Method and apparatus for forming an optimized window

Information

  • Patent Grant
  • 6499538
  • Patent Number
    6,499,538
  • Date Filed
    Thursday, April 8, 1999
    25 years ago
  • Date Issued
    Tuesday, December 31, 2002
    21 years ago
Abstract
Methods and apparatus are described for forming a window of optimum dimensions in casing wall. A window of maximum width is cut when the center line of the mill tool is located inside of the inner diameter of the casing where a maximum amount of casing is drilled away by the mill tool. A whipstock is described which deviates the mill tool outwardly so that the center line of the mill tool is in approximately this position. The whipstock then maintains the mill tool at this approximate location until a window of desired length is cut having a substantially maximum width.
Description




CROSS-REFERENCE TO RELATED APPLICATIONS




Not applicable.




STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT




Not applicable.




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to methods and apparatus for cutting or milling a window in a cased borehole so that a secondary or deviated borehole can be drilled. More particularly, the invention relates to methods and apparatus for forming a window of optimal dimensions.




2. Description of the Related Art




It is common practice to use a whipstock and mill arrangement to help drill a deviated borehole from an existing earth borehole. The whipstock is set on the bottom of the existing earth borehole or anchored within the borehole. The whipstock has a ramped surface that is set in a predetermined position to guide a mill in a deviated manner so as to mill away a portion of the wellbore casing, thus forming a window in the steel casing of the borehole.




The typical whipstock presents a ramped surface which has a substantially uniform slope such as three degrees from the vertical. Thus, the mill tool is normally urged outwardly at a constant rate until it is fully outside of the casing. As the mill moves downward within the borehole, the ramped surface of the whipstock urges the mill radially outwardly so that the cutting surface of the mill engages the inner surface of the casing. As this engagement begins to cut into the casing, the casing is worn away and then cut through, thus beginning the upper end of the window. The ramp of the whipstock then causes further deviation of the mill, causing the mill to move downwardly and radially outward through the casing itself. Thus, a longitudinal window is cut through the casing. Ultimately, the whipstock's ramped surface urges the mill radially outwardly to the extent that it is located entirely outside of the wellbore bore casing. Once this occurs, the mill ceases cutting the window. This traditional cutting technique results in an upside-down “teardrop” shaped window which has a section of maximum width located close to the top of the window. From this section of maximum width, the width of the window decreases and the window tapers as the lower portion of the window is approached. An example of such a window is shown in prior art FIG.


1


.




Once the window is cut in the manner described above, a deviated borehole is then cut using a point of entry that is proximate the teardrop-shaped window. Unfortunately, the teardrop shape of the window can impede the ability to drill the deviated borehole. Specifically, as the window narrows, the metal portion of the casing interferes with the ability to drill, place liners and so forth.




Thus, a need exists for methods and devices that can be employed to form a window in a easing wall that has optimum or near optimum dimensions so that subsequent directional drilling efforts are not hindered.




BRIEF SUMMARY OF THE INVENTION




The invention provides methods and apparatus for forming a window of optimum dimensions in casing wall. The inventor has recognized that a window of maximum width is cut when the center line of the mill tool is located a distance inside of the inner diameter of the casing where a maximum amount of casing is drilled away by the mill tool. A whipstock is described which deviates the mill tool outwardly so that the center line of the mill tool is in approximately this position. The whipstock then maintains the mill tool at this approximate location until a window of desired length is cut having a substantially maximum width. Other objects and advantages of the present invention will appear from the following description.











BRIEF DESCRIPTION OF THE DRAWINGS




For a detailed description of the preferred embodiment of the invention, reference will be made to the accompanying drawings wherein:





FIG. 1

is a cross-sectional view of a borehole depicting a typical “teardrop shaped” window of the type cut by conventional whipstock and mill arrangement.





FIGS. 2A and 2B

are cross-sectional illustrations of an exemplary whipstock constructed in accordance with the present invention.





