1. Field
The invention relates to a method and apparatus for treating obesity and controlling weight gain in mammals, and more specifically, to a gastric skirt placed around the stomach to cause a reduced desire for eating for treating obesity and controlling weight gain in mammals.
2. Related Art
Extreme obesity is a major illness in the United States and other developed countries. More than half of Americans are overweight, while nearly one-third are categorized as obese. Obesity is the accumulation of excess fat on the body, and is defined as having a body mass index (BMI) of greater than 30. Many serious long-term health consequences are associated with obesity, such as, hypertension, diabetes, coronary artery disease, stroke, congestive heart failure, venous disease, multiple orthopedic problems and pulmonary insufficiency with markedly decreased life expectancy.
Medical management of obesity including dietary, psychotherapy, medications and behavioral modification techniques have yielded extremely poor results in terms of treating obesity. Several surgical procedures have been tried which have bypassed the absorptive surface of the small intestine or have been aimed at reducing the stomach size by either partition or bypass. These procedures have been proven both hazardous to perform in morbidly obese patients and have been fraught with numerous life-threatening postoperative complications. Moreover, such operative procedures are often difficult to reverse.
One procedure for treating morbid obesity is referred to as a “biliopancreatic diversion.” Biliopancreatic diversion surgery is a reduction of the stomach volume and a diversion of food from the stomach to the final segment of the small intestine, bypassing the beginning and middle portions of the small intestine to limit the amount of nutrients and calories absorbed by the body. This procedure removes about one half of the stomach, and then connects the stomach to the last 250 cm of the small intestine. Some disadvantages of this surgery include patients suffering from protein malnutrition, anemia, gastric retention, diarrhea, abdominal bloating, and intestinal obstruction.
Another bariatric surgery, “gastric bypass,” is a bypass connecting the lower compartment of the stomach to the initial portion of the small intestine. This procedure limits the amount of food that can be ingested at one sitting and reduces absorption of food across the small intestine. In addition to surgical complications, patients may also suffer from acute gastric dilation, anastomotic leak, anemia, and dumping syndrome.
Yet another bariatric surgical procedure is “vertical-banded gastroplasty,” which restricts the volume of the stomach by using staples. In this procedure, staples are placed in the upper stomach region to create a small pouch with a narrow outlet to the remaining portion of the stomach. A band is placed around the narrow outlet to provide support and inhibit stretching of the stomach. In addition to surgical complications, patients undergoing this procedure may suffer from vomiting, ulcers, band erosion, and leaks.
Recently, minimally invasive procedures and devices which create a feeling of early satiety have been introduced into the marketplace in an attempt to address some of the issues above. The LAP-BAND® is a band which encircles the stomach at the region of the fundus-cardia junction; it is a restrictive procedure similar to stomach stapling. The procedure requires general anesthesia, a pneumoperitoneum, muscle paralysis, and extensive dissection of the stomach at the region of the gastro esophageal junction. The procedure also requires continual adjustment of the band, or restriction of a portion of the device. Although less invasive than other bariatric surgical procedures and potentially reversible, the LAP-BAND® does not reduce the volume of the stomach by any great extent and some patients report a feeling of hunger most of the time. Furthermore, once implanted, the LAP-BAND®, although it is adjustable by percutaneous means, may require many iterative adjustments before it is optimally positioned. In addition, the port used to adjust the LAP-BAND® is left inside the patient's body.
Therefore, there is a need for minimally-invasive procedures and devices that eliminate the above-mentioned drawbacks of conventional methods and devices that are currently being used to treat obesity.
In one embodiment, the invention includes: a sheet having a top portion, a bottom portion, a left portion, and a right portion; a first connector attached to the right portion of the sheet; a second connector attached to the left portion of the sheet; a first attachment wing attached to the top portion of the sheet; a connector having an upper portion and a lower portion, the lower portion of the connector attached to the first attachment wing; a strap having a distal end and a proximal end; and a second attachment wing attached to the distal end of the strap, the second attachment wing also attached to the upper portion of the connector.
