The present invention relates generally to methods and systems for forming containers made from corrugated material, including corrugated fibreboard.
Containers are used to package many different kinds of items. One form of container used in the packaging industry is a case that is used for shipping items/products. In the present application, the term “case” is used to refer to such containers. Cases come in many different configurations and are made from a wide variety of materials. However, many cases are foldable and are formed from a flattened state (commonly called a case blank). Cases may be made from an assortment of foldable materials, including cardboard, paperboard, plastic materials, composite materials, and the like and possibly even combinations thereof.
One particular type of case that is in widespread use in packaging a wide variety of items is a case made from a corrugated material, such as corrugated fibreboard. The use of corrugated fibreboard generally enhances the strength of the case. Of those cases made from corrugated fibreboard, the most common type is known as “Regular Slotted Container” case or “RSC” case and it is particularly well suited for packaging all types of items such as by way of example only, glass and plastic bottles, packaged goods, or other smaller cases or cartons.
The process for making an RSC begins with the formation of a piece of plain corrugated sheet material that can be formed by a corrugator machine. An example of a corrugator machine is the BHS Corrugator machine made by BHS Corrugated Maschinen- and Anlagenbau GmbH. The corrugator machine may produce a length of corrugated material of a given width that can be used immediately or stored in a roll until it is ready to be utilized.
The next step in forming an RSC is to take a roll or sheet of such corrugated material that may have an approximate width that may be the same as the width of the desired blank that may be used to form the RSC. The roll or sheet is also cut transversely such as to create sections of cardboard generally rectangular in shape. The corrugated material is then fed through what is known as a flexo-folder gluer machine. In passing through such a machine, the corrugated sheet passes through a printer, which prints words or pictures on one or both sides of the sheet. Next, the material is creased both across and along the sheet material such that when the RSC is folded/erected it may easily bend along the crease lines to form the desired shape.
The creased and printed sheet is then “slotted” with a slotting device which cuts thin transversely oriented “slots” in the board in intervals along the top and bottom. These slots create the panels that may be folded over the top and bottom openings of the RSC when it is erected. Finally, the sheet material goes through a rotary die cutter to remove excess corrugated material along one end of the board and crush down a portoin along a fold line, to create a thin “hinge”. The purpose of the hinge is to later allow the board to be doubled back on itself (i.e. glue one end of the board to the other to create a tube) and glued.
The result of the flexo-folder gluer up to this point is to create a flat RSC blank such as, by way of example only, the blank 900 shown in
After the knock down RSC has been created, it is typically grouped with other RSCs and shipped to the factory of the customer where the knock-down RSCs are to be erected and packed.
When it is desired to fill an RSC with a product, a two step operation is required. First, the RSC must be erected from its knock-down configuration, either by hand or using a “case erector” machine such as is disclosed in U.S. Pat. No. 7,510,517, the contents of which are hereby incorporated by reference. An example of a commercially available RSC case erector is the WF 20 model distributed by Wexxar Packaging.
The second step is placing of the product into the formed case, either by hand or using a “case packer” machine as in U.S. Pat. No. 4,644,734. An example of a commercial case packer is the VCP-25 Vertical Case Packer by Schneider Packaging.
There are a number of systems that are available that perform both the case erection and the case packing functions in a single apparatus.
There are however significant drawbacks to the process of forming and packing the RSCs. For example, the pre-folded and pre-glued blanks are not well adapted to shipping in bulk from the location where the knock-downs are formed to the premises where the knock-downs are erected and packed, due to their asymmetric shape—being three layers thick on the glued seam area and only two layers thick elsewhere. Unstable stacking characteristic of such blanks requires the use of secondary containers and also reduces the number of blanks that can be shipped per unit volume. These factors result in a significant increase in shipping costs compared to blanks that can be shipped in a completely flat arrangement.
Other problems associated with the formation of a RSC relate to the creation of the knock-down RSC. The alignment and gluing that is done to form the “knock-down” is often not very accurately performed and so the RSC that is eventually formed may not be properly and accurately constructed. This may cause problems in the erection of the case and in the loading and storage of items in the RSC.
Despite the foregoing drawbacks, the use of the RSC is widespread in the packaging of items. There may be several reasons for the continued prevalence of the RSC compared to cases formed from flat, die cut blanks (i.e. cases in alternative arrangements that are not folded over and glued into a “knock down” state prior to shipment to the place where the case is to be erected and/or packed). These reasons include the following: (1) RSC cases can be easily set up and sealed by hand without a machine. So in situations where case erecting and packing is done by hand, the RSC case is preferred. RSC cases may be preferred because hand packing can be easily done if problems with machinery arise; (2) The machinery traditionally used to form and pack die cut cases from flat, die cut blanks has been more expensive, complex, and inflexible when compared to RSC erectors and packers. Thus, at a location where the packing of the items into a case is accomplished, it is desirable to have relatively technically straightforward and inexpensive equipment. (3) The standard equipment and process for forming and loading an RSC has been established for many years. Businesses that have invested in RSC-type machinery have not see the need to invest the time and money to move to an alternate system based on a flat die cut blank, in the absence of significant cost savings and a viable alternate system for forming and packing such a case.
However it would be desirable to create a new type of blank and associated case that performs like an RSC and looks like an RSC, if some of the drawbacks of the existing RSC can be overcome. It should be noted that even a slight reduction in wastage of corrugated fibreboard material in creating the blank, would be immensely beneficial. However, it would also be desirable to have methods and apparatuses to form such RSC replacement cases from blanks that could be readily and efficiently employed at customer premises.
Accordingly, a new blank design, designated by the applicant as a dual side seam-regular slotted container blank (the “DSS-RSC” (TradeMark) blank) has been devised along with new forming processes and systems suited to forming cases from DSS-RSC blanks. The DSS-RSC blank that has been conceived can be formed into a DSS-RSC case that is functionally equivalent to an RSC case, but may be both cheaper to manufacture than an RSC, and may provide equivalent or better strength than an RSC.
According to an aspect of the invention there is provided a case made from a corrugated material, the case comprising: i. a generally flat transversely extending base panel; ii. first and second transversely extending, generally parallel, side wall panels upstanding from, and being oriented generally orthogonal to, the base panel, each of the first and second side wall panels having respective first transverse edges extending along and joined with respective opposite transverse edges of the base panel; iii. first and second upstanding end panels positioned at opposed ends of the first side wall panel and oriented generally orthogonal to both said first side wall panel and the base panel, each the first and second ends panel having edges joined with and extending from opposed end edges of the first side wall panel; iv. third and fourth upstanding end panels positioned at opposed ends of second side wall panel and oriented generally orthogonal to the second side wall panel and the base panel, each of the third and fourth end panels joined with and extending from opposed end edges of the second side wall panel; wherein the first and third end wall panels meet at a first vertically extending seam extending upwards from one end of the base panel and the second and fourth end wall panels meet at a second vertically extending seam extending upwards from an opposite end of the base panel.
