This application claims priority from EP Patent Application No. 16202433.5, which was filed on Dec. 6, 2016, and from EP Patent Application No. 15198778.1, which was filed on Dec. 9, 2015, which are each incorporated herein in its entirety by this reference thereto.
The present invention generally relates to the field of sensor technology, in particular to the field of sensor technology provided in an object for sitting or lying on. Embodiments relate to an apparatus and a method for generating output signals on the basis of sensors signals of sensor arranged inside a seat or a bed and on the basis of which a person's posture and/or movement is determined.
Conventional technology knows of various approaches to generating output signals on the basis of sensors arranged inside an object for sitting or lying on.
DE 10 2013 215 095 A1 describes a method of avoiding impairment to the health of a vehicle occupant while utilizing vehicle dynamics. A seating surface of a seat on which a passenger is sitting has pressure sensors provided therein which determine if and with which intensity a passenger leans to the left or to the right when a vehicle is driving around bends. In addition, a display is provided for representing a virtual object whose position on the display is changed accordingly while the vehicle is driving around bends. As a function of the force exerted on one of the sensors by the passenger, a movement of the virtual element on the display is counteracted, so that the passenger is encouraged to move. This approach is disadvantageous since the generated control signal serves exclusively to counteract any movements of a virtual object without describing general utilization with different terminal devices, games or programs.
US 2011/0086747 A1 describes a chair which is connectable to a game console and with the aid of which a game is controlled via movements of the arm, the torso, the legs and the fingers of a user of the chair. The movements of corresponding elements of the chair come up against a resistance, so that the games also involve physical exercise on the part of the user. The disadvantage of this approach consists in that it involves utilization of additional mechanical elements.
U.S. Pat. No. 6,392,550 B1 describes a method and an apparatus for monitoring the alertness of the driver of a vehicle. To this end, several pressure sensors are arranged inside a vehicle seat and may be used for monitoring a driver's posture. As a function of a detected posture which indicates tiredness, an alert is output. The disadvantage of this approach consists in that a self-contained system is provided which merely results in a driver to be alarmed; control of further devices is not possible.
Moreover, publications in the field of age-appropriate assistance systems for a healthy and independent lifestyle have been known. For example, the project “GEWOS—Gesund wohnen mit Stil” (roughly: “living in style in a healthy manner”) (see www.gewos.org) is known which originates from a funding scheme by the German Federal Ministry of Education and Research (Bundesministerium für Bildung and Forschung der Bundesrepublik Deutschland, BMBF). A socio-technical system includes an easy chair comprising sensors and actuators, an internet-based platform, a television set, further interaction elements and matching services. A user is encouraged to make a movement, and the easy chair exhibits strain gages at different positions by means of which various games for mobilization and strengthening may be performed. For example, eight areas of the easy chair may be pressed by muscle power, either in a specific sequence for memory training purposes or as fast as possible for the purpose of training reaction and coordination. Moreover, further sensors may be built in which determine the user's posture and vital signs, for example the weight and the balance, by means of the strain gages, the heart rate by means of two EKG electrodes integrated into the armrests, and oxygen saturation by means of an O2 sensor. The disadvantage of this approach consists in that the easy chair is elaborately designed and that it is only with difficulty that the various sensors can be integrated into various types of seats. Moreover, the signal quality highly depends on the structure of the seat. There is no processing of the measured data into control signals.
A yet further approach is described by the BMBF's research project akrobatik@home (see www.iis.fraunhofer.de/de/ff/med/proj/sensorik/akrobatik@home.html). Evidence-based training support for encouraging physical activity in physically challenged persons on a daily basis is provided. The system includes a shoulder cushion, which has three sensor nodes of nine-axes inertial sensors integrated therein, and a pressure sensor mat. The data obtained is wirelessly transmitted to a tablet computer, which visualizes a training game. What is disadvantageous about this implementation is the requirement of additional hardware in the form of the shoulder cushion with integrated inertial sensors.
According to an embodiment, an apparatus may have: an object for sitting or lying on; a plurality of sensors arranged within the object for sitting or lying on; and a signal processing unit connected to the sensors and configured to generate, on the basis of the sensor signals, an output signal which describes a posture and/or a movement of a person using the an object for sitting or lying on, the generated output signal indicating a center of gravity of the person and/or a physiological process occurring in said person.
