The present invention relates generally to medical imaging, and more particularly to generating a 2 dimensional (2D) image having pixels that correlate to voxels of a three dimensional (3D) image.
Cardiovascular diseases, such as heart disease and stroke, are one of the major causes of death in the U.S. To diagnose a cardiovascular disease, medical personnel may perform a Computed Tomography (CT) scan on a patient. A CT scan uses x-ray equipment to obtain image data from different angles around the human body and then processes the data to show a cross-section of the body tissues and organs. The image can then be analyzed by methods using morphological operators to highlight specific areas so that radiologists (or other medical personnel) can more easily diagnose problems such as cardiovascular diseases associated with the patient.
The CT scan typically provides high quality 3D images and image sequences of the patient's heart. These images often enable reproducible measurements of cardiac parameters, such as left ventricular volume, wall thickness, and parameters associated with the coronary arteries.
In recent decades, researchers have developed a wide variety of segmentation techniques for isolating coronary arteries (i.e., the blood vessels that supply blood and oxygen to the heart) from the rest of the CT scan. Coronary arteries are typically difficult to segment because of their size and proximity to the surface of the heart and blood pool.
Medical personnel often obtain and use a 3D image of the heart (or other organs of interest) in order to diagnose a patient. These medical personnel often also use a two dimensional (2D) representation of the organ to more clearly analyze particular portions of the organ. There remains a need, however, to correlate pixels of the 2D view with voxels of the 3D volume so that medical personnel can simultaneously use both representations to analyze the organ.
In accordance with the present invention, a two dimensional (2D) image of a structure, such as an organ, is generated that has at least one pixel corresponding to at least one voxel of a three dimensional (3D) image of the structure.
The surface of the structure in the 3D image is modeled by a geometrical volume such as an ellipsoid. Next, normal maximum intensity projection (MIP) rays are cast (i.e., projected) for voxels of the geometrical volume. The 2D image is then generated using the rays. The 2D image has at least one pixel that corresponds to at least one voxel of the 3D image.
In one embodiment, a pixel of interest on the structure in the 2D image is selected (e.g., via a cursor). The 3D image is positioned to highlight a particular voxel corresponding to the selected pixel of the 2D image. This positioning can include, for example, scaling and/or rotating the structure in the 3D image.
The selecting of a particular pixel can also include the selecting of a ray. Further, the 3D image can be positioned in a manner that highlights a vessel or a region of interest that corresponds to the selected ray.
These and other advantages of the invention will be apparent to those of ordinary skill in the art by reference to the following detailed description and the accompanying drawings.
The following description describes the present invention in terms of the processing steps required to implement an embodiment of the invention. These steps may be performed by an appropriately programmed computer, the configuration of which is well known in the art. An appropriate computer may be implemented, for example, using well known computer processors, memory units, storage devices, computer software, and other components. A high level block diagram of such a computer is shown in
Referring now to
In particular, a ray is casted from the surface of the geometric object (ellipsoid) toward the interior of the organ (heart). This ray crosses intensity voxels that are collected. For each ray, the collection of intensities is called a ray profile. On the 2D projection, each 2D pixel corresponds to a particular ray. The ray profile is averaged, and the mean intensity is associated with the 2D pixel.
The result of the steps of
We consider a segmentation method driven from a graph optimization technique with a shape constraint. The idea lying behind this segmentation is to minimize an energy function that is defined on a graph, according to the cut of minimum weight. The energy is written as the sum of two terms: Esmooth(f) that imposes smoothness constraints on the segmentation mask (i.e., a binary volume, where the 0's denote the background (not the object) and the 1's denote the object of interest that has been segmented), and Edata(f) measuring how the label f is adapted to the data:
Vp,q in equation (2) is the interaction function between the pair of neighboring pixels {p, q}. Dp in equation (3) measures how close the label f is to the pixel p intensity. Generally, such a method provides a global optimal solution for the case of binary valued f(p).
The heart segmentation method provided above is only exemplary. It should be appreciated that other methods for isolating the heart may be used, as contemplated by those skilled in the art, such as a model-based segmentation and segmentation methods based on level set methods.
The segmentation described above produces a 3D mask (i.e., pixels labeled object and background). As described above, a distance map is then created. A distance map from the surface of the 3D mask can provide valuable constraints during recovery of the peripheral vessels. For example, as the peripheral vessels remain parallel to the surface of the heart, their distance (i.e., distance of the vessels from the heart's surface) in the distance map varies smoothly.
The distance map is computed by parsing the 3D mask twice—once in one direction, and once in the other direction. Each voxel in the distance map is filtered on an edge (object-background) by a 3D chamfer mask, M, as is commonly known to those skilled in the art. The filtered voxels are used to model the heart by a geometrical object, such as an ellipsoid, to flatten its surface easily using cartography methods, as described in greater detail below.