According to an aspect of the invention there is provided a case comprising: i. a generally flat transversely extending base panel; ii. first and second transversely extending, generally parallel, side wall panels upstanding from, and being oriented generally orthogonal to, the base panel, each of the first and second side wall panels having respective first transverse edges extending along and joined with respective opposite transverse edges of the base panel; iii. first and second upstanding end panels positioned at opposed ends of the first side wall panel and oriented generally orthogonal to both the first side wall panel and the base panel, each the first and second ends panel having edges joined with and extending from opposed end edges of the first side wall panel; iv. third and fourth upstanding end panels positioned at opposed ends of second side wall panel and oriented generally orthogonal to the second side wall panel and the base panel, each of the third and fourth end panels joined with and extending from opposed end edges of the second side wall panel; wherein the first and third end wall panels meet at a first vertically extending seam extending upwards from one end of the base panel and the second and fourth end wall panels meet at a second vertically extending seam extending upwards from an opposite end of the base panel, and wherein the first and third end wall panels overlap to form the first vertically extending seam and the second and fourth end wall panels overlap to form the second vertically extending seam.
According to an aspect of the invention there is provided a case made from a corrugated material, the case comprising: i. a generally flat transversely extending base panel; ii. first and second transversely extending, generally parallel, side wall panels upstanding from, and being oriented generally orthogonal to, the base panel, each of the first and second side wall panels joined with and extending from the base panel; iii. first and second upstanding end panels positioned at opposed ends of the first side wall panel and oriented generally orthogonal to both the first side wall panel and the base panel, each the first and second ends panel joined with and extending from the first side wall panel; iv. third and fourth upstanding end panels positioned at opposed ends of second side wall panel and oriented generally orthogonal to the second side wall panel and the base panel, each of the third and fourth end panels joined with and extending from the second side wall panel; wherein the first and third end wall panels meet at a first vertically extending seam extending upwards from one end of the base panel and the second and fourth end wall panels meet at a second vertically extending seam extending upwards from an opposite end of the base panel.
According to an aspect of the invention there is provided a single piece blank for forming a case, the blank comprising a continuous piece of generally flat corrugated material comprising: i. a base panel; ii. first and second side wall panels meeting either side of the base panel meeting either side of the base panel along respective opposite fold lines; iii. first and second end panels meeting at opposed ends of the first side wall panel along respective opposite fold lines; iv. third and fourth side end panels meeting at opposed ends of second side wall panel along respective opposite fold lines. A width of aid base and a length of the first and third side end wall panels being selected such that when blank is erected to form the case, the first and third side end walls will meet at a first vertically extending seam at one end of the base panel and the second and fourth side end wall panels meet at a second vertically extending seam at an opposite end of the base panel.
According to an aspect of the invention there is provided a method of forming and loading a case, the case made from a corrugated material and comprising: i. a generally flat transversely extending base panel; ii. first and second transversely extending, generally parallel, side wall panels upstanding from, and being oriented generally orthogonal to, the base panel, each of the first and second side wall panels having respective first transverse edges extending along and joined with respective opposite transverse edges of the base panel; iii. first and second upstanding end panels positioned at opposed ends of the first side wall panel and oriented generally orthogonal to both the first side wall panel and the base panel, each the first and second ends panel having edges joined with and extending from opposed end edges of the first side wall panel; iv. third and fourth upstanding end panels positioned at opposed ends of second side wall panel and oriented generally orthogonal to the second side wall panel and the base panel, each of the third and fourth end panels joined with and extending from opposed end edges of the second side wall panel; wherein the first and third end wall panels meet at a first vertically extending seam extending upwards from one end of the base panel and the second and fourth end wall panels meet at a second vertically extending seam extending upwards from an opposite end of the base panel; the method comprising: i. forming a sheet of corrugated fiberboard; ii. operating a die cutting apparatus to form a generally flat case blank from the sheet of corrugated fiberboard at a first location; iii. transporting the flat case blank to a second location; iv. operating a case forming apparatus at the second location to fold the case blank to form the case, v. after the case has been formed by the case forming apparatus, operating a loading apparatus to load at least one item into the case; vi. sealing the opposed top panels of the case with the at least one item held in the case.
According to an aspect of the invention there is provided a system for forming and loading a case, the case made from corrugated fibreboard, the case comprising: i. a generally flat transversely extending base panel; ii. first and second transversely extending, generally parallel, side wall panels upstanding from, and being oriented generally orthogonal to, the base panel, each of the first and second side wall panels having respective first transverse edges extending along and joined with respective opposite transverse edges of the base panel; iii. first and second upstanding end panels positioned at opposed ends of the first side wall panel and oriented generally orthogonal to both the first side wall panel and the base panel, each the first and second ends panel having edges joined with and extending from opposed end edges of the first side wall panel; iv. third and fourth upstanding end panels positioned at opposed ends of second side wall panel and oriented generally orthogonal to the second side wall panel and the base panel, each of the third and fourth end panels joined with and extending from opposed end edges of the second side wall panel; wherein the first and third end wall panels meet at a first vertically extending seam extending upwards from one end of the base panel and the second and fourth end wall panels meet at a second vertically extending seam extending upwards from an opposite end of the base panel; and wherein the system comprises: i. a corrugator for forming a sheet of corrugated fiberboard; ii. a die cutting apparatus located at a first location operable to form a generally flat case blank from the sheet of corrugated fiberboard at a first location; iii. a case forming apparatus located at a second location to fold the generally flat case blank to form the case, iv. a loading apparatus to load at least one item into the case; v. a sealing apparatus for sealing the opposed top panels of the case with the at least one item held in the case.
According to an aspect of the invention there is provided a method for forming a case from a case blank, the case blank comprising: i. a base panel; ii. first and second side wall panels meeting either side of the base panel meeting either side of the base panel along respective opposite fold lines; iii. first and second end panels meeting at opposed ends of the first side wall panel along respective opposite fold lines; iv. third and fourth side end panels meeting at opposed ends of second side wall panel along respective opposite fold lines; a width of aid base and a length of the first and third side end wall panels being selected such that when blank is erected to form the case, the first and third side end walls will meet at a first vertically extending seam at one end of the base panel and the second and fourth side end wall panels meet at a second vertically extending seam at an opposite end of the base panel; the method comprising: (a) orienting a case blank in a generally flat first orientation; (b) rotating a first portion of the blank from the first orientation to a second orientation that is generally orthogonal to a second portion of the case blank.
According to an aspect of the invention there is provided a method of forming a case from a case blank, the case blank comprising: i. a base panel; ii. first and second side wall panels meeting either side of the base panel meeting either side of the base panel along respective opposite fold lines; iii. first and second end panels meeting at opposed ends of the first side wall panel along respective opposite fold lines; iv. third and fourth side end panels meeting at opposed ends of second side wall panel along respective opposite fold lines. A width of the base and a length of the first and third side end wall panels being selected such that when blank is erected to form the case, the first and third side end walls will meet at a first vertically extending seam at one end of the base panel and the second and fourth side end wall panels meet at a second vertically extending seam at an opposite end of the base panel; the method comprising: (a) providing a case blank in a first generally flat orientation, the case blank having first and second portions, the first portion of blank being generally adjacent and parallel to a first portion of a mandrel; (b) rotating the second portion of the case blank about the mandrel so the second portion is positioned at a second orientation that is generally orthogonal to the first portion.
According to an aspect of the invention there is provided a method of forming a plurality of case blanks from a single sheet of corrugated material, each of the plurality of blanks comprising: i. a base panel; ii. first and second side wall panels meeting either side of the base panel meeting either side of the base panel along respective opposite fold lines; iii. first and second end panels meeting at opposed ends of the first side wall panel along respective opposite fold lines; iv. third and fourth side end panels meeting at opposed ends of second side wall panel along respective opposite fold lines. A width of the base and a length of the first and third side end wall panels being selected such that when blank is erected to form the case, the first and third side end walls will meet at a first vertically extending seam at one end of the base panel and the second and fourth side end wall panels meet at a second vertically extending seam at an opposite end of the base panel; the method comprising: i. forming a sheet of corrugated fiberboard; ii. cutting a plurality of the blanks from the sheet such that a plurality of blanks are cut both laterally and longitudinally from the sheet of corrugated fiberboard.