According to another embodiment, an apparatus may have: an object for sitting or lying on; a plurality of capacitive proximity sensors or touch sensors arranged within the object for sitting or lying on; and a signal processing unit connected to the sensors and configured to generate, on the basis of the sensor signals, an output signal which describes a pressure distribution and/or a posture and/or a movement of a person using the an object for sitting or lying on.
According to another embodiment, a method may have the steps of: detecting sensor signals from a plurality of sensors arranged within an object for sitting or lying on; and on the basis of the sensor signals, generating an output signal which describes a posture and/or a movement of a person using the object for sitting or lying on, wherein the generated output signal indicates a center of gravity of the person and/or a physiological process occurring in the person.
According to another embodiment, a non-transitory digital storage medium may have a computer program stored thereon to perform the inventive method.
The present invention provides an apparatus comprising an object for sitting or lying on, a plurality of sensors arranged within the object for sitting or lying on, and a signal processing unit connected to the sensors and configured to generate, on the basis of the sensor signals, an output signal which describes a posture and/or a movement of a person using the an object for sitting or lying on, the generated output signal indicating a center of gravity of the person and/or a physiological process occurring in said person.
The inventive approach is advantageous since in the course of a person's seated and/or seated-like states or activities, both simple and complex postures, changes in posture and/or movements may be detected. An output signal, e.g. an electrical signal, is generated which contains, on the basis of the person's posture, change in posture and/or movement, information about a center of gravity, about a physiological process, or about a position and/or a movement of the person. In this manner, a control signal, e.g., for controlling further devices, may be generated in a simple manner according to embodiments.
According to embodiments provision is made for using the control signals to control external devices or to control a drive of the object for sitting or lying on. By shifting the center of gravity due to a movement performed by the person, control may be brought about, for example, either continuously variable control or step-by-step control. According to other embodiments, it is possible to use the physiological signal in addition or as an alternative to determining the center of gravity, for assessing a state that the person who uses the object for sitting or lying on is currently in, e.g. the person's breathing or pulse. Depending on the person's detected state, a suitable action may then be performed. If one of the parameters has reached a threshold value, an alert may be output; for example, when breathing is monitored, a situation of apnea may be detected which is resolved by an acoustic signal waking the person up. Moreover, an emergency may be signaled to a rescue center who will then send help. According to yet other embodiments, a position of the person may additionally or alternatively be monitored. If a position does not change over a relatively long time period, a movement of the object for sitting or lying on may be effected, for example, so as to in turn cause the person to move, so that remaining in the same posture for a relatively long time is avoided.
The present invention further provides an apparatus comprising an object for sitting or lying on, a plurality of capacitive proximity sensors or touch sensors arranged within the object for sitting or lying on, and a signal processing unit connected to the sensors and configured to generate, on the basis of the sensor signals, an output signal which describes a pressure distribution and/or a posture and/or a movement of a person using the an object for sitting or lying on.
Embodiments of the present invention will be detailed subsequently referring to the appended drawings, in which:
In the following description of the advantageous embodiments, elements which are identical or have identical actions will be provided with identical reference numerals.
According to embodiments, the signal processing unit 108 is configured such that instantaneous load distribution is determined on the basis of the values of the sensor signals of the pressure sensors. In other embodiments employing touch sensors, a determination is performed, on the basis of the values of the sensor signals of the touch sensors, in terms of which parts of the seating and/or lying surface are occupied by the person. On the basis of said sensor signals, an instantaneous center of gravity of the person will then be determined. According to further embodiments, this may be performed by means of vectorial interpretation of the sensor signals with regard to their measuring position or by means of a neuronal network by using learned data sets. In yet other embodiments, it is also possible to infer the body's silhouette and, thus, the seating contact surface (static case) and/or movements (dynamic case) of the person from the sensor signals.
According to embodiments, the apparatus 100 further includes an antenna 114, a terminal 116 and/or an internal controller 118. According to embodiments, individual or all of the above-mentioned elements, namely the antenna 114, the terminal 116 and the controller 118, are provided. The antenna 114 serves to wirelessly communicate the output signal 112 to external units. The terminal 116 serves for connection with a plug for transmitting the output signal 112 to further elements or external units via a wired connection. The internal controller 118 is connected to a motor 120. The controller 118 generates the control signals 122 for the motor 120 independently of the output signal 112, which motor 120, for its part, changes positions of parts of the object for sitting or lying on 102, as is schematically indicated by the arrow 124.
As was mentioned above, the inventive approach serves to detect, on the basis of the sensor signals, a posture/movement of a person using the object for sitting or lying on so as to obtain therefrom a center of gravity and/or a change in the center of gravity, a position and/or a physiological signal relating to the person which will then be output by the signal processing unit in the form of the output signal 112.