In one embodiment, the invention includes a gastric constriction device for treating obesity in mammals. The device includes an elastomeric sheet formed in the shape of a cylinder and having a top portion, a bottom portion, a left portion, and a right portion, the sheet configured to be wrapped around a tucked-in stomach of a mammal so that the left portion is in contact with the right portion when the sheet is wrapped around the stomach. The device may also include a first connector attached to the right portion of the sheet, a second connector attached to the left portion of the sheet, the second connector attachable to the first connector, a connecting strap having an upper portion and a lower portion, the lower portion of the connecting strap configured to be attached to the top portion of the sheet, and a collar configured to be attached to the upper portion of the connecting strap, the collar further configured to be placed around an esophagus of the mammal.
These and other embodiments of the invention will be discussed with reference to the following exemplary and non-limiting illustrations, in which like elements are numbered similarly, and where:
The invention is directed to a gastric skirt that is placed around the stomach 100 by a healthcare professional, such as a surgeon, a bariatric surgeon or a gastrointestinal specialist trained in laparoscopic and/or general surgery procedures. The gastric skirt can be positioned using a routine laparoscopic procedure or a conventional open-surgical procedure. Furthermore, the gastric skirt can be placed around the stomach 100 using newer techniques, methods and procedures for laparoscopic surgery.
The invention can be utilized in conjunction with the LAP-BAND® procedure and/or other post-gastric bypass procedures such as gastric sleeve procedure treatments that provide reinforcement and restraining devices to prevent further expansion or re-expansion of the stomach 100.
In another embodiment, the tucked-in portion of the stomach 100 may be a linear portion of the lesser curvature 110, a portion of the body 106, or a portion of the fundus 104, not along either the greater curvature 112 or the lesser curvature 110. Therefore, any portion of the stomach 100 may be tucked-in and wrapped using the gastric skirts disclosed herein.
In a preferred embodiment, the length L is at least 8 centimeters, the central width W1 is at least 4 centimeters, and the outer width W2 is at least 7 centimeters.
The gastric skirt 200 may have a staggered step design and may be formed in the shape of a parallelogram when laid-open, where the opposing ends of the gastric skirt 200 interconnect in a stepped fashion when the gastric skirt 200 is folded. For example, step element 201 is staggered relative to immediately opposing step element 202. Likewise, step element 203 and step element 205 are staggered relative to their immediately opposing step elements 204 and 206, respectively. When the gastric skirt 200 is wrapped or folded into position around a patient's stomach 100, the opposing step elements interconnect with each other, forming the end at the greater curvature 112 and the gastric skirt 200 is formed into a conical cylindrical shape, which is described in more detail below.
Attached to each step element is a male connector or a female receiver or vice versa. In the exemplary embodiment, a male connector 208 is attached to a female receiver 214. When the gastric skirt 200 is folded into position, the male connector 208 couples with the female receiver 214. The male connectors 210 and 212 couple with the female receivers 216 and 218, respectively, when the gastric skirt 200 is wrapped or folded into position around the stomach. In other embodiments, the gastric skirt 200 may have one set of connectors (e.g., a single male connector 208 and a single female receiver 214) or two sets of connectors (e.g., 2 male connectors 208 and 210 and 2 female receivers 214 and 216). The connectors can be of various shapes and sizes, and are not limited to the connector design shown in
The gastric skirt 200 has a bottom portion 220 that is inward curving. Opposite the bottom portion 220, the gastric skirt 200 has a top portion 222 that is inward curving. When the gastric skirt 200 is folded into position, the bottom and top portions 220 and 222 come into contact with the lesser curvature 110 and provide the gastric skirt 200 with a contoured, conical shape. The conical shape allows the gastric skirt 200 to properly fit around the stomach 100.
Furthermore, one or more optional connectors or wings 226 and 228 are attached to the top portion 222 of the gastric skirt 200 and one or more optional connectors or wings 248 and 250 are attached to the bottom portion 220 of the gastric skirt 200. The connectors or wings 226 and 228 may be used to attach the gastric skirt 200 to collar connector straps (shown in
The body or sheet 224 of the gastric skirt 200 is relatively flexible and may be made of an elastic polymer (“elastomer”), such as, but not limited to, silicone, polypropylene, polyethylene terephthalate, polytetrafluoroethylene, polyaryletherketone, nylon, fluorinated ethylene propylene, polybutester, or any combination thereof. Furthermore, the elastomer may be non-porous. Alternatively, the elastomer may be microporous or porous to allow for better expansibility and oxygenation and for tissue in-growth to better hold the gastric skirt 200 in place.