According to an aspect of the invention there is provided a plurality of blanks made from a single continuous sheet of generally flat corrugated material, a plurality of blanks being cut from a single sheet in both a lateral and longitudinal direction, each the blank comprising: i. a base panel; ii. first and second side wall panels meeting either side of the base panel meeting either side of the base panel along respective opposite fold lines; iii. first and second end panels meeting at opposed ends of the first side wall panel along respective opposite fold lines; iv. third and fourth side end panels meeting at opposed ends of second side wall panel along respective opposite fold lines. A width of the base and a length of the first and third side end wall panels being selected such that when blank is erected to form the case, the first and third side end walls will meet at a first vertically extending seam at one end of the base panel and the second and fourth side end wall panels meet at a second vertically extending seam at an opposite end of the base panel.
According to an aspect of the invention there is provided a method of forming and loading a plurality of cases, each of the plurality of case made from a corrugated material and comprising: i. a generally flat transversely extending base panel; ii. first and second transversely extending, generally parallel, side wall panels upstanding from, and being oriented generally orthogonal to, the base panel, each of the first and second side wall panels having respective first transverse edges extending along and joined with respective opposite transverse edges of the base panel; iii. first and second upstanding end panels positioned at opposed ends of the first side wall panel and oriented generally orthogonal to both the first side wall panel and the base panel, each the first and second ends panel having edges joined with and extending from opposed end edges of the first side wall panel; iv. third and fourth upstanding end panels positioned at opposed ends of second side wall panel and oriented generally orthogonal to the second side wall panel and the base panel, each of the third and fourth end panels joined with and extending from opposed end edges of the second side wall panel; wherein the first and third end wall panels meet at a first vertically extending seam extending upwards from one end of the base panel and the second and fourth end wall panels meet at a second vertically extending seam extending upwards from an opposite end of the base panel; the method comprising: i. forming a sheet of corrugated fiberboard; ii. operating a die cutting apparatus to cut a plurality of generally flat case blank from the sheet of corrugated fiberboard in both a longitudinal and transverse direction on the sheet, the die cutting apparatus located at a first location; iii. transporting the plurality of flat case blanks to a second location; iv. operating a case forming apparatus at the second location to fold the plurality of case blanks to form the case, v. after the plurality of cases has been formed by the case forming apparatus, operating a loading apparatus to load at least one item into each of the plurality of cases; vi. sealing the opposed top panels of the case with the at least one item held in the case.
According to an aspect of the invention there is provided a system for forming a case, the case made from a case blank made from a corrugated material, the case comprising: i. a generally flat transversely extending base panel; ii. first and second transversely extending, generally parallel, side wall panels upstanding from, and being oriented generally orthogonal to, the base panel, each of the first and second side wall panels having respective first transverse edges extending along and joined with respective opposite transverse edges of the base panel; iii. first and second upstanding end panels positioned at opposed ends of the first side wall panel and oriented generally orthogonal to both the first side wall panel and the base panel, each the first and second ends panel having edges joined with and extending from opposed end edges of the first side wall panel; iv. third and fourth upstanding end panels positioned at opposed ends of second side wall panel and oriented generally orthogonal to the second side wall panel and the base panel, each of the third and fourth end panels joined with and extending from opposed end edges of the second side wall panel; wherein the first and third end wall panels meet at a first vertically extending seam extending upwards from one end of the base panel and the second and fourth end wall panels meet at a second vertically extending seam extending upwards from an opposite end of the base panel; and wherein the system comprises a case forming apparatus to fold and glue the generally flat case blank to form the case, and wherein the case forming apparatus comprises: (a) a mandrel, and wherein the case blank has a first portion that can be positioned proximate a first surface of the mandrel; (b) a folding and guide apparatus; (c) a movement apparatus operable for moving the mandrel towards and through the folding and guide apparatus while the first portion of the case blank is positioned proximate the first surface of the mandrel; (d) an adhesive applicator positioned to apply an amount of adhesive to at least one portion of the case blank; the system operable such that while the mandrel is moved towards and through the folding and guide apparatus by the moving apparatus, the adhesive applicator applies adhesive to the at least one portion of the blank.
Other aspects and features of the present invention will become apparent to those of ordinary skill in the art upon review of the following description of specific embodiments of the invention in conjunction with the accompanying figures.
In the figures which illustrate by way of example only, embodiments of the present invention,
With reference initially to
Once the sheet has been formed, the next step 1010 is the formation of the DSS-RSC blanks. This step 1010 may or may not take place at the same general geographic location and the same physical building as step 1000. However, in many situations the DSS-RSC blanks will be formed at the same location as where the corrugated material is formed in step 1000. The DSS-RSC blank (such as by way of example only blank 400 in
Once it has been passed through the printing portion of the die cutting machine, the corrugated sheet can then be fed to the actual die cutting portion of the machine where one or more blanks are cut from the sheet of corrugated material. Typically this process involves the sheet being fed through and between a press and rotating cutting die. An example of a press and die cutting machine that might be adapted to form a suitable DSS-RSC blank is illustrated in U.S. Pat. No. 4,466,320. An example of a part of a typical press and cutting die portion 800 of such a machine is also illustrated schematically in
Depending on the size of the blank and the configuration of the die cutting machine, multiple blanks such as blanks 400 or blanks 500 can be cut across the width of the sheet of material simultaneously. Examples of sheets of corrugated material showing the outlines of where the die cutting apparatus can cut from the sheet a plurality of blanks is illustrated in
In overview, very long rolls or sheets of corrugated material may be provided with a width that may be approximately the same as the die cutting device. In the rotary die cutting of the sheet or roll fibreboard material, a cookie cutter like action, cuts and scores the material to generate blanks such as the DSS-RSC blank 400 shown in
Once a plurality of blanks such as blanks 400 or blanks 500 have been formed they may be placed into stacks of blanks that may be conveniently loaded onto pallets. Once loaded onto pallets, as indicated in step 1020 of
The location where steps 1030 and 1040 occurs may conveniently be at the customer premises, where for example a manufacturer of a product wishes to load the product it has manufactured into a case. By way of example only, a manufacturer of soft drinks may produce bottles of soft drinks that need to be loaded into cardboard cases for shipping to their customer. Instead of employing an RSC and the equipment normally used to erect and fill such cases, the manufacturer can instead employ a case former apparatus. By way of example only, the case formers illustrated in
The final steps 1040 and 1050 illustrated in
It should be noted that in some embodiments, the erection of the DSS-RSC blanks into cases and the subsequent loading and sealing of the cases may take place on a single apparatus.
A schematic view of a system 7000 for forming, erecting and packing a DSS-RSC case with one or more items is illustrated in
System 7000 may also include a case forming apparatus 7030 which may be located remotely from corrugator 7010 and die cutting machine 7020. Case forming apparatus 7030 may be located at the premises of a manufacturer of products that need to be packed into a case. System 7000 may also include a case filling apparatus 7040 and a case sealing apparatus 7050 and these may be co-located with the case forming apparatus 7030.
