Chlorine dioxide is gaining increased acceptance as an alternative to chlorine for the disinfection of drinking water and for oxidation of contaminants in drinking water. Chlorine dioxide has a number of advantages over chlorine. Most specifically, chlorine dioxide:
Chlorine dioxide is not widely used in treatment of waste water because it is more expensive than chlorine, and many of the compelling reasons for using chlorine dioxide in drinking water are less of an issue in waste water. Nevertheless, if the cost of chlorine dioxide could be sufficiently reduced, it might find widespread use in treatment of wastewater and in many other applications.
Chlorine dioxide is an unstable compound. It cannot be stored for extended periods of time. It cannot be effectively transported or piped over significant distances. It must be produced at the point of use. At high partial pressures and/or high temperatures, chlorine dioxide can undergo spontaneous and explosive decomposition. A key element in the design of chlorine dioxide systems is the assurance that conditions leading to explosive decomposition are avoided and/or that the system is designed to contain or safely vent any explosion.
Chlorine dioxide for drinking water treatment in the United States is usually produced by reacting sodium chlorite with chlorine either in aqueous solution such as disclosed in U.S. Pat. No. 4,590,057, or in a gas/solid reaction such as disclosed in U.S. Pat. No. 5,110,580, the specification of which is incorporated herein by reference. These generators, especially those based on gas/solid reaction technology, have resolved most of the issues that have previously slowed the widespread adoption of chlorine dioxide for water treatment as set out in the chapter 12 titled Chlorine Dioxide in the 4th Edition of the Handbook Of Chlorination And Alternative Disinfectants, George Clifford White Consulting Engineer, John Wiley & Sons Inc., N.Y. 1999. Some chlorine dioxide generators combine sodium chlorite, acid, and sodium hypochlorite as disclosed in U.S. Pat. No. 4,247,531. These generators suffer from many of the problems associated with the use of sodium hypochlorite (as discussed below), but they avoid the problems associated with transport and storage of liquefied chlorine gas. Some older generators used in drinking water treatment react a solution of acid with a solution of sodium chlorite to produce chlorine dioxide as set out in the handbook referred to above. This process is inherently less efficient than the chlorine/sodium chlorite reaction and can introduce unwanted byproducts into the drinking water being treated.
Three primary issues remain for drinking water plants that are considering the use of chlorine dioxide:
Many utilities are switching from gaseous chlorine to an aqueous solution of sodium hypochlorite (NaOCl) for disinfection. Sodium hypochlorite, when mixed with water, produces (depending on the pH) OCl− or HOCl− ions which are the same species produced when chlorine gas is added to water. Sodium hypochlorite, however, has several major disadvantages compared to chlorine. Sodium hypochlorite cannot be practically produced and stored in concentrations greater than 12%. This means that shipping costs are high. Aqueous solutions of sodium hypochlorite degrade over time, especially in hot weather. This causes product loss and necessitates regular analysis of the product to assure adequate disinfection. Sodium hypochlorite may also contain the bromate ion as a contaminant. Bromate ion is a closely regulated human carcinogen. Even if the bromate levels in the drinking water resulting from sodium hypochlorite use are below the regulated limits, they may combine with bromate from other sources to exceed the regulatory limits.
In the pulp bleaching industry, chlorine dioxide is produced on a scale much larger than that usually used for drinking water. In the pulp industry, chlorine dioxide is usually produced by treating sodium chlorate with an acid (typically HCl or H2SO4) and/or with reducing agents such as hydrogen peroxide or methanol. Because sodium chlorate is much less expensive than sodium chlorite, the cost of chlorine dioxide produced in the pulp industry is much less than that of the chlorine dioxide produced for drinking water treatment.