FIGS. 3A-3E

are cross-sectional depictions of an exemplary milling operation using the whipstock shown in

FIGS. 2A and 2B

.





FIG. 4

is a top cross-sectional view of a mill tool, whipstock and casing.





FIG. 5

is a cross-sectional view of a borehole casing depicting an exemplary optimized window which might be cut using the methods and apparatus of the present invention.





FIG. 6

graphically depicts the relationship between casing radius, mill radius and an optimum mill displacement.





FIGS. 7A and 7B

illustrate an alternative design for a whipstock constructed in accordance with the present invention.





FIG. 8

depicts an exemplary actuatable ramp which can be used to urge the mill tool radially outside of the casing after an optimized window has been cut.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




Referring first to prior art shown in

FIG. 1

, a standard wellbore casing


10


is depicted having a milled window


12


. As is apparent, the inner surface


14


of the casing


10


is shown. At the upper portion of the window


12


is milled away portion


16


which has resulted from initial engagement of a mill tool with the inner surface


16


. The upper end


18


of the window


12


tapers outwardly to a maximum width. It should be understood that the term “width” refers to the lateral distance between the two edges of the window. Conversely, the term “length” refers to the distance from the top edge to the bottom edge of the window. The window provides a section


20


of substantially maximum width. It can be appreciated that the section of maximum width occurs near the top edge


18


of the window


12


. The lower section of the window


12


presents a tapered portion


22


which narrows in width until the lower edge


24


is reached.





FIGS. 2A and 2B

illustrate an exemplary whipstock


38


constructed in accordance with the present invention. The whipstock


38


has an elongated whipstock body


39


having a longitudinal axis as represented by the reference line


41


. The whipstock


38


presents a series of mill engagement faces made up of a composite of slanted portions. It should be noted that the values provided for distances and angular slopes are exemplary only and are not intended to be limiting. Generally, the inventive whipstock


38


is thinner along the majority of its length than typical conventional whipstocks. The upper end of the whipstock


38


presents a first sloped surface


50


having a fifteen degree angle from the axis


41


. Below that, a second sloped surface


52


is angled at essentially zero degrees from the axis


41


. This second surface continues downwardly along the length of the whipstock


38


for approximately two feet. Immediately below the second surface, a third sloped surface


54


is provided having an angle of three degrees from the axis


41


.




A maintenance surface


56


is provided below the three degree surface. The maintenance surface engages the mill tool


30


as shown in FIG.


3


C and maintains it substantially in an optimal position to allow the mill tool


30


to cut a window of substantially maximum width within the casing


32


. The maintenance surface


56


has a length which is approximately equal to the desired length for a window of substantially maximum width. The maintenance surface


56


forms an angle of zero degrees with the axis


41


. As a result, a mill engaging the maintenance surface


56


will not be urged outwardly through the casing as it moves downwardly through the wellbore. Below the maintenance surface


56


, a fourth sloped surface


58


is provided which is angled at approximately one degree from the axis


41


. Finally, a lower sloped portion


60


of the whipstock


38


provides a fifteen degree sloped surface from the axis


41


.




As noted, the invention capitalizes upon the inventor's recognition that a window's width is maximized when the center line of the mill tool is located inside of the inner diameter of the casing, as previously described. An optimal mill displacement (OMD) distance


100


can be determined if the casing radius (CR)


102


and the milling radius (MR)


104


are known. The relationship is also depicted graphically in FIG.


6


. The optimal mill displacement distance


100


is the desired amount of movement of the center of the mill tool


30


from the central axis


106


of the casing


32


. The casing radius


102


is the distance from the central longitudinal axis


106


of the casing to a point


108


on or within the diameter of the casing


32


. In other words, the casing radius


102


may be measured from the inner surface


36


or the outer surface


34


of the casing


32


as well as any point in between the inner and outer surfaces as shown in FIG.