With reference now to
Each of the bottom and side wall panels 410, 420 and 430 is provided with a side end panel extending from each longitudinal side edge of the bottom and side wall panels (see panels 411, 412, 421, 422, 431 and 432). Each of these end panels is foldable about a longitudinal fold line where it is joined to the side edge of the bottom/side wall panels. It will be noted that there are gaps between side end wall panel 411 and side wall end panels 431, 421. There are also gaps between side end wall panel 412 and side end wall panels 432, 422. The side end panels 421, 422, 431 and 432 may be configured to extend out from each side wall 420 and 430 respectively to a distance that is equal to slightly more than ½ of the width of the bottom panel 410. This may create an overlap of dimension O in
If there is no overlap at the seam, it is desirable that the side panels are in proximate abutment with each other or that any vertical gap between them at the seam, if any, should be quite small (eg. less than an inch in most if not all applications). However, providing an overlap may provide advantages including enhancing the strength of the DSS-RSC case.
The bottom panels 411 and 412 may also extend out from the bottom panel 410 such that when the DSS-RSC is erected, these bottom panels 411, 412 will reinforce their respective end walls and the seams 499a, 499b, at the bottom of the ends. Each of the side panel panels 421, 422, 431 and 432 have a minor top panel extending from the top of the respective side panel. These minor top panel panels are numbered 441, 442, 451, and 452 in
In order to maximize the overall strength, and in particular the stacking strength of the DSS-RSC design, the blank 400 may, as discussed above, be oriented on the fibreboard such that the internal columns in the corrugation run vertically up the side wall panels 430 and 420 of the case.
With reference now to
Referring to
Prior to the further progressive folding of panels of the DSS-RSC blank 400 to the configuration shown in
With reference to
Next, either simultaneously with, prior to, or subsequent to the folding of side end panels 431 and 432, side end panels 421 and 422 may be rotated/folded—preferably approximately ninety (90) degrees—about a pre-determined fold line between panels 421 and 420, and 422 and 420 respectively. Thus side panels 421 and 422 are rotated/folded relative to panel 420 from a generally flat orientation to a generally angled orientation, thus each forming a generally L-shaped configuration with panel 420. The folding of each of panels 421 and 422 may be either simultaneous to one another or with one panel being folded subsequently to the other.
As side panels 431 and 432 are folded, they may be compressed in such a manner that the inside surface portions (“inside” referring to the direction oriented towards the inside of the case) of side panels 431 and 432 engage outer surfaces portions of bottom panel 411 and 412 respectively. Thus, with the assistance of adhesive positioned between the respective surfaces, side panels 431 and 432 may be attached to the outside surface portions of bottom panels 411 and 412 respectively. Likewise, with the assistance of appropriately positioned adhesive, as side panels 421 and 422 are folded, they may be compressed in such a manner that the inside portions of side panels 421 and 422 engage the outer surfaces of bottom panels 411 and 412 respectively. Thus, with the assistance of adhesive positioned between the respective surfaces, side panels 421 and 422 may also be attached to the outside of bottom panels 411 and 412 respectively. Also with the assistance of appropriately positioned adhesive, side panels 421 and 422 may be also compressed in such a manner that the inside surfaces of side panels 421 and 422 may also engage portions of the outer surfaces of side panels 431 and 432 respectively. With the assistance of adhesive positioned between the respective surfaces, side panels 421 and 422 may thus be attached to portions of the outside of side panels 431 and 432 respectively. Alternatively, side panels 421, 422, 431 and 432 might be folded and compressed in such a sequence that side panels 421 and 422 might be attached to the inside of side panels 431 and 432 respectively. Other folding sequences of the foregoing panels are also possible. For example, panels 431, 432, 421, 422 may all be folded upwards and may also be glued prior to folding upwards opposite panels 411 and 412 so that panels 411 and 412 are on the outside of the case. However, in this latter configuration, panels 411, 412 may be more readily susceptible to being dislodged during use. Any suitable type of adhesive may be employed in bonding together panels in the construction of the DSS-RSC case, such as Cool-Lok adhesive made by Nacan Products Limited. This “hot-melt”-type glue is typically applied in a “bead” along a particular first panel. This bead may be applied at a temperature appreciably higher than the ambient room temperature. As a second panel is folded over the first panel with the glue and pressure applied to the joint, the glue is spread out over the surfaces of the two panels. As the glue is spread out, it cools down, forming an instant adhesive bond between the panels.
An additional feature that may be incorporated into the DSS-RSC box design is a “punch out” handle to allow persons to more easily carry the case from one location to another. Referring to
An alternative to the DSS-RSC blank 400 of
Referring to
It will however be noted from
With brief reference to
Referring again to
The panels are connected/joined to adjacent panels/panels by predetermined fold/crease lines. The effect of the fold line is such that when one panel such as for example panel 410 is folded relative to an adjacent panel such as 420 or 430, the panels may tend to rotate relative to each other along the fold lines separating the two panels.
In the alternative DSS-RSC blank 500 of
As will be described hereinafter, the DSS-RSC blank 400 or 500 may be folded to form the desired case configuration for a top loading case that can be delivered to a case loading conveyor. The various walls and panels provide material that can, in conjunction with a connection mechanism (such as for example with application of an adhesive or a mechanical connection) join or otherwise interconnect walls/panels to adjacent walls/panels, to hold the case in its desired configuration.
In a preferred embodiment, the DSS-RSC blank may be made of a suitable corrugated material such as a corrugated fibreboard. In order to maximize the stacking strength of the DSS-RSC design, the blank may be oriented on the fiberboard such that the internal columns in the corrugation run vertically up the walls of the case. This orientation of the corrugation can be seen in
Referring back to
Returning to system 100 of
The mandrel apparatus 120 may have several additional components including a mandrel 121, a mandrel support frame 123 and a mandrel movement and support apparatus generally designated 125. With particular reference to
With particular reference to
Mandrel support frame 123 may be interconnected and supported by a vertical frame support member 152 (see for example
For example, with reference to
Vertical member 152 also has an upper end portion that is interconnected to a horizontal connector member 154 for interconnecting the vertical member 152 (and the mandrel apparatus attached thereto) to the mandrel moving apparatus 125. Connector member 154 may be configured as a plate that interconnects to a corresponding slider plate 160 on mandrel moving apparatus 125. Connector member 154 may be bolted to plate 160 and may be interconnected to vertical member 152 with bracket support member (see for example
With particular reference to
Attachment of the mandrel 121 to vertical support 152 via mandrel support base 153 generally restrains mandrel 121 from movement in the longitudinal direction relative to support frame 123 and rotating apparatus 124.
Mandrel support and moving apparatus 125 may be used to support and move in reciprocating forward and rearward longitudinal movement, mandrel 121, rotating apparatus 124, vertical support member 152 and mandrel support frame 123. The mandrel moving apparatus 125 may be mounted to a support frame (not shown) with a plurality of mounting blocks 166 that are connected to a longitudinally extending guide rail support member 172 of moving apparatus 125. Also comprising part of moving apparatus 125, guide slide rails 164a, 164b may be mounted to opposite side edge faces 172a, 172b respectively of support member 172. Slider plate 160 may have mounted thereto, opposed sets of slide blocks 162a, 163a, and 162b, 163b (see
Moving apparatus 125 also includes a mandrel drive device 174 which may include a continuous horizontally oriented drive belt 178 that extends between and rotates around a pulley 176 and a drive wheel 180. Drive wheel 180 may be driven in both rotational directions and at varying speeds by the drive shaft of a servo drive motor 170. The operation of drive motor 170 may be controlled by PLC 132 in combination with a position sensing apparatus (not shown) so that PLC 132 can determine when and how to operate drive motor 170 to appropriately position the drive belt 178 and thus moving apparatus 125. Drive motor 170 may be mounted at an end portion of support member 172 with a vertically oriented connector plate 171.
