Field of the Invention
Embodiments of the present invention generally relate to a method and apparatus for frame coding in vertical raster scan for HEVC.
Description of the Related Art
HEVC is a video coding standard being standardized to improve coding efficiency by 50% over H264/AVC. To achieve this goal, lots of new coding tools have been proposed for HEVC. However, all the proposed coding tools assume the horizontal raster scan of micro blocks, which has two problems: 1) Horizontal raster scan is not always effective in prediction especially for intra coding and 2) with sliding window memory for motion estimation (ME) and motion compensation (MC), large on-chip memory is required to compensate for large vertical motion. This is especially a challenging for UHD (ultra high definition) videos, such as, 4k×2k and 8k×4k. While UHD video coding is one of the application areas of HEVC, the frame coding in horizontal scan order is not cost effective at all for UHD videos with high vertical motion.
Therefore, there is a need for a method and/or apparatus for frame coding for HEVC.
Embodiments of the present invention relate to a method and apparatus for frame coding in adaptive raster scan order. The method includes encoding at least one of image or video utilizing input frames and at least one of a data related to the input frame to produce bitstream with raster scan order information and displacement information for producing compressed video bitstream, at decoding time, decoding at least one of the encoded bitstream with raster scan order information and displacement information for producing compressed video bitstream.
So that the manner in which the above recited features of the present invention can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
The proposed method and apparatus add a vertical raster scan order to the HEVC standard and adaptively select the best coding scan order between the horizontal and vertical raster scan orders based on any criteria, such as, size of horizontal/vertical motion, coding efficiency, on-chip memory saving and etc.
The vertical raster scan is effective for the frames which have lots of vertical discontinuities.
For horizontal and vertical search range srX*srY, on-chip memory size (byte) for sliding window for 8-bit luma can be calculated as follows:
MemSizeHorOrder=picWidth*(2*srY+N),
MemSizeVertOrder=picHeight*(2*srX+N).
MemSizeHorOrder and MemSizeVertOrder are on-chip memory sizes for vertical sliding window (horizontal raster coding order) and horizontal sliding window (vertical raster coding order), respectively. N*N is the largest coding unit, and picWidth and picHeight are the horizontal and vertical size of the picture. Based on the equations, Table 1 lists the search ranges for different available on-chip memory sizes for 4k×2k (3840×2160) videos. For a given on-chip memory size, srY is always limited in vertical sliding window, which potentially causes encoding efficiency degradation for large vertical motion videos as illustrated in
The idea of vertical raster scan can be realized with frame rotation. Hence, similar effect may be seen by rotating input frames with horizontal raster scan. This information can be simply added as SEI (Supplemental Enhancement information) or VUI (Video Usability Information) in bitstreams. Moreover, we can extend this idea to any arbitrary raster scan order. We can apply one of 8 different raster can orders for each frames; horizontal top-left to right, as shown in
On the other hand,
While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
This application is a Continuation of U.S. patent application Ser. No. 14/561,816, filed Dec. 5, 2014, which is a continuation of U.S. patent application Ser. No. 13/250,806, filed Sep. 30, 2011, now U.S. Pat. No. 8,934,729, which claims the benefit of U.S. Provisional Patent Application Ser. No. 61/388,478 filed Sep. 30, 2010, and which claims the benefit of U.S. Provisional Patent Application Ser. No. 61/474,435, filed Apr. 12, 2011, all of which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3571700 | Paine et al. | Mar 1971 | A |
5687095 | Haskell | Nov 1997 | A |
6278272 | Scarzello et al. | Aug 2001 | B1 |
7298141 | Bartington | Nov 2007 | B2 |
7391210 | Zhang et al. | Jun 2008 | B2 |
7391211 | Cripe | Jun 2008 | B2 |
8339133 | Teppan | Dec 2012 | B2 |
20060209206 | Wang et al. | Sep 2006 | A1 |
20100254617 | Hwang et al. | Oct 2010 | A1 |
Entry |
---|
Bazzocchi, et al. “Interference rejection algorithm for current measurement using magnetic sensor arrays”, Sensors and Actuators 85, 2000, pp. 38-41 (4 pages). |
Dezuari, et al. “Printed circuit board integrated fluxgate sensor”, Sensors and Actuators 81, 2000, pp. 200-203 (4 pages). |
Tang, et al. “Excitation circuit for fluxgate sensor using saturable inductor”, Sensors and Actuators A 113, 2004, pp. 156-165 (10 pages). |
Ripka, et al. “Pulse Excitation of Micro-Fluxgate Sensors”, IEEE Transactions on Magnetics, vol. 37, No. 4, Jul. 2001, pp. 1998-2000 (3 pages). |
Drljaca et al., “Low-Power 2-D Fully Integrated CMOS Fluxgate Magnetometer”, IEEE Sensors Journal, vol. 5, No. 5, Oct. 2005, pp. 909-915 (7 pages). |
Choi et al., “The Microfluxgate Magnetic Sensor Having Closed Magnetic Path”, IEEE Sensors Journal, vol. 4, No. 6, Dec. 2004, pp. 768-771 (4 pages). |
Minhua Zhou “Sub-Picture Based Raster Scan Coding Order for HEVC UHD Video Coding,” JCTVC-B062, Jul. 21-28, 2010, Geneva, Switzerland (5 pages). |
Kwon et al. “Frame Coding in Vertical Scan Order,” JCTVC-C224, Oct. 7, 2010, Guangzhou, China (4 pages). |
Prosecution History in U.S. Appl. No. 14/561,816, filed Dec. 5, 2014, dated from Dec. 5, 2014 to Apr. 13, 2017 (136 pages). |
Number | Date | Country | |
---|---|---|---|
20170237984 A1 | Aug 2017 | US |
Number | Date | Country | |
---|---|---|---|
61474435 | Apr 2011 | US | |
61388478 | Sep 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14561816 | Dec 2014 | US |
Child | 15583460 | US | |
Parent | 13250806 | Sep 2011 | US |
Child | 14561816 | US |