1. Field of the Invention
The present invention relates to an image forming apparatus for printing an image on a medium such as a print sheet, and, more particularly to an image forming apparatus that has a recording head of an ink-jet system and an image forming method.
2. Description of the Related Art
As this type of an image forming apparatus, there is known an image forming apparatus that has a conveying path for conveying a sheet in an apparatus body thereof and ejects an ink from a recording head to the sheet conveyed by this sheet conveying path to form an image on the sheet.
The recording head ejects the ink while moving along a head moving path orthogonal to a conveying direction of the sheet. One end side of the head moving path is a standby position of the recording head. As disclosed in, for example, JP-A-2005-161816, a cleaning unit is provided near this standby position. The cleaning unit includes a cap that sucks an excess ink on an orifice surface of the recording head and a blade that cleans the orifice surface of the recording head.
At the time of a printing operation, ink mist is generated around the recording head and the cleaning unit is stained by this ink mist.
Thus, conventionally, the cleaning unit is cleaned periodically.
However, conventionally, since the cleaning unit is arranged near the standby position where the recording head is on standby, there is a problem in that it is difficult to perform cleaning work for the cleaning unit because the recording head interferes with the work.
An aspect of the invention has been devised in view of such a point and it is an object of the invention to provide an image forming apparatus and an image forming method that make it possible to clean a cleaning unit without being interfered by a recording head.
An image forming apparatus according to the aspect of the invention includes an apparatus body, a conveying device that is provided in this apparatus body and conveys a medium, a recording device that moves along a moving path orthogonal to a conveying direction of the medium, ejects an ink to the medium to print an image on the medium, and, after the printing is finished, stands by in a first standby position on one end side of the moving path, and a control device that moves the recording device that is on standby in the first standby position to an arbitrary position of the moving path.
Additional objects and advantages of the invention will be set forth in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. The objects and advantages of the invention may be realized and obtained by means of the instrumentalities and combinations particularly pointed out hereinafter.
The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate presently preferred embodiments of the invention, and together with the general description given above and the detailed description of the preferred embodiments given below, serve to explain the principles of the invention.
Embodiments of the invention will be hereinafter explained in detail with reference to the drawings.
An image forming apparatus 10 includes an apparatus body 11. A first feed tray 13 is disposed on a rear side of this apparatus body 11, a discharge tray 14 is disposed on a front side of the apparatus body 11, and a second feed tray 15 is provided on a lower side of the apparatus body.
The apparatus body 11 is constituted by upper and lower housings 11a and 11b. The upper housing 11a is rotatably attached to the lower housing 11b via a supporting shaft 16 and opened and closed around the supporting shaft 16.
The apparatus body 11 includes a sheet conveying mechanism 21 serving as a conveying device, a sheet guide 22 serving as a media guide that has a guide surface 22a in the horizontal direction, and a first head cleaning mechanism 24 shown in
On an upper side of the sheet guide 22, a carriage 30, a carriage driving mechanism 31 for driving this carriage 30, a recording head 32 serving as a recording device of an ink-jet system mounted on the carriage 30, and the like are arranged. A replaceable ink cartridge (not shown) is housed in the recording head 32.
As shown in
An example of the ink ejecting mechanism is a thermal type. The thermal type applies heat to the ink with a heater built in the recording head 32 to film-boil the ink. A pressure change is caused in the ink by growth or contraction of air bubbles due to this film boiling. An image is formed on the sheet S by ejecting the ink from the nozzle section 32a according to this pressure change. Other than the thermal type, for example, an ink ejecting mechanism that uses an element (e.g., a piezoelectric element) having a piezoelectric effect may be adopted. For example, the piezoelectric element is deformed by an electric current and an ink is ejected from a nozzle section according to a pumping action based on the deformation.
As shown in
The recording head 32 is reciprocatingly moved in the arrow B direction together with the carriage 30 along the carriage guide 40 and along a head moving path 33 orthogonal to the conveying direction of the sheet S.
The rotation of the motor 41 is transmitted to the carriage 30 via the timing belt 42. Therefore, the recording head 32 reciprocatingly moves along the carriage guide 40. The sensor unit 45 for controlling a position of the carriage 30 includes, for example, an encoder sensor 46 and a ladder plate 47 serving as a section to be detected. The ladder plate 47 extends in a direction parallel to the carriage guide 40. The ladder plate 47 has a ladder pattern formed at equal pitches. The ladder pattern of the ladder plate 47 is optically detected by the encoder sensor 46 according to the position of the carriage 30, whereby the position of the carriage 30 is detected. A signal of the position detected is inputted to a control unit 50 via a flexible harness 48.
As shown in
The first conveying unit 61 conveys a sheet taken out from the first feed tray 13 to the recording head 32. The second conveying unit 62 conveys a sheet taken out from the second feed tray 15 to the recording head 32. The discharging mechanism 64 has a function of discharging a sheet having an image printed thereon onto the discharge tray 14.