To interconnect the drive belt 178 to slider plate 160 and/or sliding blocks 162a-b, 163a-b known attachment apparatus or mechanisms can be provided. For example, a clamp can be mounted to plate 160 and the belt 178 can be secured between clamp arms of the clamp. Thus, when the drive belt moves longitudinally, in parallel longitudinal, vertical and horizontal alignment with the guide rails 164a, 164b, the slide plate 160 and sliding blocks 162a-b, 163a-b can also move in the same direction. The result is that the mandrel support frame 152 and thus mandrel 121 can also be moved longitudinally, in parallel longitudinal, vertical and horizontal alignment with rails 164a, 164b.
Also associated with moving apparatus 125 is a caterpillar device 199. Caterpillar 199 has a hollow cavity extending along its length. Within the cavity of caterpillar 199 hoses carrying pressurized air/vacuum and electrical/communication wires can be housed. Caterpillar 199 allows such hoses and wires to move longitudinally as the mandrel support member 152 and thus mandrel 121 and mandrel support frame 123 are moved longitudinally by moving apparatus 125. The hoses and wires may extend from external sources to enter at an inlet 199a of caterpillar 199 and emerging at an outlet 199b. Once leaving outlet 199b, the hoses and wires may pass into the internal cavity of vertical member 152 (see
The next component of system 100 to be described in detail is the panel rotating apparatus 124. Panel rotating apparatus 124 may engage one blank 400 and may be employed to rotate one or more panels of blank 400 relative to one or more other panels. For example, as illustrated in
Unit 129 will be described in detail, and with particular reference to
Piston 202 may be a conventional pneumatic reciprocating cylinder 204 and is operable to move in a reciprocal movement between a fully extended position (not shown) and a retracted position (not shown). This reciprocating motion can be achieved in known ways such as for example, by using a double acting cylinder, which can for example, channel compressed air to two different chambers which in turn provides interchanging forward and backward acting forces on the piston 202. Piston 202 may for example be a DSNU made by Festo. Compressed air may be delivered to piston 202 by hoses (not shown) passing from vertical support member 152 out to connect with apertures 203a, 203b.
To channel the compressed air appropriately, valves (not shown) can be driven between open and closed positions by solenoids responsive to signals from PLC 132 (
A piston rod 206 of piston 202 is provided with an extended arm portion 208 that provides for a hinge connection 207 for pivoting the panel rotating apparatus 124 between a generally horizontal position and a generally vertical position.
Panel rotation apparatus 124 also comprises panel rotating plate 219 with outer and inner face 219a and 219b respectively. Panel rotating plate 219 may be attached by way of piano hinge 209 to forward lower extension of lower support plate 150c of mandrel support frame 123. As a result of the movement of piston 202 the cylinder rod 206, may extend or retract allowing the arm 208 to pivot relative to rotating apparatus 124. The movement of piston rod 206 thus causes the panel rotating plate 219 to rotate through a certain angular distance relative to mandrel 121 around piano hinge 209.
Air suction cups 220a and 220b may be fixedly mounted to outer or forward facing face 219a of panel rotating apparatus plate 219 with mounting block units 218a, 218b respectively. Air suction cups 220a and 220b may be interconnected through block units 218a, 218b to a source of vacuum by providing for an air channel linked to a manifold unit 225. The manifold unit 225 may in turn may be interconnected by air vacuum supply hose (not shown) to a pressurized air distribution unit generally designated 227. Unit 227 may include a plurality of valves that may be operated by PLC 132 and may also include a vacuum generator apparatus 221. If a vacuum generator is utilized, pressurized air may be delivered from an external source through vertical support member 152 to unit 227. The vacuum generator may then convert the pressurized air to a vacuum that can then be delivered to suction cups 220a, 220b.
The air suction force that may be developed at the outer surfaces of suction cups 220a and 220b of unit 124 may be sufficient so that when activated they can engage, hold and rotate panel 410 of a blank 400 from a generally horizontal position to the position shown in
The suction cups 220a and 220b of unit 124 may engage the surface of panel 410. In other embodiments suction cups of rotation units may alternatively, or in combination also, engage panel 430. The particular arrangement of suction cups on rotating plate 219 can be designed based upon the configuration of the case blank and the particular panels that need to be rotated. It may also be appreciated that in the panel rotation apparatus 124, suction cups are used to apply a force to hold and/or move a panel of a case blank. However alternative engagement mechanisms to suction cups could be employed. It should also be noted that a second set of suction cup/suction plates mounted for movement, including pivoting movement, could be deployed to perform additional panel folding or movement and/or holding of the panel and blank.
More generally, other types of apparatus may be employed to transfer a blank 400 to the mandrel apparatus 120, such that one portion of the blank may be rotated, preferably about ninety degrees, relative to another portion of the panel, to set-up the folding process using a folding apparatus.
With particular reference to
Apparatus 300 may include a pair of spaced, longitudinally extending overhead rails 302a, 302b configured and positioned so that as blank 400 is moved longitudinally forward by mandrel apparatus 120, rails 302a, 302b may fold panel 430 and attached panels 431, 432, 440, 441 and 442, from a generally vertical orientation to a generally horizontal orientation.
A pair of opposed inner side rails 304a, 304b are configured and positioned to engage bottom panels 411 and 412 respectively and may fold and maintain the panels 411 and 412 in a rearward longitudinal direction, until side end panels 421, 422, 431 and 432 and attached panels 451, 452, 441 and 442 have been brought into an upward vertical and overlapping relationship.
Apparatus 300 may also include a pair of opposed wedge plough devices 311a, 311b that may be configured and positioned so that as blank 400 is moved longitudinally forward by mandrel apparatus 120, plough devices 311a, 311b can commence the generally inward folding of side end panels 431 and 432 and attached panels 441 and 442 respectively from a generally horizontal orientation towards a generally vertical orientation. Likewise, apparatus 300 may also include a pair of opposed wedge plough devices 310a, 310b that may be configured and positioned so that as blank 400 is moved longitudinally forward by mandrel apparatus 120, plough devices 310a, 310b can commence the generally inward folding of side end panels 421 and 422 and attached panels 451 and 452 respectively from a generally horizontal orientation towards a generally vertical orientation.
Also part of apparatus 300 are a pair of opposed, downwardly and inwardly oriented guide rails 306a, 306b, that are configured and positioned to take over from plough devices 311a, 311b, to engage the upper surfaces of panels 431 and 432 and to complete the inward folding of side panels 431 and 432 respectively to a vertical position. Likewise, also part of apparatus 300 are a pair of opposed, upwardly and inwardly oriented guide rails 308a, 308b, that are configured and positioned to take over from plough devices 310a, 310b, to engage the lower surfaces of panels 421 and 422 and to complete the inward folding of side panels 421 and 422 respectively to a vertical position.
A pair of lower support rails 312a and 312b are positioned to assist in supporting blank 400 once it has been removed from the support of the stack of blanks 400 in the magazine 110. It should also be noted that during the forward longitudinal movement of blank 400 as it is pushed by mandrel apparatus 120 through the positions illustrated in
Adhesive (i.e. glue) applicators such as applicators 600 can be appropriately positioned and their operation may be controlled by PLC 132. Applicators 600 can apply a suitable adhesive such as a hot melt adhesive to various panels so that when the panels are folded as described herein, the panels can be held in the desired case configuration. An example of a suitable applicator that can be employed is the model ProBlue 4 applicator made by Nordson Inc. An example of a suitable adhesive that could be employed with on a case blank 400 made of cardboard is Cool-Lok adhesive made by Nacan Products Limited.