According to embodiments, the center-of-gravity signal 112a is used as a control signal for various applications. In a first embodiment, the center-of-gravity signal 112a is supplied to a device 132, which is a television set or any other multimedia device comprising a display 132a, for example. According to embodiments, the further device 132 may also be arranged within a vehicle, e.g. a car or a motorcycle, an airplane or a ship. According to further embodiments, the further device 132 may include a PC mouse, a pair of VR glasses or a joystick. The display 132a presents various entries which may be selected as a function of the center of gravity.
The approach described may be used, e.g., in TV sets, for changing programs, setting the volume or changing other menu settings. In other embodiments, the device 132 may be part of a display device of a different device, or third-party equipment, 134. The equipment 134 is connected to the display 132 via a controller 136, so that a setting of the third-party equipment 134 is changed as a function of a menu point selected via the display 132a. For example, the means 132 may be a computer which is connected to various household appliances 134, for example radio equipment, an air-conditioning unit, a household appliance or the like, via the controller 136.
According to a further embodiment, the control signal 112a may be employed in a Windows-based environment, as is schematically depicted by the display 138. The display 138 is a computer monitor or the display of a mobile terminal device, for example. By shifting the center of gravity, a display element, for example a cursor arrow, is moved. The display 138 may be part of a computer system, so that the computer may be controlled accordingly. As was described above, via the corresponding controller 136 it is alternatively also possible to control, via the computer and/or the display, third-party equipment 134 connected thereto. According to embodiments, a game controller for PCs, consoles, an auto media system, small (mobile) appliances and the like are provided, in particular.
Yet another implementation relates to the generation of control signals by the above-described controller 118, so that depending on a shift in the center of gravity, different parts of the seat or of the bed 102, for example parts of the seating/lying surface or of the rest, may be adjusted in line with the shift in the center of gravity. Additionally or alternatively, it is also possible to directly control the above-mentioned third-party equipment via the controller 118, again via a corresponding shift in the center of gravity. The above-mentioned third-party equipment may be multimedia equipment, telephone terminals or game consoles, for example.
According to further embodiments, the signal processing unit 108 generates the physiological signal 112b. For example, on the basis of continuously captured sensor signals, a position of the person on the contact surface 104 is detected and/or one or more characteristic, numerical parameters of a physiological process are generated. According to further embodiments, a movement pattern may additionally or alternatively be detected and analyzed to enable ergonomic evaluation. The signal 112b may be supplied to a monitoring unit 140, which is either part of the inventive apparatus or is arranged at a distance from the inventive apparatus, for example at a central location inside a house or at a rescue center. The signal 112b may be transmitted to the monitoring unit 140, e.g., via a radio connection by means of the above-mentioned antenna 114 or via a wired connection, e.g. via the public fixed network, via the terminal 116. The monitoring unit may monitor the position, indicated via the signal 112a, of the person on the contact surface so as to output a signal 140a to the controller 118 if a certain amount of time has passed without any change in position taking place, so as to cause individual or several parts of the object for sitting or lying on 102 to be adjusted. Alternatively, a trigger signal 140b may be generated so as to output an alarm signal or an warning signal to the user of the means 102 via an alarm generator 142.
If the output signal 112 includes a physiological signal, it may be a respiration signal, a pulse signal or a ballistocardiogram. The signal processing unit 108 generates an output signal 112a indicating a respiratory rate, a pulse rate, an inspiration time, an expiration time and/or a relative depth of breathing, said signal being monitored by the monitoring unit 140. Depending on the values received, for example when a specific threshold of a parameter is reached, the monitoring unit 140 may generate the signal 140b for the alarm generator 142. For example in the event of sleep apnea, an acoustic signal may be output in order to wake up the user and thus to interrupt the state of apnea. Alternatively, provision may be made for generating an alarm signal 140c and to forward same to a rescue center 144, so that corresponding rescue workers may be alerted by the rescue center to go to the person's rescue. According to embodiments, the detected physiological information may be embedded into the signal forwarded to the rescue center (eCall alert), so that in addition to the actual signal, there are already information provided about the emergency and the state of the patient at the point of alerting, so that one may react accordingly and/or so that the rescue team may make corresponding preparations.