Modelization of the Heart (or Any Other Organ) Shell by a Spheroid
The distance map is used to model the heart wall by an ellipsoid or a biaxial spheroid. In another embodiment, one may consider a more complex model such as a tri-axial ellipsoid.
The biaxial spheroid reduces the deformations potentially occurring if using a sphere. For a biaxial ellipsoid of semi-axes length a and b, the surface equation is
or, in a parametric form: x=a cos (λ)sin Φ, y=a sin (λ) sin (Φ), z=b cos (Φ) where λε[0,2π] and Φε[0,π]. Similar to what is commonly used in cartography, λ and Φ are called longitude and latitude respectively. The ellipsoid center is computed as the center of gravity, G, of all the points located on the distance map isosurface 0 (the heart shell). The large axis Z is the vector {square root over (GM)}, where M is the point on the isosurface maximizing the length |{square root over (GM)}∥. Similarly, the small axis X is the vector {square root over (GN)}, where N is the point on the isosurface minimizing the length ∥{square root over (GN)}∥. The axis Y is deduced to have a direct orthogonal base, B=(G, X, Y, Z).
It should be noted that the quality of the modeling does not rely on the quality of the segmentation, which makes the method described herein independent from the selection of the segmentation method described above, and robust to noise. Moreover, the heart naturally has the shape of an ellipsoid. From the ellipsoid surface, rays are cast to compute a two-dimensional (“2D”) view of the heart surface.
Ray Casting and N-MIP Projection
Next, we cast rays from the ellipsoid, and collect the voxel intensities in a predefined direction and range inside and outside the heart wall. The distribution of the nodes on the ellipsoid used to cast rays is computed through the following transformation. Referring now to
Referring now to
A profile matching technique is used to detect whether a ray crosses a vessel structure. Referring now to
Next, peaks are processed to determine if they are suitable candidates for a vessel point, according to the following criteria:
1. A peak respects certain intensity properties (intensity value and peak shape)
2. A peak is within a certain distance from the heart wall.
The intensity peaks, added to the local maximum (a ridge detection), allow a fair detection of the vessels on the rays profile curve. To detect peaks, we use a zero-crossing of the Laplacian, with the following kernel: [−1 2 −1].
In one embodiment, the computer 102 enables the selection of a particular pixel of the 2D image. Specifically, a user of the computer 102 can position a cursor (e.g., via a mouse) to select a pixel in the 2D view 704. When this occurs, another cursor is automatically positioned at the corresponding voxel in the 3D view 700. When a point on the 2D image 704 is selected, the 3D heart volume 702 is rotated and/or scaled so that a selected ray appears parallel to the user's view. As a result, the user can review in the 3D view 700 the point or points that the user is analyzing in the 2D view 704.
In more detail, when a user clicks on a 2D pixel, the user is really selecting the full ray that is associated with this 2D pixel. The 3D volume is then rotated so that this ray appears parallel to the user's view (i.e., perpendicular to the computer screen).
For example, if a user uses cursor 708 to select a particular pixel 712 in the 2D view 704, the heart structure 702 is rotated and/or scaled so that the corresponding ray 714 is highlighted by a second cursor 716. In one embodiment, a user enables this correlation via a software button such as button 720.
In the 3D view 700, some occlusions may appear, due to tissues overlaying vessels. To check whether this occlusion refers to pathology or is instead a false positive, the correlation between a 3D voxel and a 2D point can be taken advantage of. In particular, a user selects a voxel of interest in the 3D view 700. As each voxel in the 3D view 700 corresponds to a particular pixel in the 2D image 704, the user can use the 2D view 704 to distinguish between a pathological vessel and a false positive.
Vessels may be detected using this algorithm. In one embodiment, the user selects a ray in the 2D view 704 and the heart 702 in the 3D view 700 is rotated and/or scaled to display the vessel that belongs to the ray. A marker may then be used in the 3D view 700 to underline the object of interest (e.g., the vessel).
Although the present invention is described above with respect to a heart, the description applies to any organ (e.g., stomach) or structure that can be enclosed by the geometric volume (e.g., ellipsoid).
The foregoing Detailed Description is to be understood as being in every respect illustrative and exemplary, but not restrictive, and the scope of the invention disclosed herein is not to be determined from the Detailed Description, but rather from the claims as interpreted according to the full breadth permitted by the patent laws. It is to be understood that the embodiments shown and described herein are only illustrative of the principles of the present invention and that various modifications may be implemented by those skilled in the art without departing from the scope and spirit of the invention. Those skilled in the art could implement various other feature combinations without departing from the scope and spirit of the invention.
This application claims the benefit of U.S. Provisional Application No. 60/670,889 filed Apr. 13, 2005, which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60670889 | Apr 2005 | US |