As shown in
On the opposed side, a second applicator 600 may be positioned and configured so it can apply adhesive as described above including to an outer surface of panel 431 and inner surface of panel 421 so that the desired overlap seam 499b depicted in
Also with particular reference to
Various components of system 100 such as mandrel 121, mandrel moving apparatus 125, panel rotating apparatus 124 and mandrel support frame 123 may be made of suitable materials such as for example mandrel 121 may be made from aluminium. Also a least some of the various components of system 100 such as mandrel 121 and support frame 123 may be integrally formed or interconnected to each other by known techniques. For example if the components are made of a suitable metal or plastic, welding techniques can be employed. Also, the use of screws and/or bolts may be employed.
The operation of system 100 will now be described in detail. First, magazine 110 may be raised so that the upper generally horizontally oriented surface of the upper-most blank 400 (which may be blank 400 from
As shown in
With particular reference now to
Vacuum may also be applied to suction cups 220a, 220b through operation of PLC 132 during the rotation of the panel 410. The air suction force that may be developed at the outer surfaces of suction cups 220a, 220b of panel rotation apparatus 124 may be sufficient so that panel 410 of a blank 400 can be rotated from the position shown in
Once panel 410 reaches the position shown in
The rotation of panel 410 of the top blank 400 may also tend to pull that blank upwards and perhaps a very small distance forward, the effect of which may be to free the top blank from the blank beneath it that is still on the stack. The result is that the top blank 400 is now capable of being moved forward by the mandrel apparatus 120 towards the rail and plough apparatus 300.
It will be appreciated that in some embodiments, the system could be configured so that magazine 110 may discharge blanks 400 to a mandrel apparatus like apparatus 120 from the top rather than the bottom. However, discharging blanks from the top may require inverting some or all of the aforementioned components.
Next, mandrel support and moving apparatus 125 may be used to move mandrel apparatus 120 and mandrel support frame 123 longitudinally forward towards rail and plough apparatus 300, thus also moving blank 400 that is held to mandrel 121. To create this forward longitudinal movement of the mandrel apparatus 120, PLC 132 can operate servo drive motor 170, to move drive belt 178 longitudinally in a direction that causes slider plate 160 to slide forward on guide rails 172a, 172b. With the movement of slide plate 160, the vertical support 152, mandrel support frame 123, and mandrel apparatus 120 that is attached to frame 123, also move longitudinally towards rail and plough apparatus 300.
With particular reference now to
With continued longitudinal movement of blank 400, opposed inner side rails 304a, 304b may engage panels 411 and 412 respectively and may fold and maintain the panels 411 and 412 in a generally rearwardly extending orientation. At about the same time, a pair of wedge plough devices 311a, 311b may commence the generally inward and downward folding of side end panels 431 and 432 and attached panels 441 and 442 respectively from a generally horizontal orientation towards a generally vertical orientation. Likewise, slightly after the wedge plough devices 311a, 311b engage side end panels 431 and 432, a pair of wedge plough devices 310a, 310b may commence the generally inward and upward folding of side panels 421 and 422 and attached panels 451 and 452 respectively from a generally horizontal orientation towards a generally vertical orientation.
As shown in
Lower support rails 312a, 312b may assist in supporting blank 400 once it has been removed from the support of the stack of blanks 400 in the magazine 110.
Also as shown in
Under the control of PLC 132, or pursuant to another control or trigger, adhesive applicators 600 can apply a suitable adhesive at appropriate positions on the panels and/or panels just prior to the folding of the panels, so that when the panels and panels are folded as just described, the panels can be held in the desired case configuration. This approach of folding and pressing together two panels immediately after applying adhesive at least one of the panels can reduce the amount of adhesive required. By way of example, under the control of PLC 132, or pursuant to another control or trigger, adhesive applicators 600 can apply a suitable adhesive at appropriate positions on the panels just prior to or during the process of folding of the panels, so that when the panels and panels are folded as just described, the panels can be held in the desired case configuration. With reference to
In particular, with reference to
This approach of folding and adhesively connecting two panels together immediately after applying adhesive to at least one of the panels may reduce the amount of adhesive required. As stated above, in the preferred embodiment, the adhesive may be “hot-melt”-type glue such as Cool-Lok adhesive made by Nacan Products Limited. A bead of hot-melt glue may be applied by applicators 600 to the surfaces of the appropriate panels at a temperature appreciably higher than the ambient room temperature. The bead of glue may be approximately cylindrical in shape and as the second panel is folded over the first panel and compressed by the rail and plough apparatus 300, the bead of glue becomes flattened and spreads out over the seam. As the glue is spread out, it cools down, forming an instant adhesive bond between the panels. When gluing and folding is done in a single in-line process, as in the preferred embodiment, the glue has little time to cool down between glue application and panel compression. Because there is little time between glue application and compression, the bead of glue is not required to retain heat for a significant amount of time and a bead with a smaller radius (and consequently a reduced amount of glue) may be used as compared to a system where the glue is applied in a separate process prior to folding.
As is shown in
Once activated, the latch devices may restrict the case from moving longitudinally backwards, when the mandrel apparatus 120 is withdrawn.
Additionally, upon receiving the signal from the position sensor that the blank has reached the release position as shown in
Once the mandrel 121 has been withdrawn from the blank (which has now been formed into a container—case—400a), the container 400a may no longer be supported, except possibly at least to some extent by compression rails 314a, 314b. Thus, container 400a may be transferred to a case conveyor (not shown) that is configured to receive the container and the container is then carried away by the case conveyor to be loaded and/or processed further. Case conveyors are well known in the art and any suitable known case conveyor may be utilized.
A device may be employed to push the container 400a (e.g. the formed DSS-RSC case) out from between rails 314a, 314b. For example, a simple push down cylinder device that may also be controlled by PLC 132 may be used. Other examples of transfer devices that might be employed to transfer the case from the end of guide apparatus 130 to a case conveyor include a “blow-off” system that may use one or more jets of compressed air, a suction cup system, the use of pushing arm or simply allowing for freefall of the formed case.
While the container 400a is being transferred to the case conveyor, the mandrel apparatus 120 can be returned to its start position (not shown), ready to recommence the process that has just been described above to form another case.
It is anticipated that cases may be formed at a rate of in the range of about 1 to about 60 cases per minute.
Many variations of the embodiments described above are possible. By way of example only, one portion of the blank may not have to be rotated from a generally flat configuration with the rest of the case blank, ninety degrees relative to remaining portions of the panel, to set-up the folding process. In some other embodiments, the initial rotation of one portion of the blank from a generally flat configuration of the entire blank, may for example be only in the range of from forty-five degrees to ninety degrees. Once the first portion has been rotated from the flat configuration to the angled position, the blank is then more readily capable of being engaged by other mechanisms such that a further rotation of the first portion and other portions of the blank can be carried out to bring the first portion to a vertical position against the front face of the mandrel. Alternatively, in some applications a mandrel might be employed which has outer surfaces that are not completely at right angles to each other. A case blank could then be utilized in the system such that when folded, the blank may not form a cuboid shape.
