This is a U.S. National Phase Application under 35 USC 371 of International Application PCT/EP2010/059235 filed on Jun. 29, 2010.
This application claims the priority of European application no. 09/305634.9 filed Jun. 30, 2009, the entire content of which is hereby incorporated by reference.
The present invention relates to a method of and an apparatus for generating a surface of an optical lens for the manufacture of the optical lens. The invention further relates to a method of and an apparatus for manufacturing an optical lens according to the surface generated by the method of the invention.
Ophthalmic lens for the compensation of eyesight defects are well known. Multifocal ophthalmic lenses are a type of ophthalmic lens which in practice often comprise an aspherical face, and a face, which is spherical or toric, machined to match the lens to the wearer's prescription.
Progressive ophthalmic lenses usually comprise a far vision region, a near vision region, and a progressive corridor (or channel) there between. The progressive corridor provides a gradual power progression from the far vision zone to the near vision zone without a dividing line or a prismatic jump.
For multimodal lenses, the power in the various far, intermediate and near vision regions is determined by the prescription. A prescription may for example define lens characteristics such as a power value for near vision, a power value for far vision, an addition, and possibly an astigmatism value with its axis and prism.
Generally, the dispensing of a particular progressive addition lens to a wearer involves selecting a progressive addition lens design from a range of available progressive addition lens designs based on certain visual requirements of the wearer.
In a common method for producing progressive multifocal lenses according to optical lens parameters including prescription data, a semi-finished lens blank having suitable optical characteristics is selected based on a prescription. Typically the semi-finished progressive lens blank comprises a front progressive multifocal surface and a back spherical surface. The back surface of the semi-finished lens blank is then machined and polished to match the far-vision prescription.
An alternative method for producing multifocal progressive lenses uses less expensive single vision semi-finished lens blanks having a front spherical surface and a back spherical surface. Based on the optical lens parameters including prescription parameters and other wearer parameters, a single vision semi-finished lens blank having a suitable optical power is selected. A progressive surface design is then computed, for example obtained by optimisation, in accordance with optical lens parameters, and the back surface of the lens blank is machined and polished to produce the desired progressive surface. Although less expensive, this method for producing multifocal progressive lenses is relatively time consuming, partly due to the computational complexity of computing the progressive surface for each prescription.
The optimisation of an ophthalmic lens involves determining coefficients a of a surface equation S(α) for defining a surface layer of one of the surfaces of the lens according to optical lens parameters denoted as λ. A lens surface may be composed of one or more surface layers and thus defined by one or more surface equations. Optical lens parameters include wearing parameters λ including optical prescription data such as prescribed values defining surface characteristics including sphere, cylinder, axe, prism power, addition, progression length etc; personalisation parameters, environmental factors, positioning parameters etc; for the wearing of the optical lens. The surface equation coefficients a are determined such that a function Fλ(α) known as a merit function and which represents the optical defects of an optical lens, is kept to a minimum.
In some cases in addition to coefficient α a set of equality constraints CEλ(α)=0 and inequality constraints CIλ(α)≦0 should be respected. These constraints may include prescription constraints relating to the near vision NV and the far vision FV zone or to lens thickness constraints, and the like.
The optimisation of an optical lens may thus be mathematically represented by the following problem:
In many cases the function Fλ(α) is not continuous in variables λ. For example the base curves chart which is an allocation law of the curvature radius of one of the surfaces of the lens can introduce discontinuities to the function Fλ(α)
The set O of all optical lens parameters λ can be divided into M distinct and connected zones Oi (i=1 . . . M) of optical lens parameters in which the functions Fλ(α), CEλ(α) and CIλ(α) are continuous. The continuous functions associated with these zones are denoted as Fλi(α)(i=1, . . . M), CEλi(α)(i=1, . . . , M) and CIλi(α)(i=1, . . . , M).
This leads to the following representations:
If we make the assumption that the optimisation problem represented by formula (1) has a unique solution, then the solutions of the problem are continuous in each zone Oi(i=1, . . . , M).
When an order for a personalised optical lens defined by a set of optical lens parameters λ arrives in a prescription laboratory problem 1 is solved for each prescription using an adapted algorithm. Such a process is however time consuming and complex.
One object of the invention is to reduce the complexity of the calculation design and to improve the reliability of the calculations in the design of a surface of an optical lens.
According to a first aspect of the invention, there is provided a method of generating a target surface {tilde over (S)}(
E(λj)=Sλ
where λj (j=1, . . . , L) correspond to the optical lens parameters of optical lenses associated with the pre-calculated surfaces; providing a set of second surface difference data {tilde over (E)}(
where wj
{tilde over (S)}(
The method according to a first aspect of the invention enables the time for calculation of a customised surface of an optical lens according to a prescription to be reduced. Moreover the method allows the complete geometry of any customised lens associated with a given prescription to be provided without having to perform a full optimisation process for that particular prescription. From a predetermined set of optimised lenses corresponding to a set of prescriptions, an interpolation of the predetermined optimised surface equations leads to the generation of a desired target surface, an approximated target surface, which otherwise would have been optimised according to the conventional methods. Thus the method according to the invention enables lens information to be provided rapidly to an optician.