In a preferred embodiment, the elastomer is silicone. Silicone provides an ample amount of rigidity, while still providing flexibility to accommodate changes in stomach shape and size during peristalsis. A silicone body may be preferred over a porous body, as larger pores may allow the stomach muscles or tissue to seep through and grow onto the outside of the body 224. This overgrowth of the stomach through the body 224 may make it difficult to remove the gastric skirt 200 from the patient if needed. Furthermore, the silicone allows some expandability of the stomach 100, which is the stomach's natural function. Thus, the gastric skirt 200 allows the stomach to accommodate some gases and larger pieces of food or meat.
Alternatively, more rigid materials, such as Teflon®, Dacron® or ePTFE or Teflon or wire mesh may be used if they provide an adequate level of flexibility, and do not significantly irritate or erode the stomach surface. That is, the gastric skirt 200 should be relatively flexible, as a very rigid stomach wrap may cause discomfort to the patient, as well as injury to the stomach and other gastric organs. The gastric skirt 200 is tightly positioned around the tucked-in stomach so little to no open space is provided between the gastric skirt 200 and the outer surface of the stomach.
In another embodiment, the body 224 of the gastric skirt 200 may be made of a biodegradable and absorbable polymer or copolymer, such as, but not limited to, polyglycolic acid (PGA), polylactic acid (PLA), polycaprolactone, polyhydroxyalkanoate, various thermoplastic materials, or any combination thereof. Once placed around the stomach 100, the gastric skirt 200 stays in position for a predetermined amount of time. After the predetermined amount of time has elapsed, the gastric skirt 200 may be absorbed by the patient's bodily fluids, eliminating the need for a second procedure to remove the gastric skirt 100. In this particular embodiment, the entire gastric skirt 200, including the male connectors and the female receivers, are made of a biodegradable material.
The staggered step design allows the gastric skirt 200, including all of the connectors and receivers, to be rolled into a highly compact fashion. In one embodiment, the gastric skirt 200 can be placed around a patient's stomach using a routine laparoscopic procedure, referred to as a laparoscopy. During a laparoscopy, the gastric skirt 200 is inserted into the patient via a trocar through a hole made in the patient's abdomen. The staggered step design minimizes the diameter of the gastric skirt 200 when it is rolled for insertion through the trocar. That is, the connectors and receivers are not positioned on top of each other in the rolled position to minimize the thickness for insertion.
In another embodiment, male connectors are connected to their respective female receivers with an elastic material. For example, male connector 208 is connected to female receiver 214 with a strap made from an elastic material. The strap is positioned within an internal channel that runs lengthwise from the left side 232 to the right side 230 within the gastric skirt 200. The strap is preferably made of a more elastic material than the gastric skirt 200 so that the connectors can accommodate peristalsis and movement of the stomach. This embodiment allows stress to be placed on the strap rather than the gastric skirt 200, thereby preventing the gastric skirt 200 from being overstretched due to peristalsis.
In an embodiment, the modular gastric skirt 200 may have utilize only two of the rectangular strips or modules 234, 236, and 238. For example, module 234 can be connected to module 236 to form the modular gastric skirt 200. Alternatively, module 234 can be connected to module 238 to form the modular gastric skirt 200.
The diameter of the upper curvature opening 420 (i.e., cardia end) and the lower curvature opening 406 (i.e., antral end) are similar. The gastric skirt 400 can be a “one-size fits all” design, where a single-sized gastric skirt 400 is used for all or most stomach sizes. To adjust to a “one-size fits all” gastric skirt 400, the stomach is tucked in per physician's preference and the gastric skirt 400 is simply tightened accordingly when it is being positioned around the stomach.
Furthermore, the one or more optional wings 422 and 424 are attached on the circumference of the upper curvature 403. The wings 422 and 424 are used to attach the gastric skirt 400 to collar connector straps (see also
In another embodiment, a healthcare professional can estimate or measure the size of the patient's stomach beforehand. Using this measurement, the gastric skirt 400 can be tailored to provide a customized fit (for example, 10-30% smaller in diameter than the measurement to accommodate the tuck). The prior measurement reduces the risk of overtucking or overstretching or damaging the gastric skirt 400 when it is being positioned around the stomach, and can allow for a smooth and even customized fit (see also
This conical cylinder design allows a single gastric skirt to properly hold various portions of the stomach, even though the stomach may vary in size throughout. The use of a single gastric skirt reduces the complexity of the system and reduces the possibility of complications which may arise due to uneven pressure resulting from multiple skirts around the stomach. Alternatively, multiple, separately-sized gastric skirts, such as, one for a larger portion of the stomach, and one for a smaller portion of the stomach, may be used.