It is possible to place plural sheets (e.g., print sheets) on the first feed tray 13 stacking the sheets in the thickness direction. As shown in
The first conveying unit 61 includes a feed roller 70, a separation roller 71 located below the feed roller 70, and a separation unit 72 including a separation pad. The feed roller 70 feeds a sheet taken out from the lower end of the first feed tray 13 to the recording head 32. A torque limiter is provided in the separation roller 71. The separation roller 71 rotates in a direction identical with a direction of rotation of the feed roller 70 according to a function of the torque limiter when only one sheet is present between the separation roller 71 and the feed roller 70. When two or more sheets are present between the feed roller 70 and the separation roller 71, the separation roller 71 rotates in a direction opposite to the direction of rotation of the feed roller 70. Therefore, when plural sheets are taken out from the first feed tray 13 and fed into a space between the feed roller 70 and the separation roller 71, an uppermost sheet and the other sheets are separated and only the uppermost sheet is fed to the recording head 32. A sheet separating mechanism for taking out sheets from the first feed tray 13 one by one is constituted by the feed roller 70, the separation roller 71, the separation unit 72, and the like.
The separation roller 71 is held by a holder 73. The holder 73 is movable in the up-to-down direction around a shaft 74 extending in the horizontal direction. The separation roller 71 is brought into contact with the feed roller 70 at a predetermined load by a spring and separated from the feed roller 70 by a not-shown cam. It is possible to move the separation unit 72 in a direction toward and away from the feed roller 70 with a not-shown cam.
After the sheet is fed, the separation roller 71 and the separation unit 72 are separated from the feed roller 70, moved to standby positions, and put on standby until the next sheet feed time, respectively. A return lever 75 is rotatably arranged near the lower end of the first feed tray 13. When the sheet taken out from the first feed tray 13 is conveyed to the feed roller 70, the return lever 75 is retracted by a spring to a position where the return lever 75 does not hinder the conveyance of the sheet. This return lever 75 rotates in synchronization with the movement of the separation roller 71 and the separation unit 72 to the standby positions and feeds a remaining sheet back to the first feed tray 13.
The first conveying unit 61 includes a conveying roller 80, a pinch roller 81 opposed to this conveying roller 80, a sheet sensor 82, a media sensor 83, and a switching member 84. The conveying roller 80 feeds a sheet to a space between the sheet guide 22 and the recording head 32. The sheet sensor 82 has a sensor arm that is capable of detecting positions of the leading end and the trailing end of the sheet.
The media sensor 83 has a function of detecting a quality (e.g., paper quality) of a sheet. For example, when the surface of the sheet is made of a material having moisture-absorption characteristics, the media sensor 83 outputs a signal for increasing a quantity of ink ejected from the recording head 32 to the control unit 50. In the case of a sheet having glossiness on the surface thereof, for example, coat paper, the media sensor 83 performs control for outputting a signal for reducing a quantity of ink ejected from the recording head 32 to the control unit 50. In the case of color printing, a ratio of ejection of plural color elements may be adjusted on the basis of a signal from the media sensor 83.
As shown in
A sheet taken out from the first feed tray 13 by the feed roller 70 is conveyed to a space between the conveying roller 80 and the pinch roller 81 through the first conveying unit 61 as indicated by an arrow F1 in
The second conveying unit 62 includes rollers 100 and 101 for taking out a sheet from the second feed tray 15 of a cassette type, a switching member 102, guide members 103 and 104 for guiding the sheet taken out, a conveying roller 105 provided along the guide members 103 and 104, and a pinch roller 106 opposed to the conveying roller 105. The pinch roller 106 is pressed against the conveying roller 105 by a spring. It is possible to store plural sheets (e.g., print sheets) in the second feed tray 15 stacking the sheets in the thickness direction. The rollers 100 and 101 of the second conveying unit 62 function as sheet separating mechanisms for taking out sheets from the second feed tray 15 one by one.
A sheet taken out from the second feed tray 15 passes between the guide members 103 and 104 of the second conveying unit 62 through the switching member 102 as indicated by an arrow F2 in
The duplex-printing conveying unit 63 includes guide members 110 and 111, a conveying roller 112 provided along the guide members 110 and 111, and a pinch roller 113 opposed to the conveying roller 112. The pinch roller 113 is pressed against the conveying roller 112 by a spring. The guide members 110 and 111 are arranged between the switching member 84 of the first conveying unit 61 and the switching member 102 of the second conveying unit 62. At the time of duplex printing, a sheet is fed in an arrow F3 direction in
When duplex printing is performed, after an image is printed on one side of a sheet by the recording head 32, the trailing end of this sheet is detected by the sheet sensor 82. Immediately after the detection, the conveying roller 80 rotates reversely and a position of the switching member 84 is switched. Consequently, the sheet is sent to the duplex printing conveying unit 63 as indicated by the arrow F3 in
The discharging mechanism 64 has a discharge roller 120, a star wheel 121, a transmitting mechanism (not shown) for transmitting the rotation of the conveying roller 80 to the discharge roller 120 and the star wheel 121, and the like. The star wheel 121 is a wheel of a gear shape made of a thin plate of stainless steel or the like. A sheet having an image printed thereon by the recording head 32 is conveyed in a direction indicated by an arrow F4 to the discharge tray 14 while being pressed against the discharge roller 120 by the star wheel 121. The sheet after printing is prevented from floating from the discharge roller 120 by this star wheel 121.