According to a second aspect of the invention there is provided a method of manufacturing an optical lens surface comprising generating an optical surface {tilde over (S)}(
Further optional features of embodiments of the invention are set out below:
According to another aspect, the invention relates to a computer program product comprising one or more stored sequence of instructions accessible to a processor which, when executed by the processor, causes the processor to carry out the steps of a method according to the invention. The invention also relates to a computer readable medium carrying one or more sequences of instructions of the computer program product according to the invention.
Unless specifically stated otherwise, it will be appreciated that throughout the specification terms such as “computing”, “calculating”, “generating”, or the like, refer to the action and/or processes of a computer or computing system, or similar electronic computing device, that manipulate and/or transform data represented as physical, such as electronic, quantities within the computing system's registers and/or memories into other data similarly represented as physical quantities within the computing system's memories, registers or other such information storage, transmission or display devices.
Embodiments of the present invention may include apparatuses for performing the operations herein. This apparatus may be specially constructed for the desired purposes, or it may comprise a general purpose computer or Digital Signal Processor (“DSP”) selectively activated or reconfigured by a computer program stored in the computer. Such a computer program may be stored in a computer readable storage medium, such as, but is not limited to, any type of disk including floppy disks, optical disks, CD-ROMs, magnetic-optical disks, read-only memories (ROMs), random access memories (RAMs) electrically programmable read-only memories (EPROMs), electrically erasable and programmable read only memories (EEPROMs), magnetic or optical cards, or any other type of media suitable for storing electronic instructions, and capable of being coupled to a computer system bus.
The processes and displays presented herein are not inherently related to any particular computer or other apparatus. Various general purpose systems may be used with programs in accordance with the teachings herein, or it may prove convenient to construct a more specialized apparatus to perform the desired method. The desired structure for a variety of these systems will appear from the description below. In addition, embodiments of the present invention are not described with reference to any particular programming language. It will be appreciated that a variety of programming languages may be used to implement the teachings of the inventions as described herein.
In the context of the present invention, the following terms may be deemed to have meanings indicated herein below:
Embodiments of the invention will now be described, by way of example only, and with reference to the following drawings in which:
A first embodiment of the method according to the invention will now be described with reference to
In an initial step E1 of the method, a predetermined number L of surfaces Sλ
E(λj)=Sλ
The initial surface Sλ
The first difference data E(λj) or optimised difference data is stored in a database from which it can be accessed for subsequent steps of the method.
In step E3, when a prescription for an optical lens according to an optical lens parameter data
The interpolation coefficient wj
The condition wj
In step E4 the final approximate customised or target surface {tilde over (S)}(
{tilde over (S)}(
The method according to the embodiment of the invention includes two main operations. A first sampling operation consists in defining for each sub-set Oi(i=1, . . . , M) in which the solution to equation (1) is continuous in variable λ, the sample points λj for which problem (1) will be solved. A further operation of the method according to embodiments of the invention involves defining a rule for constructing weighting coefficients wj
A preliminary step of the method according to certain embodiments of the invention may include changing the parameters
In the sampling operation the idea is to mesh the sub-sets Oi sufficiently finely in order to obtain a more reliable approximation for obtaining the target surface.
Assuming subset zones Oi are covered by a set of NT n-polytopes Pk (k=1, . . . NT) according to the expression
The vertices of the n-polytopes form part of the optical lens parameters λj (j=1, . . . , L). The assumption is made that the covering is such that the intersection between two different polytopes is either empty or is one of the (n−d)-cells, where d≧1, of one of the 2 polytopes where n corresponds to the number of optical lens parameters and the space dimension, and where (n−d) is thus less than n.
Example of suitable polytopes include:
For example, the set of optical lens parameters can be partitioned into triangles according to (sph, cyl)i values and into intervals along the dimensions consecrated to the axe and the addition.
In terms of interpolation given the optical lens parameters
and such that
Coefficients wkl (l=1, . . . , Ns) will be used for the interpolation of the first difference data E(λkl) to provide second difference data {tilde over (E)}(
The principle of the method according to the embodiment of the invention will now be illustrated for the case of a lens A (of type Physio). In the example of lens A the optical lens parameters λ are characterised by Far Vision FV prescription parameters of sphere, cylinder and axe values, and addition values.
Thus the optical lens parameters λ lie in a sub-space of 4 dimensions. If further parameters such as personalisation parameters are added, the parameter space will have additional dimensions. In this case the sub-sets Oi(i=1, . . . , M) come directly from the base design of the product. In this example, there are 6 bases (1.75 2.75 3.75 5.25 6.50 8.00) Thus the number of parameter zones M=6 and the sub sets Oi of parameters are decomposed according to the following Cartesian product: Oi=(sph,cyl)i×[0,180[×[0.75,4].