In another embodiment, the gastric skirt 510 can be designed to cover a smaller portion of the greater curvature 502 and/or a smaller portion of the lesser curvature 504, instead of covering the entire respective surfaces. Furthermore, the gastric skirt 510 can be designed to cover other surfaces of the stomach in addition to the greater curvature 502 and/or the lesser curvature 504. For example, the gastric skirt 510 may have a larger surface area and cover the fundus 506 and/or the antrum/pylorus 508, or portions thereof, in addition to portions of the greater curvature 502 and/or the lesser curvature 504.
Unlike conventional gastric-restraint devices, such as the LAP-BAND®, the gastric skirt 510 is not placed between the cardia 514 and the fundus 506 forming a pouch. Furthermore, the gastric skirt 510 is not placed around the esophagus 512. As described above, the gastric skirt 510 is instead fitted or positioned around the body of the stomach 500 (i.e., around surfaces of the greater curvature 502 and the lesser curvature 504 of the stomach 500).
Indentations 602 and 604 can be any shape such as an ellipse, oval, hourglass, or semicircular shape as shown in
Furthermore, optional wing 610 is attached on one substantially horizontal portion adjacent to indentation 604, and optional wing 612 is attached on the other substantially horizontal portion adjacent to indentation 604. The wings 610 and 612 are used to attach the gastric skirt 600 to collar connector straps (shown in
In this embodiment, the narrow surface 702 of the butterfly-shaped gastric skirt 700 can be used to cover the lesser curvature of the stomach. Likewise, the broad surface 708 can be used to cover the greater curvature of the stomach.
In another embodiment, instead of having connectors and receivers to couple the gastric skirt 700, the distal end 712 and the proximal end 714 can be sutured or stapled together.
Outward protrusions 802 and 804 can be any shape, and not limited to, an oval, pear or semicircular shape as shown in
The upper collar 1004 is connected to the gastric skirt 1002 via the connector strap 1006 and the connector strap 1008, which are both, for example, connecting straps. The connector strap 1006 includes a skirt hook 1016 and a collar hook 1018. Likewise, the connector strap 1008 includes a skirt hook 1020 and a collar hook 1022. Regarding the connector strap 1008, the skirt hook 1020 connects to the gastric skirt 1002 at a wing 1012. The collar hook 1022 connects to the collar 1004 at a wing 1014. Regarding the connector strap 1006, the skirt hook 1016 connects to the gastric skirt 1002 at a wing 1010. The collar hook 1019 connects to the collar at a wing (not shown) located at a substantially parallel location as wing 1014 on the opposite side of collar 1004.
The connector strap 1006 has a flexible hinge 1024 to accommodate angulations to various anatomical differences where the skirt hook 1016 and the collar hook 1018 connect with each other. Likewise, the connector strap 1008 has a flexible hinge 1026 where the skirt hook 1020 and the collar hook 1022 connect with each other. The flexible hinges 1024 and 1026 help to accommodate any angulations of the stomach in relation to the lower esophagus and the fundus or the stomach and the pylorus, as well as help to accommodate the angles and contractility or peristaltic movements of the stomach.
The lower collar 1106, also known as the antral collar, is placed around a lower portion of the stomach near the angular notch 1134 at the pylorus 1116, also known as the pyloric antrum notch. The lower collar 1106 is large enough in diameter to encircle part of the lower portion of the stomach near the pylorus 1116, but small enough so that it cannot encircle the larger diameter portion of the small intestine 1118. The lower collar 1106 is connected to the gastric skirt 1102 via connector strap 1132. The connector strap 1132 is attached to the lower collar 1106 at a wing 1128, and connector strap 1132 is attached to the gastric skirt 1102 at a wing 1130. This design prevents the lower collar 1106 from moving down into the small intestine 1118, and helps to hold the gastric skirt 1102 in place. Furthermore, the lower collar 1106 may assist in slowing the gastric emptying from the stomach into the small intestine 1118. The lower collar 1106 may also assist in anchoring the gastric skirt 1102 in place.