6


. The milling radius


104


is the radius presented by the lead mill


68


of the mill tool


30


. These distances are related mathematically according to the following equation: OMD={square root over ((CR)


2


−(MR)


2


)}. Once an optimum mill displacement distance


100


is determined, the mill tool


30


is displaced that distance so that the mill axis


42


is moved to a desired displacement location


110


depicted in FIG.


6


.




Referring now to

FIGS. 3A-3F

, a side cross-sectional view is shown of a portion of a wellbore wherein the steel casing


32


is disposed within a cement liner


62


and disposed through an earth formation


64


. The casing


32


contains the whipstock


38


constructed in accordance with the present invention. Also shown, progressively milling a window, is the mill tool


30


. The mill tool


30


includes a central shaft


66


with a lead mill


68


and follower mill


70


(visible in FIG.


3


C). It should be understood that the design and precise components of the mill


30


may be varied.




The milling diameter (d) of the mill tool


30


is typically established by the diameter of the lead mill


68


. The follower mill


70


may have the same approximate milling diameter although other components of the milling tool are smaller in diameter. It is generally desired to have the milling diameter as large as is operationally possible within the casing


32


. Therefore, the milling diameter is typically set at or around the drift diameter for the wellbore casing


32


.




In

FIG. 3A

, the mill


30


is being lowered through the center of the casing


32


. In

FIG. 3B

, the lead mill


68


engages the first sloped surface


50


and is deviated outwardly so that the casing


32


begins to be milled away.




In

FIG. 3C

, the mill


30


has moved downwardly to the extent that the lead mill


68


of the mill tool


30


engages the maintenance surface


56


of the whipstock


38


. The axis


42


of the mill tool


30


is disposed within the inner diameter of the casing


32


, and the diameter of the mill tool


30


is substantially aligned with the outer surface


34


of the casing


32


(see FIG.


4


). As the mill tool


30


is moved further downwardly within the borehole, it will continue to travel along the maintenance surface


56


and be maintained in substantially the same relationship of distance between the axes of the mill tool


30


and wellbore. Ultimately, the mill tool


30


will engage the lower sloped surface


60


, causing the mill tool


30


to be deviated outwardly through the casing


32


, thus completing the window cutting operation.





FIGS. 3D and 3E

depict the portion of the wellbore in which the lower portion of the whipstock


38


is located and help illustrate the cutting of the lower end


88


of the window


80


. The window


12


has been cut as the lead mill


68


engaged and moved along the maintenance surface


56


. In

FIG. 3D

, the lead mill


68


engages and travels along the slightly outwardly-deviated surface


58


on the whipstock


38


, thus urging the mill


30


outwardly away from its optimal cutting position and allowing the window


80


to begin narrowing in width.




In

FIG. 3E

, the lead mill


68


has engaged the lowest sloped surface


60


whereupon the mill tool


30


is being urged radially outwardly beyond the casing


32


. At this point, the central axis


42


of the mill


30


crosses the wall of the casing


32


and the width of the window


80


will be smaller still, until the lower end


88


of the window is cut at the approximate location shown in FIG.


3


E. Because engagement of the mill


30


with the engagement surfaces


58


and


60


will cause the window


80


to narrow in width, it is preferred that these surfaces be quite small in longitudinal distance as compared to the maintenance surface


56


, thereby permitting the window


80


to have a shape substantially like that shown in FIG.


5


.




As a result of the method of cutting described, a window is drilled having virtually maximum width for a predetermined length.

FIG. 5

depicts an exemplary window


80


of this type. The window


80


features a milled upper portion


82


. Proximate its top end


84


, the window


80


widens outwardly and provides a section of substantially maximum width


86


that extends nearly the entire length of the window


80


. The window


80


is optimized in the sense that it provides a substantially maximum width along a significant portion of its length. The window has a larger than normal width in its lower half rather than a narrowed tapering shape. As a result, it is easier to create a deviated borehole through the lower portion of the window.




