1. Field of the Invention
The present invention relates to a conical disk array for a belt-driven transmission, in particular a CVT transmission, having a set of conical friction disks on the input side and a set of conical friction disks on the power take-off side, and which are coupled to each other by an endless torque-transmitting means to transmit torque. Furthermore, the present invention relates to a grinding device for grinding a friction surface structure of a friction disk of a conical disk array having at least one driven friction disk. In addition, the present invention also relates to a method for producing a friction surface structure of a friction disk of a conical disk array.
2. Description of the Related Art
Automatic transmissions in the form of belt-driven conical-pulley transmissions are sufficiently known in the field of automotive engineering. Continuously variable transmissions of that type have a variable speed drive unit, which usually includes a conical disk array that includes a set of conical friction disks on the input side and a set of conical friction disks on the power take-off side. The disks are coupled to each other by an endless torque-transmitting means, for example a plate-link chain, to transmit torque.
The endless torque-transmitting means running between the friction disk sets is pressed against a fixed friction disk of a friction disk set by a movable friction disk, in order to enable the transmission of torque. Moving the movable friction disk axially relative to the fixed friction disk changes the running radius of the endless torque-transmitting means, so that the transmission ratio in the belt-driven transmission is continuously variable.
The friction disks have a friction disk surface on their sides facing the endless torque-transmitting means. The friction disk surface has a specific friction surface structure, or a ground texture with ground grooves. The ground grooves run coaxially to each other. It has been found that with such a friction disk surface on the friction disk sets, an approximately constant coefficient of friction is produced between the friction disk surface and the endless torque-transmitting means, which reduces the life of the components and degrades the efficiency of the belt-driven transmission.
An object of the present invention is to provide a conical disk array for a belt-driven transmission of the type identified at the outset, with which the service life of the transmission can be extended and the efficiency can be improved.
The object is achieved in accordance with the invention with a conical disk array for a belt-driven transmission, in particular for a CVT transmission, having a set of conical friction disks on the input side and a set of conical friction disks on the power take-off side that are coupled to each other by an endless torque-transmitting means to transmit torque. At least one friction disk of the conical friction disk sets has a friction surface structure with ground grooves that are not coaxial to each other. In that way a directional, non-coaxial friction surface structure is provided, through which different coefficients of friction act on the chain pin of a plate-link chain of the endless torque-transmitting means as it runs through the conical friction disk set, depending upon the current direction of slippage. Thus, a constant coefficient of friction is not achieved in the direction of slippage. The result is that the force pattern is harmonized, causing the peaks of force and of friction power to be reduced, in particular at the exit from the conical friction disk set. As a result, the wear resistance of the conical disk array is increased overall and the power loss at the frictional contact between the friction disks and the endless torque-transmitting means is reduced. Through reduction in power loss, the overall efficiency of the belt-driven transmission is further increased.
In an advantageous embodiment of the present invention, provision can be made for the ground grooves on the friction disk surface of each friction disk to run at an angle of from about 30° to about 60°, relative to the radial direction of the disk. Other angles or orientations of the ground grooves are also possible. The indicated angular range has, however, proven to be especially advantageous.
In accordance with an especially preferred embodiment of the present invention, provision can be made for the ground grooves of the friction surface structure of each friction disk to have an approximately spiral form, or the like. That form has proven to be especially advantageous, since with that friction surface structure the pressure requirement for pressing the endless torque-transmitting means against the friction disk is reduced, and as a result the efficiency is increased, because the friction power is not only redistributed, but a reduction of the losses can be achieved. In particular, an angle of inclination of the pattern of the ground grooves of about 45° can be especially advantageous.
The friction disks of the conical disk array in accordance with the invention can preferably have a friction surface structure with the ground grooves having a somewhat wavy or trench-like pattern in cross section. With that provided pattern relating to the depth of grinding, ridge crests and valleys can be formed along the friction surface structure, which provide the different coefficients of friction on the friction surface. At the same time, that brings about a relatively low coefficient of friction transverse to the individual ground grooves, since lubricant is carried along from the individual valleys to the ridge crests during contact between the endless torque-transmitting means and the friction surface structure. A relatively high coefficient of friction will result along a ground groove, i.e., along a ridge crest, since mixed friction occurs there.
Because the friction surface structure on the friction disks of the conical disk array in accordance with the invention has a trench-like or undulating structure when viewed in cross section, which is neither purely circumferential nor purely radial in its orientation, the result is the advantageous harmonization of the force pattern because of the formation of different coefficients of friction depending upon the current direction of slippage. Other friction surface structures on the friction disks are also conceivable.
The object of the invention is also achieved by a grinding device for grinding friction surface structures of friction disks of a conical disk array by at least one driven grinding wheel, wherein the axis of rotation of the grinding wheel and the axis of rotation of the friction disk to be ground are skewed in their orientation to each other.
