masters the challenge,” web page, 2 pages, date unknown, http://product-finder.basf.com/group/corporate/product-finder/en/literature-document:/Brand+Balindur-Flyer--Balindur+The+new+VIP+fixation+technology-English.pdf, Dec. 21, 2014. |
Kitchen Aid, “Refrigerator User Instructions,” 120 pages, published Sep. 5, 2015. |
Cai et al., “Generation of Metal Nanoparticles by Laser Ablation of Microspheres,” J. Aerosol Sci., vol. 29, No. 5/6 (1998), pp. 627-636. |
Raszewski et al., “Methods for Producing Hollow Glass Microspheres,” Powerpoint, cached from Google, Jul. 2009, 6 pages. |
Number | Date | Country | |
---|---|---|---|
20170159997 A1 | Jun 2017 | US |