The top end


84


of the window


80


will be cut as the lead mill


68


engages and moves along the upper ramp


50


. The lower end


88


of the window


80


will be formed when the lead mill


68


engages the lower sloped surface


60


. It will be understood that the maximum width portion of the window


80


may be made to be essentially any length desired by making the maintenance surface


56


of a corresponding length.





FIG. 4

depicts, through a top cross-sectional view, the approximate desired location for a mill tool


30


with respect to wellbore casing


32


in order to achieve maximum cutting away of the casing wall. Casing


32


represents a steel casing which is cylindrical in shape. The casing wall presents an outer surface


34


and an inner surface


36


. Also shown in

FIG. 4

is a whipstock


38


having a mill engagement face


40


. The mill tool


30


is shown as cutting through the wall of the casing


32


. The mill tool


30


has a central axis, shown at


42


. As illustrated, the axis


42


of the mill tool


30


is located inside of the inner surface


36


of the casing


32


. In addition, the diameter (d) of the mill tool


30


is shown to be intersecting the wall of the casing


32


at two points


37


,


39


.





FIG. 7

depicts an alternative whipstock design


90


that might be used in accordance with the present invention. For most of its length, the alternative whipstock


90


is constructed in a manner similar or identical to the initial whipstock


38


. Because of the similarities, like reference numerals are use for like components. The upper engagement surfaces of the whipstock


90


are the same as those of the whipstock


38


described previously. Further, an elongated maintenance surface


56


is provided which forms an angle of approximately 0 degrees with the vertical axis


41


. Below the maintenance surface


56


, are sloped surfaces


92


, which forms an angle of approximately 3 degrees with the axis


41


,


94


, which forms an angle of approximately 15 degrees with the axis


41


, and


96


, which forms an angle of approximately 3 degrees with the axis


41


. The lower surfaces


92


,


94


and


96


serve to progressively ramp the mill


30


outward from the maintenance surface


56


until the central axis of the mill is moved radially outside of the casing and the lower end of the window


80


is cut.




In a further alternative embodiment of the invention, depicted in

FIG. 8

, an actuated ramp is used to deviate the mill tool radially outward from proximate its optimal cutting position to a location outside of the casing.

FIG. 8

shows the lower end of a whipstock


120


. The upper portion of the whipstock (not shown) will substantially resemble in construction the whipstock


38


previously described. Maintenance surface


56


is provided which forms an angle of approximately 0 degrees with the central axis of the whipstock, as previously described. The body of the whipstock


120


is divided at


122


so that an upper portion


124


and a lower portion


126


are provided. The upper and lower portions


124


,


126


are interconnected by a linkage


128


that provides a pair of pivot points


130


,


132


. The lower pivot


132


is biased by a torsional spring


133


so that the linkage


128


can be moved outwardly to an angled position, shown as


128


′, and carry the upper portion


124


of the whipstock


120


outward to the position shown as


124


′. A securing member


134


is attached to the whipstock


120


proximate the linkage


128


so that the torsional spring is restrained against moving the upper portion


124


of the whipstock


120


to the position


134


′. The securing member


124


′ may comprise a metal plate or shank that is bolted in place on the whipstock


120


. Alternatively, a collar or clamp might be used.




In operation, a mill tool, such as mill


30


, will travel along the maintenance surface


56


and, upon encountering the securing member


134


, will mill the securing member


134


away, thereby actuating a ramp formed by the upper portion


124


of the whipstock


120


as it is moved with respect to the lower portion


126


. The upper portion


124


of the whipstock


120


will be moved to, or toward, the location shown at


124


′ by the torsional spring when the mill is pulled uphole. As a result, the mill tool will be deviated radially outwardly away from its optimal milling position and allow a rathole to be cut on a subsequent pass.




It will, of course, be realized that various modifications can be made in the design and operation of the present invention without departing from the spirit thereof. For example, an “optimum” width for a selected window is not necessarily required to be a window of maximum width, but a preselected width. One can determine a desired location for the whipstock maintenance surface with respect to the surrounding casing by calculation, using the techniques described herein. This desired maintenance surface location can be varied based upon what the desired window width is to be. Thus, while principal preferred constructions and modes of operation of the invention have been described herein, in what is now considered to represent the best embodiments, it should be under stood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically illustrated and described.