Ullman's Encyclopedia 5th Edition Volume A6 states “In continuous industrial processes, the molar ratio of chlorine dioxide to chlorine is nearly 2:1, indicating that the ClO2 efficiency is almost 100% (based on chlorate).” In the following specification this gaseous ratio is expressed as the ratio of chlorine to chlorine dioxide, so the equivalent to the Ullman's quotation is to say that in industrial processes, the molar ratio of chlorine to chlorine dioxide is only slightly more than 0.5. This is a key issue, since most drinking water processes require a ratio of chlorine to chlorine dioxide >2, and sometimes as high as 5 or more.
Heretofore, the techniques used to produce chlorine dioxide for pulp bleaching have been viewed as inappropriate for drinking water (see Chapter 12 of Handbook of Chlorination And Alternative Disinfectants) because:
Attempts have been made to adapt large-scale, chlorate-based, chlorine dioxide generator technology to drinking water treatment. These suffer from safety and toxicity concerns enumerated above.
One of the primary uses of chlorine dioxide is as pre-oxidant to destroy organic precursors to the formation of chlorinated organics before these precursors react with chlorine later in the water treatment process. In the past, it was generally believed that any chlorine contained in the chlorine dioxide would react with the precursors before they were destroyed and would form chlorinated organic compounds.
Co-pending U.S. patent application Ser. No. 09/801,507 filed Mar. 8, 2001, the specification of which is incorporated herein by reference, describes techniques for the beneficial use of a mixture of chlorine and chlorine dioxide for oxidation and disinfection of drinking water without creating high levels of chlorinated organic compounds. This technology enables the use of mixed chlorine/chlorine dioxide product from a metal chlorate/acid generator for oxidation of organic pre-cursors while also minimizing the formation of chlorinated organics in the water. This technology, coupled with the need for chlorine or monochloramines as a residual disinfectant in the water distribution system creates a need for a system that produces on-site a chlorine/chlorine dioxide blend wherein the chlorine/chlorine dioxide ratio >1, and often 3-5 or higher. Acid/chlorate processes described in the prior art do not produce chlorine/chlorine dioxide ratios >1.
The drinking water industry is especially sensitive to contaminants and by-products that may be introduced into the water. Some chlorine dioxide generators carry out the reaction that produces chlorine dioxide in the solution phase wherein some or all of the solution enters the treated water along with the chlorine dioxide product. This introduces the possibility that undesirable or dangerous reaction by-products, (e.g. perchlorate ions), or unreacted reagents (e.g. chlorite or chlorate ions) may be added to the drinking water. Since none of these undesirable ionic species exists in the gas phase, it is advantageous that products of the chlorine dioxide generator be gaseous.
Thus there is a need to provide a safe, cost-effective process for producing a gaseous blend of chlorine and chlorine dioxide with a ratio of chlorine/chlorine dioxide >1.
One of the oldest commercial technologies for producing chlorine dioxide from acid and chlorate involves mixing hydrochloric acid and sodium chlorate solution at elevated temperatures.
In such processes, hydrochloric acid and sodium chlorate participate in two competing reactions:
2NaClO3+4HCl->2ClO2+Cl2+2NaCl+2H2O Reaction 1
and
NaClO3+6HCl->3Cl2+NaCl+3H2O Reaction 2
Because both of these reactions produce chlorine, the product of this process is a mixture of chlorine and chlorine dioxide. In a pulp mill, the two gases are separated in a stripper. Chlorine dioxide is used for bleaching; chlorine, which is considered undesirable, is recycled to the process.
Reaction 1, which produces chlorine dioxide, is favored by low ratios of chloride ion to chlorate ion. The definition of “efficiency” used in describing this and related processes is “the ratio of the chlorate consumed in Reaction 1 divided by the total chlorate consumed in Reactions 1 and 2.” This definition often causes confusion since it does not reflect the percent of chlorate used, or yield as yield is usually stated.
Considering a case where hydrochloric acid is injected in a series of small doses into a fixed volume of chlorate solution, when the first small dose of acid is injected, the chloride/chlorate ratio is approximately zero, and the efficiency is essentially 100% (i.e., all of the chlorate that reacts is consumed in Reaction 1, and the ratio of chlorine/chlorine dioxide of approximately 0.5). Hydrochloric acid/chlorate processes described in the prior art all operate in a range of chloride/chlorate that varies little from these conditions. As Reactions 1 and 2 progress, chloride ions build up in the solution and Reaction 2 (which does not produce chlorine dioxide) is increasingly favored. Therefore, hydrochloric acid/chlorate reactors are usually supplied with large excesses of chlorate and the effluent of the reactor contains high levels of chlorate.