In another embodiment, only the upper collar 1104 is attached to the gastric skirt 1102, and a lower collar 1106 is not present. As the volume of the fundus 1114 fills with food, the fundus 1114 stretches and expands, preventing the gastric skirt 1102 from sliding upwards. Thus, the lower collar 1106 may not necessarily be required in all patients to help hold the gastric skirt 1102 in place around the stomach 1100. Alternatively, in another embodiment, only the lower collar 1106 is attached to the gastric skirt 1102 and an upper collar 1104 is not present.
The gastric skirt 1102 and harness system are modular, and provides patients with at least three different options. In the first option, only the gastric skirt 1102 is utilized, without the collars 1104 and 1106 and the connector straps 1126 and 1132. In this embodiment, the healthcare professional may decide to not include the collars 1104 and 1106 if there is not a high risk of gastric reflux or achalasia, or if there is not a high risk that the gastric skirt 1102 may be displaced.
In the second option, the gastric skirt 1102 is utilized along with the collar 1104, but without the collar 1106 and without the connector straps 1126 and 1132. In this embodiment, the gastric skirt 1102 and the collar 1104 are not connected to each other. The healthcare professional may decide on this option if there is a risk of gastric reflux, achalasia, dysphagia but not a high risk that the gastric skirt 1002 or the collar 1104 may be displaced.
In the third option, the gastric skirt 1102 is utilized with the collars 1104 and 1106 and the connector straps 1126 and 1132. The healthcare professional may decide on this option if there is a risk of gastric reflux, or dysphagia and a risk of that the gastric skirt 1102 or collars 1104 and 1106 may be displaced. In this option, both the upper collar 1104 and the lower collar 1106 do not need be utilized, and only one of the collars 1104 or 1106 can be used. The upper collar 1104 not only serves to hold the gastric skirt 1102 in place, but is also a mechanism to help reduce gastric reflux and dysphagia.
The modular design allows the healthcare professional to decide which components of the gastric skirt system will be utilized, as well as the order of insertion of the various components.
In an embodiment, the upper collar 1104 and the lower collar 1106 each have a diameter from about 4 centimeters to about 6 centimeters. The upper collar 1104 can have a larger diameter up to about 11 centimeters in cases where the patient suffers from esophageal achalasia. In an embodiment, the length of the upper collar 1104 and the lower collar 1106 is up to about 4 centimeters.
The length of connector straps 1126 and 1132 can be varied to accommodate various stomach sizes. In a preferred embodiment, connector strap 1126 and connector strap 1132 have a length of about 5 centimeters.
The gastric skirt 1102 can have a length of about 6 centimeters to about 14 centimeters. In a preferred embodiment, the length of the gastric skirt 1102 is from about 8 centimeters to about 12 centimeters. The width of the greater curvature side of the gastric skirt 1102 is from about 7 centimeters to about 10 centimeters, and the width of the lesser curvature side of the gastric skirt 1102 is from about 3 centimeters to about 5 centimeters.
Some patients who undergo various gastric banding procedures experience gastric reflux, and it is believed that gastric banding procedures may cause or aggravate gastric reflux. Gastric reflux occurs when irritating stomach contents, such as acid, accumulate in the stomach outside of the lower esophagus entrance, and eventually, leak or regurgitate back into the esophagus. This leakage, over time, causes the lower esophagus to lose its tone, leaving the lower esophagus entrance poorly controlled, tortuous, unconstructed or floppy.
The upper collar 1104 may be approximately the same size as the lower esophagus or may be slightly larger. Once in position, the upper collar 1104 applies support by forming a significant wrap around the lower end of the esophagus 1108 or the cardia. The upper collar 1104 restricts the lower end of the esophagus opening 1108 and attempts to minimize regurgitation, thereby reducing gastric reflux.
To connect the skirt hook 1202 and the collar hook 1204 together, hinge pin 1206 is inserted into hole 1210, and hinge pin 1208 is inserted into the second hole through ridge 1224. The extending portion 1226 is inserted into the cavity 1220. Once the skirt hook 1202 and the collar hook 1204 are connected, the connector strap 1200 is formed.