Claims
  • 1. A method for forming a resultant window having a longitudinal length in a portion of borehole casing having an axis and a wall, the method comprising:deviating a till tool radially outwardly to an optimum cutting position with respect to the casing for cutting the casing to form the window having a substantially uniform width along the longitudinal length; contacting the mill tool with a maintenance surface on a whipstock to maintain the mill tool in the optimum cutting position, the maintenance surface being substantially parallel with the casing axis; and cutting the longitudinal length of the window by moving the mill tool along the maintenance surface.
  • 2. The method of claim 1 wherein the operation of deviating the mill tool radially outwardly further comprises guiding the mill tool along a sloped surface.
  • 3. The method of claim 1 further comprising the operation of further deviating the mill tool outside of the casing to complete the cutting of the window.
  • 4. The method of claim 3 wherein the operation of deviating the mill tool outside of the casing to complete the cutting of the window further comprises engaging a ramp that reciprocates with respect to the whipstock.
  • 5. The method of claim 4 wherein engaging the ramp releases a securing member.
  • 6. The method of claim 4 wherein engaging the ramp releases a torsional spring.
  • 7. The method of claim 4 wherein the ramp comprises a linkage which interconnects a pair of whipstock portions that can move with respect to one another.
  • 8. The method of claim 1 wherein the optimum cutting position comprises a position wherein an axis of the mill tool is located internally of the casing.
  • 9. The method of claim 8 wherein the optimum cutting position further comprises a maximum width cutting position wherein the wall of the casing is intersected at two points by the milling diameter of the mill tool.
  • 10. The method of claim 1 wherein the maintenance surface has a length substantially equal to the longitudinal length of the window.
  • 11. The method of claim 1 wherein the maintenance surface does not cause the mill tool to be deviated radially outwardly.
  • 12. The method of claim 1 wherein the optimum cutting position defines a radial location of a centerline of the mill that remains substantially unchanged with respect to the axis of the casing.
  • 13. The method of claim 1 wherein the maintenance surface is formed at a nominal angle of zero degrees with respect to an axis of the whipstock, the nominal angle including manufacturing tolerances.
  • 14. The method of claim 1 wherein the resultant window has a substantially maximum width at a position along the longitudinal length where a rathole is drilled therethrough.
  • 15. A whipstock for guiding a mill tool to cut a resultant window having a length in a casing in a borehole, comprising:an elongated whipstock body having a longitudinal axis; said body having a maintenance surface that forms a substantially zero degree angle with the body axis for engaging the mill tool and retaining the mill tool in an optimum cutting position to mill the window having a substantially uniform width along the length.
  • 16. The whipstock of claim 15 further comprising a sloped surface for engaging the mill tool and deviating the mill tool to the optimum cutting position.
  • 17. The whipstock of claim 15 further comprising a ramped surface for deviating the mill tool from the optimum cutting position to a position radially outside of the surrounding casing.
  • 18. The whipstock of claim 17 wherein the ramped surface comprises a pair of whipstock portions that can move with respect to one another.
  • 19. The whipstock of claim 18 wherein the pair of whipstock portions is interconnected by a linkage.
  • 20. The whipstock of claim 17 wherein the ramped surface is capable of reciprocating with respect to the whipstock body.
  • 21. The whipstock of claim 20 wherein a securing member prevents the ramped surface from reciprocating with respect to the whipstock body.
  • 22. The whipstock of claim 20 wherein a torsional spring forces the ramped surface to reciprocate with respect to the whipstock body.
  • 23. The whipstock of claim 15 wherein the maintenance surface has a length substantially equal to the window length.
  • 24. The whipstock of claim 15 wherein the maintenance surface does not cause the mill tool to be deviated radially outwardly.
  • 25. The whipstock of claim 15 wherein the optimum cutting position defines a radial location of a centerline of the mill that remains substantially unchanged with respect to an axis of the casing.