Such techniques are used in the well-known Day-Kesting Process for producing chlorine dioxide. In the Day-Kesting Process, the process is operated so that when sodium chlorate begins to be depleted, and sodium chloride begins to build up, the reacting solution is recycled through an electrolytic cell to convert chloride to chlorate ion. A by-product of this electrolysis is hydrogen. The hydrogen from the electrolytic cell is burned with fresh chlorine and recycled chlorine to produce hydrochloric acid which is returned to the process. A plant utilizing the Day-Kesting process is efficient in terms of chlorine dioxide yield (defined as pounds of chlorine dioxide per pound of consumed chlorate), but it is expensive in terms of capital cost. It is very complex and requires high levels of maintenance.
Canadian Patent 1 1954 77 describes a process (referred to as R5/R6 process) for high efficiency production of chlorine dioxide, wherein a concentrated solution of sodium chlorate and a concentrated solution of hydrochloric acid are continuously added to a reactor. Sodium chloride is continuously crystallized in the reactor and removed as a solid from the reactor. The ratio of chloride to chlorate ions in the reactor is maintained at a very low level because the combination of chloride and chlorate reaches a composition wherein high concentrations of chlorate ions greatly lower the solubility of chloride salts. This process is reported to achieve very high ratios of chlorine dioxide to chlorine in its products. For use in the water treatment industry, this process suffers from two drawbacks, namely:
Another process (referred to as the R2 process) also proceeds according to two competing reactions.
2NaClO3+2NaCl+2H2SO4→2ClO2+Cl2+2Na2SO4+2H2O Reaction 1
NaClO3+5NaCl+3H2SO4→3Cl2+3Na2SO4+3H2O Reaction 2
Typically this process is carried out with a high excess of (sulfuric) acid to maximize reaction 1, and produces a sodium sulfate “waste” stream. In a pulp mill the excess acid can be regenerated, and the sodium sulfate can be integrated into the chemical recovery system. In a drinking water plant, this recovery would be extremely problematic and “chemical recovery” of sodium sulfate would be pointless.
Other processes use reducing agents such as SO2, and methanol to drive the sodium chlorate/sulfuric acid reaction to produce high concentrations of chlorine dioxide with very little chlorine. However, methanol is a toxic, volatile organic chemical which would not be acceptable in a drinking water plant; and S02 is a hazardous liquefied gas which has many of the same hazards as liquefied chlorine.
Another process reacts sodium chlorate with sulfuric acid and hydrogen peroxide. This technology has been tried in drinking water applications, but suffered from safety issues and from concern about the potential to produce high levels of perchlorate ions under certain upset conditions. Also, because oxygen is evolved in this reaction it inherently produces as its product a “foam” which may contain (non-gaseous) un-reacted chlorate ion, as well as other unwanted ionic species, and a very substantial excess of acid, which can upset pH conditions in many waters. Another drawback of this process is that it does not produce chlorine, which is needed in drinking water plants.
Another proposed process uses an aqueous chlorate solution with gaseous anhydrous hydrochloric acid to produce chlorine dioxide for drinking water treatment as described in U.S. Pat. No. 5,204,081. Based upon Patentees data and the disclosure of the Patent, this process produces a chlorine/chlorine dioxide ratio of 0.85. This process suffers from two primary drawbacks:
U.S. Pat. No. 4,372,939 describes an acid/chlorate process wherein the chlorine produced in the reactor is supplemented from an outside source such that it provides sufficient dilution of chlorine dioxide to prevent excursions into the explosive range while reducing the amount of diluent air required for this purpose. This is done to minimize the amount of oxygen in the chlorine stream after chlorine and chlorine dioxide are separated. In this process, it can be calculated from the data presented in the patent that the process produces a chlorine/chlorine dioxide ratio of 0.8, excluding supplemental chlorine that is added from another source.