As shown in
The first head cleaning mechanism 24 shown in
An example of the suction pump 140 strokes a tube 144 in a direction indicated by an arrow C with a body of rotation 143 to generate a negative pressure on the inner side of the cap 141.
It is possible to move the cap 141 in an up-to-down direction (an arrow D direction in
Reference numeral 159 in the figure denotes a control board. A CPU 151 serving as a control device is provided in this control board 159. A motor for movement 41, which rotates normally and reversely, is connected to the CPU 151 via a motor driver 152. Further, the recording head 32 is connected to the CPU 151 via a driving circuit 154 and the cleaning mechanism 24 is connected to the CPU 151 via a driving circuit 155. Moreover, an operation panel 157 serving as an instructing unit for instructing a switching operation of the normal and reverse rotations of the motor for movement 41 is connected to the CPU 151 and a detection sensor 158 for detecting a position of the recording head 32 is connected to the CPU 151.
As shown in
The CPU 141 moves, as shown in
The CPU 141 moves, as shown in
Moreover, the CPU 141 reciprocatingly moves, in a state in which the upper housing 11a of the apparatus body 11 is opened, the recording head 32 between the first standby position 34 and the second standby position 35 every time the operation panel 157 is operated.
At the time of the printing operation, since an ink is ejected from the recording head 32 and ink mist is generated around the recording head 32, the sheet guide 22 and the cleaning mechanism 24 are stained by the ink mist. Therefore, it is necessary to periodically clean the sheet guide 22 and the cleaning mechanism 24.
A method of cleaning the sheet guide 22 and the cleaning mechanism 24 will be explained.
First, in this case, a user opens the upper housing 11a of the apparatus body 11. Consequently, as shown in
However, since the one end side of the sheet guide 22 and the cleaning mechanism 24 are located in an area near the recording head 32 that is on standby in the first standby position 34, it is difficult to clean the one end side of the sheet guide 22 and the cleaning mechanism 24 because the recording head 32 interferes with the cleaning.
Thus, in this case, the user subjects the operation panel 157 to press operation again. According to this press operation, as shown in
After finishing the cleaning, the user closes the upper housing 11a. Consequently, as shown in
According to this embodiment, when the one end side of the sheet guide 22 and the cleaning mechanism 24 in the area near the recording head 32 that is on standby in the first standby position 34 are cleaned, since the recording head 32 is retracted from the first standby position 34, it is possible to easily perform cleaning work for the one end side of the sheet guide 22 and the cleaning mechanism 24.
When the upper housing 11a is closed, since the recording head 32 returns to the first standby position 34 from the second standby position 35 and the surface of the recording head 32 is covered by the cap 141 of the cleaning mechanism 24, it is also possible to prevent an ink from drying.
In this second embodiment, a second cleaning mechanism (constituted the same as the first cleaning mechanism 24) 162 is provided not only on one end side of the head moving path 33 but also on the other end side.
When the recording head 32 is put on standby in the second standby position 35 on the other end side of the head moving path 33, the surface of the recording head 32 is covered by the cap 141 of the cleaning mechanism unit 162.
According to this second embodiment, there is an advantage that, even when the recording head 32 is retracted from the first standby position 34, it is possible to surely prevent an ink on the surface of the recording head 32 from drying.
Additional advantages and modifications will readily occur to those skilled in the art. Therefore, the invention in its broader aspects is not limited to the specific details and representative embodiments shown and described herein. Accordingly, various modifications may be made without departing from the spirit or scope of the general inventive concept as defined by the appended claims and their equivalents.
Number | Name | Date | Kind |
---|---|---|---|
5949443 | Yamamoto et al. | Sep 1999 | A |
6390595 | Kusumi | May 2002 | B1 |
6886907 | Okamoto et al. | May 2005 | B1 |
20080165218 | Hiroki et al. | Jul 2008 | A1 |
20080165220 | Hiroki et al. | Jul 2008 | A1 |
20080165231 | Hiroki et al. | Jul 2008 | A1 |
20080165236 | Hiroki et al. | Jul 2008 | A1 |
20080165238 | Hiroki et al. | Jul 2008 | A1 |
20080165239 | Hiroki et al. | Jul 2008 | A1 |
20080165240 | Hiroki et al. | Jul 2008 | A1 |
20080165241 | Hiroki et al. | Jul 2008 | A1 |
20080165242 | Hiroki et al. | Jul 2008 | A1 |
Number | Date | Country |
---|---|---|
2005-161816 | Jun 2005 | JP |
Number | Date | Country | |
---|---|---|---|
20080165215 A1 | Jul 2008 | US |