  • 26. A method for cutting a resultant window having a top end, a lower end, and a length therebetween in a casing having an axis and an outer surface, comprising:engaging the casing with a mill having a centerline to form an arcuate cutting surface therebetween for cutting the window a uniform width throughout the length; substantially maintaining the same arcuate cutting surface as the mill is moved longitudinally along the length with respect to the axis of the casing; and cutting the length of the resultant window.
  • 27. The method of claim 26 wherein the arcuate cutting surface defines a chord substantially equal to the uniform width of the length.
  • 28. The method of claim 27 wherein the chord comprises a distance between a first and a second point on the outer surface of the casing thereby defining the uniform width of the length.
  • 29. The method of claim 26 further including displacing the centerline of the mill with respect to the axis of the casing.
  • 30. The method of claim 29 wherein the centerline remains internal of the casing as the mill is moved along the length.
  • 31. The method of claim 29 wherein the operation of displacing the centerline of the mill comprises moving the mill along a sloped surface.
  • 32. The method of claim 26 wherein the operation of substantially maintaining the same arcuate cutting surface comprises moving the mill along a surface that parallels the axis of the casing.
  • 33. The method of claim 32 wherein the surface has a length substantially equal to the length of the resultant window.
  • 34. The method of claim 26 wherein the resultant window comprises substantially parallel longitudinal sides along the length.
  • 35. The method of claim 26 wherein the uniform width is less than a maximum width that the mill is capable of cutting.
  • 36. A method for cutting a resultant window in a casing having an axis, the window having a top end, a lower end, and a length having parallel sides, comprising:engaging a mill on a first guide surface to move cutting surfaces on the mill against the casing; continuing the movement of the mill to cut the top end until the cutting surfaces are in position to cut the parallel sides of the length; and engaging the mill on a second guide surface to guide the mill axially through the casing to cut the parallel sides along the length.
  • 37. The method of claim 36 wherein the second guide surface retains a centerline of the mill in substantially the same radial position with respect to the axis of the casing.
  • 38. The method of claim 36 wherein the second guide surface has a length substantially equal to the length of the window.
  • 39. The method of claim 36 wherein the parallel sides define a width sufficient for drilling a rathole therethrough.
  • 40. The method of claim 36 wherein the parallel sides define a maximum width that the mill is capable of cutting.
  • 41. A method for forming a resultant window having a top end, a lower end, and a length in a casing having an axis comprising:disposing a mill tool internally of the casing in a radially optimal cutting position with respect to the casing axis; cuttingly engaging the mill tool with the casing; and maintaining the mill tool in substantially the same radially optimal cutting position while moving the mill tool longitudinally to form the length of the resultant window.
  • 42. A whipstock for forming a resultant window in a casing, the window having a substantially rectangular lower portion, comprising:means for deviating a mill tool centerline to a radially optimal cutting position with respect to the casing; means for maintaining the mill tool centerline in substantially the same radially optimal cutting position while the mill tool is moved longitudinally; and means for deviating the mill tool centerline through the casing to form the substantially rectangular lower portion.
US Referenced Citations (9)
Number Name Date Kind
2882015 Beck Apr 1959 A
5113938 Clayton May 1992 A
5467820 Sieber Nov 1995 A
5522461 Carter et al. Jun 1996 A
5676206 Rehbock et al. Oct 1997 A
5771972 Dewey et al. Jun 1998 A
5816324 Swearingen et al. Oct 1998 A
RE36526 Braddick Jan 2000 E
6012516 Brunet Jan 2000 A
Foreign Referenced Citations (4)
Number Date Country
2310231 Mar 1997 GB
2312702 Nov 1997 GB
2313391 Nov 1997 GB
WO9727380 Jul 1997 WO
Non-Patent Literature Citations (1)
Entry
British Search Report for Application No. GB 0007672.9 dated Aug. 9, 2000; (2 p.).