Canadian Patent 1 195 477 describes operation of the HCl/sodium chlorate reaction at temperatures between 65° C. and 70° C. to maximize the production of chlorine dioxide in reaction 1 versus production of chlorine in reaction 2.
All of the acid/chlorate processes described above produce products with a chlorine/chlorine dioxide ratio <1.
A plug flow reactor is a reactor in which the concentration of reagents is constant across a plane which is a cross section of the reactor and which is perpendicular to the flow of the reacting solution. The concentration of the reagents and products typically varies over the length of the reactor. It is well known to those skilled in the art that a pipe reactor can approximate a plug flow reactor if the pipe has a substantial ratio of length to diameter (L/D), typically >10/1, and if the flow in the pipe is turbulent (either because of flow conditions such as Reynolds number or because the pipe is equipped with static mixers) so that the velocity of the reacting fluid in the direction of the length of the pipe is essentially constant over the cross section of the pipe. Thus, if a fixed volume of reagent liquid flowing along the length of a plug flow reactor is mixed with a given proportion of a second reagent liquid at some point along the length of the reactor, then as the resulting volume of mixed reagents flows along the reactor for a given time, it will react in the same way as if the reagents were mixed within a stationary fixed volume (e.g. in a flask) in the same proportions, for the same time at the same conditions.
In generators designed for the pulp industry, the reaction is carried out over a fairly narrow range of reagent concentrations, and intentionally terminated while much of the chlorate is un-reacted. This is achieved, for example, in a stirred reactor where reagents are continuously added and products are continuously removed at constant concentrations. These reactors are typically vertical vessels (e.g. U.S. Pat. No. 5,458,858). In some embodiments the flow of reacting solution is horizontal (e.g. U.S. Pat. No. 4,851,198) in a circular or spiral pattern. In these reactors, gas is constantly evolving in the liquid as chlorine, chlorine dioxide, and steam. In a vertical vessel, with flow from top to bottom or bottom to top, the evolving bubbles create turbulent mixing. These reactors are therefore back-mixed as opposed to plug flow reactors. In other words, the concentration of the reagents is essentially homogeneous throughout the volume of the vessel. As a result, the reaction is never complete as the reacting solution flows from one vessel to another. This necessitates either very large vessels where the final reaction can approach completion (U.S. Pat. No. 3,502,443) or a large number of vessels or chambers. If the production rate of the reactor must be changed in a stirred reactor, the ratio of chlorine/chlorine dioxide will also change. In a pulp mill, the production rate is intentionally held relatively constant, and the unwanted chlorine contaminant is separated from the desired chlorine dioxide product. In the present invention, the ability to control the chlorine/chlorine dioxide ratio over a wide range of turndown and production rates are key goals.
Thus there is a need to provide a safe cost-effective process for producing water disinfectant/oxidation reactants.
A primary goal of this invention is a relatively simple, controllable system that can safely co-produce chlorine dioxide and chlorine such that the ratio of chlorine/chlorine dioxide is >1 at lower cost than chlorite-based systems and without the need to transport and store large volumes of liquefied chlorine.
The present invention is a method and apparatus for generating a gaseous mixture of chlorine and chlorine dioxide especially for the treatment of drinking water or waste water. Chlorine and chlorine dioxide are produced by reacting, in a controlled manner, an inorganic acid with an alkali metal chlorate. The product mixture can be used as an oxidant and disinfectant for drinking water in accord with the teachings of co-pending U.S. patent application Ser. No. 09/301,507 filed Mar. 8, 2001, or it may be used in non-water applications.