The skirt hook 1202 also includes hole 1216 and hinge pin 1218. To attach the connector strap 1200 to a wing (not shown) on the gastric skirt (not shown), the wing is placed inside the hinge cavity 1228 so that hinge pin 1218 is inserted through the wing. To secure the wing to the skirt hook 1202, the hinge pin 1218 is pushed through the hole 1216. The hinge pin 1218 has a triangular shape, with a narrow top and a wide base. The diameter of the base of the hinge pin 1218 is larger than the diameter of hole 1216. This design allows the hinge pin 1218 to be securely fastened once it is inserted through hole 1216. Likewise, the collar hook 1204 includes a hole 1212, a hinge pin 1214, and a hinge cavity 1230 to secure the collar hook 1204 to a wing on the collar (not shown).
In an embodiment, the connector strap 1200 is made of an elastomer, such as silicone. However, the connector can be made from other types of elastomers or thermoplastic polymers, ePTFE, Dacron®, or any combination thereof.
In order to place the collar 1300 around the lower esophagus or cardia, the locking clip 1302 is not engaged, so that the distal end 1304 and the proximal end 1306 are laid open. The collar 1300 is then fitted around a portion of the lower esophagus as described above. Once the collar 1300 is in place, the locking clip 1302 is engaged by connecting the distal end 1304 and the proximal end 1306 together.
The locking clip 1302 can be any type of locking, coupling, or clasping mechanism, and is not limited to the male connector 1312 and female connector 1314 designs shown in
In an embodiment, the collar 1300 and locking clip 1302 are made from a composition of silicone and PTFE/ePTFE. However, the collar 1300 and locking clip 1302 can be made from other elastomers or thermoplastic polymers, or any combination thereof.
In another embodiment, the distal end 1304 and proximal end 1306 can be sutured or stapled together at the time of positioning by the healthcare professional.
In yet another embodiment, the collar 1300 can be shaped as a semicircular ring, or in a “C” shape, and be made of a memory-retaining material. Once the collar 1300 is placed around a portion of the lower esophagus, it retains its shape. Thus, a locking clip is not required.
As described above and shown in
As described above, the greater curvature 1406 of the stomach 1400 is the preferred tucking portion. However, the tucked-in portion of the stomach 1400 may be a portion of the lesser curvature 1408, or any portion of the stomach 1400 not along either the greater curvature 1406 or the lesser curvature 1408. If the tucked-in portion of the stomach 1400 is along the lesser curvature 1408, then the connectors as shown in
The semi-rigid or rigid Nitinol or stainless steel wire frame is covered with ePTFE, silicone, Dacron® or any other elastomer or thermoelastic elstomer, nitinol cage. The balloon 1500 provides support to the outer lining of the stomach when the balloon 1500 is placed in position within the cavity 1404 of
In one embodiment, the self-expanding nitinol cage or stainless steel wire cage balloon 1500 is covered with silicone, and is formed in the shape of a cylindrical balloon, and can have open or closed ends. In another embodiment, the self-expanding nitinol ballon 1500 is covered with ePTFE, and can have open or closed ends.
The balloon 1500 has a length of about 7 centimeters to about 10 centimeters. In an embodiment, the diameter of the balloon 1500 is from about 1 centimeter to about 3 centimeters. However, the diameter of the balloon 1500 can be adjusted by the healthcare professional based on the amount of stomach that is tucked-in.
Furthermore, optional wings 1612 and 1614 are attached to the gastric skirt 1608 to attach the gastric skirt 1608 to collar connector straps (not shown).
While the principles of the disclosure have been illustrated in relation to the exemplary embodiments shown herein, the principles of the disclosure are not limited thereto and include any modification, variation or permutation thereof.