The system could, with some other modifications, be provided in other spatial orientations such as in a vertically inverted configuration. In such a vertically inverted configuration, a magazine may hold blanks in a stack but be configured to dispense the blanks from the bottom of the stack. A blank could then be retrieved from the bottom of the stack and the front panels could be rotated ninety degrees downwards (instead of upwards) to engage a mandrel, so that like in the embodiment described above, an L-shaped configuration is formed around the mandrel. In some such embodiments, a separate rotation device may not be required to rotate the front panels ninety degrees to engage the mandrel. Once released from the magazine, the front panels may rotate and pivot downwards. Suction cups or another holding mechanism could then be employed to hold the front panels vertically against the front surface of the mandrel. An additional holding mechanism could also be employed at a top plate of the mandrel so that the L-shaped blank is held to the mandrel before and during its passage through a holding apparatus. Such a holding apparatus may be simply the inverted configuration to the holding apparatus described above. An example of such an embodiment is illustrated in
With reference to
System 1100 therefore may have a magazine 4000 holding blanks 4001 (which may be of the type blank 400 of
In operation of system 1100, magazine 4000 may provide blanks 4001 in a stack such that there is a downwardly facing, but generally horizontally oriented surface of panel 20 in the bottom-most blank in the stack that is just in contact with, or is a very short distance spaced from the bottom surfaces of mandrel 1121. Next, magazine 4000 and panel rotating apparatus 1124 may co-operate so that the single blank 4001 from the “bottom” of the stack of blanks may be retrieved from the magazine 4000 and be transferred to the mandrel apparatus 1120. It should be noted that in this embodiment, gravity may assist in releasing a blank 4001 from magazine 4000 and securing it to mandrel 1121.
As with the embodiment of
Thereafter panel rotating apparatus 1124 may be operated to rotate plate 1219 so that panel 410 may be rotated—preferably approximately ninety (90) degrees—downwards, but otherwise generally as described above, to form a generally L-shaped configuration. Vacuum may also be applied to suction cups through operation of the PLC during the rotation of the panel 410. The air suction force that may be developed at the outer surfaces of suction cups of panel rotation apparatus 1124 may be sufficient so that panel 410 of a blank 4001 can be rotated from the position shown in
Once panel 410 reaches the vertical downward position, the suction cups associated with panel rotating apparatus plate 1124 hold panel 410 against the forward facing surfaces of mandrel 1121 with attached panels 411, 412, 430, 431, 432, 440, 441 and 442 also generally remaining in a vertically downward orientation.
The rotation of panel 410 may also tend to pull that blank downwards and perhaps a very small distance forward direction, the effect of which may be to free the blank from magazine 4000. The result is that the “bottom” blank is now capable of being moved forward by the mandrel apparatus 1120 towards the panel folding and guide apparatus 1300. The magazine may again comprise a stack of blanks held in position by vertical rails (not shown). Here, where the case former takes blanks from the bottom of the stack, gravity may bring the cases to the bottom of the magazine. At the bottom of the stack, there may be small metal tabs attached to the rails (not shown) that protrude out into the plane of the stack such that the stack may rest on the tabs. In essence, the stack is held up by the tabs against or closely proximate to the top of the mandrel. When the panel rotation device 1124 engages the bottom case blank and rotates the front panel downwards, the bottom case blank may be pulled through the tabs and out of the magazine. The tabs themselves may remain stationary, but because the case blank may be flexible, so that the case blank may bend from the force of the rotation device and pull out of the magazine. In this way, the system may prevent more than one blank at a time from being taken. Of course various other embodiments of how a magazine can be set up and how a case can be taken from a magazine.
Thereafter, the panel folding and guide apparatus 1300 may cause the blank to be folded in the same manner as described above in relation to rail and plough apparatus 300, but in an orientation that is vertically inverted.
It may be appreciated that in some embodiments, the system could be also configured so that a magazine may discharge blanks to a mandrel apparatus from the side rather than the top or bottom whereby the general orientation of the movement of the blank and the mandrel apparatus through a rail and plough apparatus is generally vertically upwards or downwards. One example of such a configuration is illustrated in
System 2100 therefore may have a magazine 2110 holding blanks 2400 that is positioned to hold blanks 2400 in a generally vertical orientation and horizontally spaced from mandrel apparatus 2120, panel rotating apparatus 2124 and mandrel movement and support apparatus 2125. Mandrel apparatus 2120 may thus be constructed like mandrel apparatus 120 with a mandrel 121, but may be oriented in a generally 90 degree rotated configuration compared to mandrel apparatus 120. Likewise panel rotating apparatus 2124 and mandrel movement and support apparatus 2125 may be constructed like panel rotating apparatus 124 and mandrel movement and support apparatus 125 respectively, but each is also oriented in a generally 90 degree rotated configuration. System 2100 may also include a panel folding and guide apparatus 2300 that may be a rail and plough constructed like apparatus 300, but again can be oriented in a generally 90 degree rotated position compared to apparatus 300.
In operation of system 2100, magazine 2110 may provide blanks in a stack such that there is a vertically oriented outward facing, surface of the “bottom” blank in the stack that is just in contact with, or is a very short distance spaced from, the outward facing surfaces of mandrel 2121. Next, magazine 2110 and panel rotating apparatus 2124 may co-operate so that the single blank 2400 from the “bottom” of the stack of blanks may be retrieved from the magazine 2110 and be transferred to the mandrel apparatus 2120.
As with the embodiment of
Thereafter panel rotating apparatus 2124 may be operated by rotating plate 2219 so that panel 410 may be rotated—preferably approximately ninety (90) degrees to a generally horizontal position, but otherwise generally as describe above, to form a generally L-shaped configuration. Vacuum may also be applied to suction cups through operation of the PLC during the rotation of the panel 410. The air suction force that may be developed at the outer surfaces of suction cups of panel rotation apparatus 2124 may be sufficient so that panel 410 of a blank can be rotated approximately 90 degrees.
Once panel 410 reaches the horizontal position, the suction cups associated with panel rotating apparatus plate 2219 hold panel 410 against the forward facing surfaces of mandrel 2121 with attached panels 411, 412, 430, 431, 432, 440, 441 and 442 also generally remaining in a horizontal orientation.
The rotation of panel 410 may also tend to pull that blank horizontally and perhaps a very small distance downward direction, the effect of which may be to free the top blank from magazine 2110. The result is that the bottom blank is now capable of being moved forward by the mandrel apparatus 2120 towards the panel folding and guide apparatus 2300. As in the other two systems 100 and 1100 described above, the magazine employed in system 2100 may be just a stack of case blanks held in position by horizontal rails (not shown). The magazine may operate using a combination of the other two types of magazines described above (e.g. the orientations in
Thereafter, the panel folding and guide apparatus 2300 may cause the blank to be folded in the same manner as described above in relation to rail and plough apparatus 300, but in an orientation that is vertically inverted.