The set of parameters (sph,cyl), represents the subset of prescription data (sph,cyl) associated with the ième base. The interval [0,180[ corresponds to the axe intervals and the interval [0.75,4] corresponds to the addition intervals. In the base designs for lens A each of the sub-sets (sph,cyl)i is connected; i.e. they are not partitioned into disjointed parts and are polygons in the plane.
In this embodiment the partitioning of subsets Oi into polytopes is carried out in two steps. In one step the subsets are partitioned by triangles in (sph, cyl) and in another step the intervals associated with the axe and addition are partitioned into sub-intervals.
In order to carry out a partitioning in (sph, cyl) the variations of the surface difference data E(λ) according to the surface value and sphere value of the prescription parameters are analysed. The analysis can be carried out in the case where Axe=0 and Add=2.0 diopters. For each prescription the magnitudes of the average sphere and the cylinder values at the far vision FV and near vision NV points of the surface difference data are calculated, for example according to the method described in WO2007017766A2 which is incorporated herein by reference thereto.
In order to validate the partitioning, the optimised surface and the approximated surface have been calculated for a representative set of prescriptions (in this case Axe=0, addition=2). The representative prescriptions for validating the partitioning are shown in
On the set of validation prescriptions the maximum differences in sphere and cylinder values between the optimised surface difference data and the approximated surface difference data observed at the control points (PRP, MC, FV, NV) was found to be 0.05 D. This may be deemed as being sufficient. In order that this may be reduced a finer partitioning may be used.
For partitioning according to the prescription axe, the variation of the sphere and cylinder values at the control points PRP, MC, FV, NV of the optimised difference data for a number of test prescriptions in each base was studied. For each base a set of sub-intervals on which the differences in the variable “axe” could be approximated by a straight segment was identified. In this way, for the base 2.75 the interval 0-180 degrees was partitioned into 8 sub-intervals as shown in
For the set of 6 bases the interval 0-180 was divided in this way according to the following rules
With such partitioning the maximum differences obtained at the points of control are of the order of 0.12 D for the same set of test prescriptions as illustrated in
Partitioning according to addition values can be carried out in a similar manner to partitioning according to axe values. After analysis of the variation of the optimum difference data according to the addition, sub intervals of [0.75, 4.0] necessary for appropriately fitting the curves of sphere difference values and cylinder difference values at the control points as a function of the addition par straight segments are defined per base. Thus
It can be seen from these figures that the dependence on addition of the spheres of the difference data is virtually linear locally contrary to that for the axe.
In studying the variations base by base the interval [0.75, 4.0] has been partitioned as follows:
The partitioning of the optical lens parameters space into polytopes can be performed manually or automatically. A database of predetermined optimised surfaces may be built up over time and prescription labs may share surface data which has already been optimised.
The methods according to embodiments of the invention thus enable the calculation time for calculating a target optical surface to be reduced. This in turn enables information such as lens thicknesses to be provided more quickly to an optician without the need for a full optimisation process to be implemented for each lens prescription.
Many further modifications and variations will suggest themselves to those versed in the art upon making reference to the foregoing illustrative embodiments, which are given by way of example only and which are not intended to limit the scope of the invention, that being determined solely by the appended claims. In particular the different features from different embodiments may be interchanged, where appropriate.
Number | Date | Country | Kind |
---|---|---|---|
09305634 | Jun 2009 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2010/059235 | 6/29/2010 | WO | 00 | 12/30/2011 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/000846 | 1/6/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4676610 | Barkan et al. | Jun 1987 | A |
4787733 | Silva | Nov 1988 | A |
6220704 | Mukaiyama et al. | Apr 2001 | B1 |
7033023 | Steele et al. | Apr 2006 | B2 |
7125118 | Kaga | Oct 2006 | B2 |
7159982 | Shinohara et al. | Jan 2007 | B2 |
7175277 | Shinohara et al. | Feb 2007 | B2 |
7604350 | Dursteler Lopez et al. | Oct 2009 | B2 |
7930151 | Haser et al. | Apr 2011 | B2 |
8205345 | Tesseraud | Jun 2012 | B2 |
20050012895 | Steele et al. | Jan 2005 | A1 |
20050146682 | Kaga | Jul 2005 | A1 |
20050157254 | Shinohara et al. | Jul 2005 | A1 |
20070132945 | Haser et al. | Jun 2007 | A1 |
20070225950 | Dursteler Lopez et al. | Sep 2007 | A1 |
20080284978 | Kaga | Nov 2008 | A1 |
20090244480 | De Gaudemaris et al. | Oct 2009 | A1 |
20100149492 | Allione et al. | Jun 2010 | A1 |
20110107884 | Miura et al. | May 2011 | A1 |
20120002161 | Altheimer et al. | Jan 2012 | A1 |
20140049747 | Altheimer et al. | Feb 2014 | A1 |
Number | Date | Country |
---|---|---|
0 295 849 | Dec 1988 | EP |
1 004 918 | May 2000 | EP |
WO 0052517 | Sep 2000 | WO |
WO 0192948 | Dec 2001 | WO |
WO 2007017766 | Feb 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20120101618 A1 | Apr 2012 | US |