Therefore, in one aspect the present invention is a method for producing a gaseous mixture of chlorine and chlorine dioxide comprising the steps of: establishing a volume of an aqueous solution of sodium chlorate at a temperature between 20° C. and 95° C.; introducing hydrochloric acid at several locations within the volume of the aqueous solution of sodium chlorate, the hydrochloric acid having a temperature between 20° C. and 95° C., permitting the hydrochloric acid to react with the aqueous solution of sodium chlorate, causing bubbles of chlorine dioxide, chlorine and water vapor to rise through the aqueous solution of sodium chlorate, collecting gaseous chlorine dioxide, chlorine and steam in a head space maintained over the volume of the aqueous solution of sodium chlorate; and producing a product stream wherein the ratio of chlorine to chlorine dioxide is >1.
In another aspect, the present invention is a method for producing a mixture of chlorine and chlorine dioxide comprising the steps of: introducing an aqueous solution of an alkali metal chlorate with an inorganic acid into a reactor and permitting at least 90% by weight of the alkali metal chlorate to react with the inorganic acid to produce gaseous chlorine, chlorine dioxide and steam in a gas head space of the reactor; removing the gaseous chlorine, chlorine dioxide and steam from the reactor to produce a product stream wherein the ratio of chlorine to chlorine dioxide is >2.5.
This process may be implemented as 1) a series of injections of acid at intervals of time into a fixed volume of chlorate solution, or it may be implemented as 2) a series of injections of acid into a flowing stream of chlorate solution as the solution flows from one plug flow reactor to another in a series of plug flow reactors, or it may be implemented as 3) a series of injections of acid into a flowing stream of chlorate solution as said stream of chlorate flows along the length of a single plug flow reactor. If the number of injections of the injected reagent, the relative proportions of the two reagents at each injection point, and other parameters such as temperature and pressure are the same, it will be obvious to one skilled in the art that these three methods of implementation will be equivalent in terms of the ratio of acid to chlorate required to consume essentially all of the chlorate, and in terms of the ratio of chlorine/chlorine dioxide produced under these conditions.
In yet another aspect, the present invention is a reactor for generating a gaseous mixture of chlorine dioxide, chlorine and water wherein the ratio of chlorine to chlorine dioxide is >1 by reacting an aqueous solution of an alkali metal chlorate and an inorganic acid comprising: a first horizontally disposed reactor section having a first end adapted to introduce the alkali metal chlorate into the reactor section, a second end of the reactor section having means to impound a volume of the aqueous solution of alkali metal chlorate within the reactor with a gas space above the volume of the aqueous solution of an alkali metal chlorate; means to introduce the inorganic acid at a plurality of locations along at least a portion of the length of the volume of the aqueous solution of an alkali metal chlorate; means to withdraw gaseous reactant products from the gas space; and collection means at the second end of the reactor section to collect waste liquid from the reactor section.
In a further aspect, the present invention is a reactor for generating a gaseous mixture of chlorine dioxide, chlorine and water wherein the ratio of chlorine to chlorine dioxide >3 by reacting an aqueous solution of an alkali metal chlorate and an inorganic acid comprising: a first horizontally disposed reactor section having a first end adapted to introduce the inorganic acid into the reactor section, a second end of the reactor section having means to impound a volume of the inorganic acid within the reactor with a gas space above the volume of the acid; means to introduce an alkali metal chlorate at a plurality of locations along at least a portion of the length of the volume of the inorganic acid; means to withdraw gaseous reactant products from the gas space; and collection means at the second end of the reactor section to collect waste liquid from the reactor section.
These processes may be implemented as a series of injections of the primary reagent at intervals of time into a fixed volume of the secondary reagent, or they may be implemented as a series of injections of primary reagent into a flowing stream of the secondary reagent as the secondary reagent flows from one plug flow reactor to another in a series of plug flow reactors, or they may be implemented as a series of injections of primary reagent into a flowing stream of secondary reagent as said stream of secondary reagent flows along the length of a single plug flow reactor. It will be obvious to one skilled in the art that these three methods of implementation will be equivalent in terms of the ratio of acid to chlorate required to consume essentially all of the chlorate, and in terms of the ratio of chlorine/chlorine dioxide produced under the given conditions. For this reason, experiments can be conducted in a fixed volume of one reagent with multiple injections of the other reagent at intervals, and the data collected in this manner may be used to design continuous processes.