Number | Name | Date | Kind |
---|---|---|---|
4403604 | Wilkinson et al. | Sep 1983 | A |
4592339 | Kuzmak et al. | Jun 1986 | A |
4696288 | Kuzmak et al. | Sep 1987 | A |
4739758 | Lai et al. | Apr 1988 | A |
5074868 | Kuzmak | Dec 1991 | A |
5129915 | Cantenys | Jul 1992 | A |
5449368 | Kuzmak | Sep 1995 | A |
5514155 | Daneshvar | May 1996 | A |
5601604 | Vincent | Feb 1997 | A |
5910149 | Kuzmak | Jun 1999 | A |
5938669 | Klaiber et al. | Aug 1999 | A |
6146240 | Morris | Nov 2000 | A |
6511490 | Robert | Jan 2003 | B2 |
6547801 | Dargent et al. | Apr 2003 | B1 |
6558400 | Deem et al. | May 2003 | B2 |
6656194 | Gannoe et al. | Dec 2003 | B1 |
6676674 | Dudai | Jan 2004 | B1 |
6746460 | Gannoe et al. | Jun 2004 | B2 |
6755869 | Geitz | Jun 2004 | B2 |
6773440 | Gannoe et al. | Aug 2004 | B2 |
6981978 | Gannoe | Jan 2006 | B2 |
6994715 | Gannoe et al. | Feb 2006 | B2 |
7033373 | de la Torre et al. | Apr 2006 | B2 |
7033384 | Gannoe et al. | Apr 2006 | B2 |
7083629 | Weller et al. | Aug 2006 | B2 |
7097650 | Weller et al. | Aug 2006 | B2 |
7101381 | Ford et al. | Sep 2006 | B2 |
7175638 | Gannoe et al. | Feb 2007 | B2 |
7211094 | Gannoe et al. | May 2007 | B2 |
7214233 | Gannoe et al. | May 2007 | B2 |
7220237 | Gannoe et al. | May 2007 | B2 |
7229428 | Gannoe et al. | Jun 2007 | B2 |
7288099 | Deem et al. | Oct 2007 | B2 |
7288101 | Deem et al. | Oct 2007 | B2 |
7306614 | Weller et al. | Dec 2007 | B2 |
7338433 | Coe | Mar 2008 | B2 |
7367937 | Jambor et al. | May 2008 | B2 |
20030105469 | Karmon | Jun 2003 | A1 |
20030120288 | Benchetrit | Jun 2003 | A1 |
20030158564 | Benchetrit | Aug 2003 | A1 |
20030208212 | Cigaina | Nov 2003 | A1 |
20040044354 | Gannoe et al. | Mar 2004 | A1 |
20040088008 | Gannoe et al. | May 2004 | A1 |
20040122452 | Deem et al. | Jun 2004 | A1 |
20040122453 | Deem et al. | Jun 2004 | A1 |
20050096638 | Starkebaum | May 2005 | A1 |
20050119674 | Gingras | Jun 2005 | A1 |
20050159769 | Alverdy | Jul 2005 | A1 |
20050251181 | Bachmann | Nov 2005 | A1 |
20060212053 | Gertner | Sep 2006 | A1 |
20070015955 | Tsonton | Jan 2007 | A1 |
20070027356 | Ortiz | Feb 2007 | A1 |
20070048334 | Aurora | Mar 2007 | A1 |
20070083224 | Hively | Apr 2007 | A1 |
20070100367 | Quijano et al. | May 2007 | A1 |
20070112364 | Gerbi et al. | May 2007 | A1 |
20070118168 | Lointier et al. | May 2007 | A1 |
20070135829 | Paganon | Jun 2007 | A1 |
20070156013 | Birk | Jul 2007 | A1 |
20070233161 | Weller et al. | Oct 2007 | A1 |
20070250083 | Deem et al. | Oct 2007 | A1 |
20070265645 | Birk et al. | Nov 2007 | A1 |
20080033574 | Bessler et al. | Feb 2008 | A1 |
20080091076 | Roth et al. | Apr 2008 | A1 |
20080091077 | Roth et al. | Apr 2008 | A1 |
20080091078 | Roth et al. | Apr 2008 | A1 |
20080091079 | Roth et al. | Apr 2008 | A1 |
20080132925 | Demarais | Jun 2008 | A1 |
20080208240 | Paz | Aug 2008 | A1 |
20080208241 | Weiner et al. | Aug 2008 | A1 |
20080208355 | Stack et al. | Aug 2008 | A1 |
20080243166 | Paganon et al. | Oct 2008 | A1 |
20090118756 | Valencon et al. | May 2009 | A1 |
Number | Date | Country |
---|---|---|
101193610 | Jun 2008 | CN |
1205148 | May 2002 | EP |
1002464 | Nov 1996 | GR |
20070100015 | Sep 2008 | GR |
WO 0141671 | Jun 2001 | WO |
WO 2004014245 | Feb 2004 | WO |
WO 2008122713 | Oct 2008 | WO |
WO 2009059803 | May 2009 | WO |
Number | Date | Country | |
---|---|---|---|
20100145370 A1 | Jun 2010 | US |