Because of that skewed orientation between the axes of rotation of the grinding wheel and the friction disk to be machined, the result is the previously described and especially advantageous friction surface structure on the respective machined friction disks of the conical disk array. Because of the skewed orientation of the axes of rotation there is no point of intersection of the axes of rotation, but only a minimal separation.
The arrangement possibilities are many and varied. For example, it can be provided that the axis of rotation of the grinding wheel is situated ahead of the friction disk to be ground, in the axial direction. It is also possible for the grinding wheel to be situated behind the friction disk to be machined, in the axial direction. It is also possible to achieve other arrangement options with the skewed alignment of the two axes of rotation, in order to further optimize the production or grinding of the friction surfaces on the friction disks.
With the grinding device in accordance with the invention, a preferred embodiment can provide a specially designed grinding wheel surface of the grinding wheel in coordination with the skewed arrangement. It has been found that an angle between the inclined grinding wheel surface and the ground surface of the grinding wheel should be about 10° to 30°, for example. Other angles of inclination of the grinding wheel surface are also possible.
Finally, the object of the invention is also achieved by a method for producing a friction surface structure of a friction disk of a conical disk array with a grinding device with which a rotating friction disk is machined by a rotating grinding wheel in such a way that a non-coaxially-oriented friction surface structure is formed as the friction surface. Thus, exactly the previously described, especially advantageous friction surface structure can be produced on the respective friction disks of the conical disk array for a belt-driven transmission, by the method proposed in accordance with the invention.
Preferably, the method is carried out with the grinding device already described. However, other grinding devices can also be employed to carry out the procedure. Within the framework of an advantageous embodiment of the method in accordance with the invention, provision can be made for the friction disk being machined and the grinding wheel to each be rotated at different speeds to achieve the desired friction surface structure. In particular, the difference in speed of rotation between the friction disk being machined and the grinding wheel results in the particular patterns of the ground grooves along the friction surface structure.
The structure, operation, and advantages of the present invention will become further apparent upon consideration of the following description, taken in conjunction with the accompanying drawings in which:
a through 3d each show a sector X of the friction surface structure of the friction disk in accordance with
Friction disk 1 of the conical friction disk set is mounted by means of a conical disk set shaft 2. Because of the decreasing thickness of friction disk 1 in the outward radial direction, various transmission ratios can be achieved by changing the running radius of the endless torque-transmitting means. The endless torque-transmitting means, not further shown, is in contact with the friction surface 3 of friction disk 1 in order to achieve a desired transfer of torque from the drive side to the power take-off side in the belt-driven transmission.
The friction surface structure of friction disk 1 is machined in such a way that ground grooves 4, which are only schematically shown, have an approximately spiral form. Because of that non-coaxially-oriented pattern of the individual ground grooves 4, different coefficients of friction act on the chain pin of the endless torque-transmitting means, which is in the form of a plate-link chain, as it runs through the conical friction disk set, depending upon the current direction of slippage, whereby a harmonized pattern of force is achieved between plate-link chain 5 and the friction surface structure on friction disk 1 of the conical disk set. Because of those different coefficients of friction, peaks of force and friction power are reduced on the entire conical friction disk set, so that the service life of the conical disk array in accordance with the invention is increased.
In addition, the design of the friction surface structure of each friction disk 1 in accordance with the invention reduces the clamping requirement of each conical disk set, thereby increasing the overall efficiency of the belt-driven transmission.
a shows sector X of friction disk 1 with one form of friction surface structure, which is an isotropic surface structure, i.e., a surface structure having the same friction coefficient in all directions.
b shows another form of friction surface structure that has ground grooves 4 running exclusively radially. The diagram to the right of
c shows sector X of another embodiment of a friction surface structure with ground grooves 4, in which the ground grooves 4 run at an angle of about 45° to the radial direction. That figure also includes a diagram showing the direction-dependent coefficient of friction. With that friction surface structure there is again a high coefficient of friction μhigh along the ground grooves 4 and a low coefficient of friction μlow at an oblique angle to the ground grooves 4.
Finally,
What is special about the grinding device in accordance with the invention is that the axis of rotation 6 of grinding wheel 7 and the axis of rotation 9 of conical disk set shaft 2 are skewed in their orientation to each other. As a result, there is no point of intersection between the axes of rotation 6 and 9. Merely a minimal separation 10 is achieved, which is indicated in
Although particular embodiments of the present invention have been illustrated and described, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit of the present invention. It is therefore intended to encompass within the appended claims all such changes and modifications that fall within the scope of the present invention.
Number | Date | Country | |
---|---|---|---|
60753785 | Dec 2005 | US |