One goal of the process and apparatus of the present invention is to produce both chlorine and chlorine dioxide, and to optimize the production of the combined product stream to fit the needs of the user in non-pulp and paper applications, especially water treatment where the ratio of chlorine required to chlorine dioxide required ranges from 2:1 to 5:1 or more.
Another goal of the process and apparatus of the present invention is to minimize the production of problematic waste materials such as highly acidic streams, sodium sulfate, or waste streams containing substantial amounts of unreacted chlorate ions.
These goals are achieved by mixing the reagents in approximately stoichiometric ratios to complete both the reaction that favors production of chlorine dioxide and the competing reaction that produces chlorine but no chlorine dioxide to produce both chlorine and chlorine dioxide.
In this sense, “stoichiometric ratio” is defined as the ratio of reagents that results in essentially complete conversion of chlorate and acid to chlorine and chlorine dioxide without a substantial amount of acid or chlorate in the waste stream. Since this patent application describes various operating modes for producing various ratios of chlorine to chlorine dioxide, experimentation is required to determine the stoichiometric ratio for a given operating mode. One approach to this experimentation is detailed herein. However, the appropriate stoichiometric ratios for four (4) different operating modes are shown in Table 1.
In various situations, different ratios of chlorine to chlorine dioxide may be desirable. Since different applications and different water chemistries demand different ratios of chlorine to chlorine dioxide, it is important to be able to adjust the ratio of these gases. This can be achieved in 2 ways:
The experimental procedure for determining the operating conditions in various operating modes is set out herein.
One innovative aspect of the current invention, regardless of the operating mode, is to run the reaction over its entire range, consuming essentially all of the chlorate and all of the acid, with the intent of producing both chlorine and chlorine dioxide. The ratio of chlorine to chlorine dioxide can be controlled over a wide range through various techniques disclosed herein. In one preferred embodiment of the present invention, where increments of acid are injected into chlorate solution, the chlorine/chlorine dioxide ratio that could be achieved is about 2.0-2.5. For many applications, that is ideal. For other applications, it is desirable to increase chlorine production even farther. In an alternate preferred embodiment of the invention the maximum chlorine to chlorine dioxide ratio that can be achieved by injecting sodium chlorate solution into hydrochloric acid is approximately 6.7. In both preferred embodiments, the reagents are added in approximately stoichiometric ratios (though the ratios differ for different operating modes as shown in Table 1) and the reactions proceed approximately to completion where essentially all of both reagents are completely consumed. The stoichiometric ratios are determined as described elsewhere herein.
An experimental apparatus for determining the process design and reactor design for a given operating mode is shown in
Data taken from two operating runs in the experimental apparatus is shown in Table 1. The data from Run # 1 in Table 1 is displayed graphically in
Referring to
From the graph presented in
The following is a description of how one skilled in the art would translate the results of experiments carried out in the apparatus of
A plug flow reactor is a reactor in which the concentration of reagents is constant across a plane which is a cross section of the reactor and which is perpendicular to the flow of the reacting solution. The concentration of the reagents and products varies over the length of the reactor.
Referring to
Reactor 10 is disposed horizontally so that reactants introduced through inlet conduit 18 flow substantially in a plug flow through the reactor 10 in a direction shown by arrow 48. As the reactants flow through the reactor 10, bubbles of gas, generated by the reaction of the inorganic acid and the alkali metal chlorate, being gas phase products of chlorine, chlorine dioxide and steam, rise vertically through the liquid reactant solution bath 50 resulting in gaseous reactants being accumulated in head space 33 in reactor 10. The gaseous reactants shown by arrows 34, 36 and 38 consisting of chlorine, chlorine dioxide and steam are then removed by conduit 32 from reactor 10 for use. Reactant bubbles 49 move in the direction shown by arrows 51 in
Referring to
In a preferred embodiment of the invention (
Operation in a plug-flow mode allows each stage of the reaction to approach completion (where injected reagent is consumed, but the flowing reagent is not yet consumed) before the solution enters the following stage. In the present invention, the reactors are sized so that, at the maximum production rate, each stage of the reaction is essentially complete (i.e., all of the injected reagent is consumed) when the solution exits each stage of the process.