In yet another embodiment as depicted in
System 3100 may for the most part be constructed substantially the same way as system 100 with generally most of the same components. System 3100 therefore may have a magazine 3110 holding blanks 3400 (which may be of the type of blank 400 or
Mandrel 3121 may include a pair of spaced opposed elongated and longitudinally extending side plate members 3140a and 3140b. Side plates 3140a, 3140b may be interconnected by and joined to an upper horizontally oriented plate 3140c. Side plates 3140a, 3140b and upper plate 3140c may be integrally formed together. Mandrel side plates 3140a and 3140b may contain a groove or channel (not shown) on their inner surfaces for receiving mandrel support rails 3141a, 3141b respectively so that the during extraction of a blank 3400 from magazine 3110, mandrel 3121 can be supported by the support frame 3123 and may be generally restrained from vertical and transverse motion. However, it should be noted that during longitudinal movement of mandrel 3121 caused by movement and support apparatus (not shown), mandrel side plates 3140a and 3140b may slide longitudinally relative to rails 3141a, 3141b respectively. The result may be that after extraction of a blank 3400 from magazine 3110, and the initial folding of the blank 3400 on mandrel 3121, mandrel 3121 can move away with the extracted blank 3400 longitudinally from rotating apparatus 3124 and support frame 3123.
Mandrel 3121 may be interconnected to and supported by a vertical frame support member 3152 having a connection plate 3153 extending horizontally at the lower surface of vertical member 3152. Plate 3153 may have screw holes 3155 which may enable screws (not shown) to pass down into threaded holes (not shown) in an upper horizontal surface of mandrel plate 3140c. Vertical support member 3152 may be conveniently formed from a light but relatively strong material that can be readily formed into a tube, such as for example aluminium. Vertical support member 3152 may be formed as a hollow channel member that has a longitudinally extending cavity that allows for electrical and communication cables and pressurized/vacuum air hoses to pass through from an upper end to a lower end. In this way, electrical power/communication cable and air hoses can deliver power, electrical signals and air to the suction cups 3199a, 3199b that are positioned to face outwards in a generally horizontal orientation. Suction cups can be mounted in the end faces of side plates 3140a, 3140b respectively. The supply of vacuum to suction cups 3199a, 3199b may be controlled by a PLC like PLC 32.
Vertical member 3152 also has an upper end portion that is interconnected to the mandrel moving apparatus (not shown). Mandrel support and moving apparatus may be used to support and move in reciprocating forward and rearward longitudinal movement mandrel 3121.
Panel rotating apparatus 3124 may engage one blank 3400 and may be employed to rotate a blank 3400 panel 410 relative to one or more other panels. The movement of unit 3124 can be controlled by the PLC in such a manner that it can rotate so as to move a panel 410 (and attached panels 411, 412, 430, 431, 422, 440, 441 and 442) of a case blank 3400 through a rotation of approximately 90 degrees, in an aligned manner, at an appropriate time.
Unit 3124 may be described in overview and with particular reference to
A piston rod of piston 3202 is provided with an extended arm portion that provides for a hinge connection for pivoting the panel rotating apparatus 3124 between a generally horizontal position and a generally vertical position.
Panel rotation apparatus 3124 also comprises panel rotating plate 3219 Panel rotating plate 3219 may be attached by way of piano hinge to forward lower extension of bottom plate 3150c of support frame 3123. As a result of the movement of piston the cylinder rod may extend or retract allowing the arm to pivot relative to rotating apparatus 3124. The movement of piston rod thus causes the panel rotating plate 3219 to rotate through a certain angular distance relative to mandrel 3121.
Air suction cups 3220a and 3220b may be interconnected through block units to a source of vacuum. A plurality of valves that may be operated by the PLC and may also include a vacuum generator apparatus such as apparatus 221 in the previous system 100. If a vacuum generator is utilized, pressurized air may be delivered from an external source through vertical support member 3152. The vacuum generator may then convert the pressurized air to a vacuum that can then be delivered to suction cups 3220a, 3220b.
In operation of system 3100, magazine 3110 may be raised so that the upper generally horizontally oriented surface of the upper-most blank 3400 is just in contact with, or is a very short distance spaced from (e.g. within ¼ inch) the bottom surfaces of frame 3123 and mandrel 3121. Next, magazine 3110 and panel rotating apparatus 3124 may co-operate so that the single blank 3400 from the top of the stack of case blanks may be retrieved from the magazine 3110 and be transferred to the mandrel apparatus 3120. Thus, in this way the panel rotating apparatus 3124 may also serve as a transfer mechanism for transferring case blanks in series from the magazine 3110 to the mandrel 3121.
Under the control of the PLC, panel rotation apparatus 3124 may extend reciprocating piston rod so that the rotating plate 3219 and the suction cups 3220a, 3220b thereon are rotated to be in an orientation that is downward facing. Upon coming into close proximity or contact with panel 410, suction cups 3220a, 3220b, may engage the upward facing surface of panel 410 of the top blank 3400 in the stack. Panels 420 and 450 of the blank 3400 are at the same time are maintained generally in position up against or proximate the lower surface of support frame 3123 and mandrel side plates 3140a, 3140b. Blank 3400 continues to be supported underneath by physical contact with the upper surface of another underlying blank 400 in the stack.
Panel rotating apparatus 3124 may be operated by the PLC to rotate rotating plate 3219 about hinge so that panel 410 may be rotated—preferably approximately ninety (90) degrees—about a pre-determined fold line between panels 410 and 420. Thus panel 410 is rotated relative to panels 420 and 450 from a generally flat and horizontal orientation to a generally vertical and angled orientation, thus forming a generally L-shaped configuration.
Vacuum may also be applied to suction cups 3220a, 3220b through operation of PLC 132 during the rotation of the panel 410. The air suction force that may be developed at the outer surfaces of suction cups 3220a, 3220b of panel rotation apparatus 3124 may be sufficient so that panel 410 of a blank 3400 can be rotated from the flat position shown in
Once panel 410 reaches the vertical position, the suction cups 3220a, 3220b associated with panel rotating apparatus plate 3129 may hold panel 410 against the forward facing surfaces of mandrel side plates 3140a, 3140b and the outer surface of 3219a of panel rotating plate 3219 with attached panels 411, 412, 430, 431, 432, 440, 441 and 442 also generally remaining in a vertical orientation until suction cups 3199a, 3199b of mandrel 3121 are activated by PLC and can then engage panel 410 of blank 3400. Once suction cups 3199a, 3199b of mandrel 3121 are activated and engage panel 410 of blank 3400, cups 3220a and 3220b of rotation apparatus 3124 can be de-activated. The rotation of panel 410 may also tend to pull that blank upwards and perhaps a very small distance forward, the effect of which may be to free the top blank from the blank beneath it that is still on the stack. The result is that the blank 3400 now held by suction cups 3199a and 3199b, is now capable of being moved forward by the mandrel apparatus 3120 towards the panel folding and guide apparatus 3300.
Next, mandrel support and moving apparatus (not shown) may be used to move mandrel apparatus 3120 longitudinally forward towards panel folding and guide apparatus 3300, thus also moving blank 3400 that is held to mandrel 3121.
System 3100 may have the advantage of allowing for faster operation of the case former relative to system 100 shown in
Of course, the above described embodiments are intended to be illustrative only and in no way limiting. The described embodiments of carrying out the invention are susceptible to many modifications of form, arrangement of parts, details and order of operation. The invention, rather, is intended to encompass all such modification within its scope, as defined by the claims.
When introducing elements of the present invention or the embodiments thereof, the articles “a,” “an,” “the,” and “said” are intended to mean that there are one or more of the elements. The terms “comprising,” “including,” and “having” are intended to be inclusive and mean that there may be additional elements.
This application is a continuation-in-part of international application PCT/CA2009/001249, filed Sep. 11, 2009, which claims the benefit of and priority from U.S. provisional patent application No. 61/136,542, filed on Sep. 12, 2008, the entire contents of both of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61136542 | Sep 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/CA2009/001249 | Sep 2009 | US |
Child | 12633412 | US |