According to the invention, an approach is thus taught wherein a change in the signals measured by the sensors, which change is caused by the posture and/or movement of the user, is evaluated. By means of various signal processing techniques, the instantaneous center of gravity is determined from the instantaneous load distribution so as to be used as a continuously variable control signal, by analogy with a joystick of a game pad, or as a binary control signal as a function of one or more threshold values, by analogy with a D-Pad, e.g. of a computer keyboard.
The control signals thus obtained may be used, e.g., for multimedia or game control purposes, and may be transmitted to a terminal device, e.g. a specific multimedia system, a computer and/or any other feedback system, in a wireless manner—e.g. by means of Bluetooth Low Energy (BLE)—or in a wired, or tethered, manner.
The inventive approach has several advantages, some of which include the following:
Embodiments of the invention thus provide an approach to detecting simple and complex postures and/or movements as well as changes in the posture and/or movement by means of an object to sit on or an object to lie on for describing interpreting modalities of posture and/or movement and/or for controlling events by means of sensor technologies. Embodiments of the invention have been employed in the following technical fields of application, for example:
So far, embodiments have been described wherein the output signal generated by the inventive apparatus indicates a center of gravity of the person and/or a physiological process occurring in the person. The present invention is not limited thereto. According to other embodiments, an apparatus is provided which includes an object for sitting or lying on and a plurality of capacities proximity sensors or touch sensors arranged within the object for sitting or lying on. In this embodiment, provision is made for the signal processing unit connected to the sensors to generate, on the basis of the sensor signals, an output signal describing a pressure distribution and/or a posture and/or a movement of a person using the object for sitting or lying on. According to further embodiments, provision may further be made for the further information to be obtained and used on the basis of this output signal, as was described above.
Even though some aspects have been described within the context of an apparatus, it is understood that said aspects also represent a description of the corresponding method, so that a block or a structural component of an apparatus is also to be understood as a corresponding method step or as a feature of a method step. By analogy therewith, aspects that have been described in connection with or as a method step also represent a description of a corresponding block or detail or feature of a corresponding apparatus.
Depending on specific implementation requirements, embodiments of the invention may be implemented in hardware or in software. Implementation may be effected while using a digital storage medium, for example a floppy disc, a DVD, a Blu-ray disc, a CD, a ROM, a PROM, an EPROM, an EEPROM or a FLASH memory, a hard disc or any other magnetic or optical memory which has electronically readable control signals stored thereon which may cooperate, or actually do cooperate, with a programmable computer system such that the respective method is performed. This is why the digital storage medium may be computer-readable. Some embodiments in accordance with the invention thus comprise a data carrier which comprises electronically readable control signals that are capable of cooperating with a programmable computer system such that any of the methods described herein is performed.
Generally, embodiments of the present invention may be implemented as a computer program product having a program code, the program code being effective to perform any of the methods when the computer program product runs on a computer. The program code may also be stored on a machine-readable carrier, for example.
Other embodiments include the computer program for performing any of the methods described herein, said computer program being stored on a machine-readable carrier.
In other words, an embodiment of the inventive method thus is a computer program which has a program code for performing any of the methods described herein, when the computer program runs on a computer or a microcontroller. A further embodiment of the inventive methods thus is a data carrier (or a digital storage medium or a computer-readable medium) on which the computer program for performing any of the methods described herein is recorded.
A further embodiment of the inventive method thus is a data stream or a sequence of signals representing the computer program for performing any of the methods described herein. The data stream or the sequence of signals may be configured, for example, to be transferred via a data communication link, for example via the internet.
A further embodiment includes a processing means, for example a computer or a programmable logic device, configured or adapted to perform any of the methods described herein.
A further embodiment includes a computer on which the computer program for performing any of the methods described herein is installed.
In some embodiments, a programmable logic device (for example a field-programmable gate array, an FPGA) may be used for performing some or all of the functionalities of the methods described herein. In some embodiments, a field-programmable gate array may cooperate with a microprocessor to perform any of the methods described herein. Generally, the methods are performed, in some embodiments, by any hardware device. Said hardware device may be any universally applicable hardware such as a computer processor (CPU), or may be a hardware specific to the method, such as an ASIC.
While this invention has been described in terms of several embodiments, there are alterations, permutations, and equivalents which fall within the scope of this invention. It should also be noted that there are many alternative ways of implementing the methods and compositions of the present invention. It is therefore intended that the following appended claims be interpreted as including all such alterations, permutations and equivalents as fall within the true spirit and scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
15198778.1 | Dec 2015 | EP | regional |
16202433.5 | Dec 2016 | EP | regional |