Referring to
Reactor portion 302 contains a product removal conduit 328 which in turn is connected to a vacuum control valve 330 which in turn communicates via conduit 332 to an injector 334 so that water as represented by arrow 336 can be introduced into the injector to remove a mixture of water, chlorine dioxide and chlorine represented by arrow 338. An inventory of alkali metal chlorate e.g. NaClO3 is maintained in a suitable vessel 340 which receives makeup, represented by arrow 342, from a solution tank (not shown) through conduit 344 and liquid level control valve 336. Alkali metal chlorate solution as needed is withdrawn from vessel 340 via conduit 398 and passes in sequence through a flow meter 350 temperature control coil 352 with associated temperature controller 354 and conduit 308 for introduction into reactor portion 302. In a like manner, a solution of an inorganic acid is maintained in a storage vessel 360 which is connected to a inorganic acid storage vessel represented by arrow 362, the level of the inorganic acid in vessel 360 controlled by a liquid level control valve 364 as is well known in the art. Inorganic acid, e.g. HCl, is withdrawn by conduit 366 and passes through flow meter 368 temperature control device 370 with associated temperature controller 372 for introduction into reactor portion 302 via conduit 310.
Both the sodium chlorate and hydrochloric acid solutions can be heated to temperature of between 50° F. and 95° F. to promote reaction and the generation of a product stream consisting of chlorine dioxide, chlorine and steam, in gaseous form in the head space 303 of reactor portion 302, in accord with the invention. Utilizing an apparatus of
Set forth in Table 1 below are data taken from four runs utilizing the experimental setup of
It will be clear to one skilled in the art that the reaction in one injection stage of the laboratory setup shown in
One skilled in the art will also clearly see that a series of reactor segments is equivalent to one continuous plug flow pipe reactor with acid injected at points such that the retention time between injection points is equal to the retention time in each segment of the multi-segment equivalent.
Since essentially no chlorine dioxide is produced in the 7th injection, data such as that shown in
In
As an example, consider column number 1 from Table 1. In this experiment, acid is injected in six (6) steps into sodium chlorate solution. To duplicate this in a continuous reactor or a series of reactors, one skilled in the art would proceed according to the following steps:
Many water treatment plants have highly variable production rates. Seasonal fluctuations in production are almost universal, and diurnal production fluctuations are common. Although to some extent, fluctuations are reduced by storage and release of finished water, fluctuations of 200% over the period of a day are not uncommon. In some cases production fluctuations are even larger, and may occur rapidly. It is therefore important that a chlorine dioxide generator intended for water treatment be capable of turndown over a wide range without readjustment or loss of efficiency.
In embodiments of the invention characterized by continuous production in plug flow reactors, the solution flows from one reactor to the next, or down the length of a continuous pipe reactor, and as the concentration of chlorate ions is depleted and the concentration of chloride ions increases.
As the liquid solution flows down the length of the plug flow reactor after an injection, the concentration of reagents continues to change until one of the reagents is essentially totally consumed, and no further reaction occurs. If the length of the reactor is sufficient, the liquid continues to flow beyond the point where the reaction is completed, but no further reaction occurs. If the process is designed so that the ratio of the raw materials (e.g. HCl/chlorate solution) injected into each section is constant and the production rate is controlled by the rate at which reagents are added to the reactor in this proportion, then the ratio of products (chlorine/chlorine dioxide) produced in that reactor segment will be constant even though production rate changes, and the amount of products produced per mole of reagent will be constant, so long as the reactor is sized so that the reaction is essentially complete before the reacting solution exits each stage of the reactor.
It is well known that under certain conditions chlorine dioxide can decompose spontaneously with explosive force. It is well known that such explosions occur from time to time in the pulp industry. In most chlorine dioxide generators, the tendency to explode is controlled by controlling the partial pressure of the chlorine dioxide. In various processes, this is accomplished by a combination of dilution with other gases such as air, chlorine or steam and by operating the process under vacuum. In at least one process, the tendency to explosion is limited by removing the chlorine dioxide very rapidly from the chamber in which it is produced. All of these approaches to minimizing explosions have their limitations.
Various studies recommend a maximum chlorine dioxide partial pressure from 76 mm fig to 150 mm Hg in order to avoid explosive conditions. Operation under vacuum is an effective technique for maintaining chlorine dioxide below the explosive range. However, without other ways for reducing the partial pressure of chlorine, a high level of vacuum is required for this approach alone to work. With vacuum alone, the intense vacuum requires energy intensive apparatus and expensive vacuum vessels. Use of this approach alone can result in explosion if the vacuum fails.
Dilution of chlorine dioxide with chlorine is also effective in eliminating explosions. However, the ratio of chlorine to chlorine dioxide produced in pulp industry generators without gas recirculation is far too low to eliminate explosions. In addition, traditionally, it is desirable to produce chlorine dioxide with minimal amounts of chlorine. Depending on the operating mode, in the current invention, dilution with chlorine alone may be adequate to prevent explosion. The two following paragraphs were out of place. The first was a repetition of paragraph 22 and I removed it. The second I moved to the end of the specification just before the claims.
Dilution with steam is also an effective way to prevent explosions. However, the ratio of steam to chlorine dioxide needed to effectively control explosions can only be achieved through a combination of vacuum and elevated temperature. If vacuum is lost, and/or the temperature drops during process upset, a dangerous concentration of chlorine dioxide may occur.
Dilution with air is also effective for controlling explosions. However, in many cases the chlorine dioxide must be separated from the air in order for it to be useful in its application. In other cases handling large volumes of air is problematic in the application of chlorine dioxide.
Table 2 shows the temperature and pressure increase that results from an explosion of chlorine/chlorine dioxide mixtures at different ratios. This is calculated from well known thermodynamic data. The minimum chlorine/chlorine dioxide ratio that can be produced by the acid/chlorate reaction without a reducing agent is 0.5:1. (or 67% ClO2) assuming that all of the chlorate is consumed in Reaction 1. Therefore the maximum pressure increase possible would be about 112 psi. The present invention is to prevent chlorine dioxide explosions by intentionally producing a higher level of Cl2 than is typical in the pulp and paper industry, by diluting the chlorine dioxide with steam and chlorine produced in the reactor by operation under vacuum, and by immediately dissolving/condensing the chlorine/chlorine dioxide/steam mixture in flowing water.
Also, to assure safety, all components of the generator that might contain chlorine dioxide should be designed to contain the maximum pressure rise that could occur if vacuum and dilution failed. In practice, it would be advisable to design all components to accommodate a significantly higher pressure to allow for the effects of shock waves, provide for the remote possibility that pure chlorine dioxide could be produced, and provide a margin for safety. The horizontal pipe design proposed herein can readily accommodate this pressure rating, while the large diameter vessels used in pulp industry generators would be extremely expensive to achieve such a pressure rating.
As set forth in the co-pending application referred to above, the product stream consisting of chlorine dioxide, chlorine and steam can be utilized to provide effective treatment of drinking water. The product stream can be introduced directly into the water for treatment or can be subjected to separation and further reaction in accord with the methods set out in our co-pending application.
Having thus described our invention with respect to several embodiments, what we desire to be secured by Letters Patent of the United States is set forth in the appended claims.
This application is a continuation-in-part of U.S. patent application Ser. No. 10/051,995, filed Jan. 18, 2002, which is incorporated by reference as if fully set forth.
Number | Date | Country | |
---|---|---|---|
Parent | 10051995 | Jan 2002 | US |
Child | 11733898 | Apr 2007 | US |