The invention relates to a method and an apparatus for gripping and holding dispensing elements, having a flange and a screw cap, for subsequent application onto packages, in particular cardboard/plastic composite packages for dispensable products, with the dispensing elements being linearly supplied to the apparatus in an aligned position and with each dispensing element being gripped individually by gripper jaws of a gripping device and being applied by means of its flange onto a package.
When “dispensing elements” are mentioned in the present case, this should not be understood as pure dispensing elements, but rather also resealable opening elements of all types, which are nowadays mainly used at the same time as dispensing elements. For the sake of brevity however, only dispensing elements are mentioned in this application.
Cardboard/plastic composite packages are known from practice in widely different variations. The composite material comprises at least one carrier layer made of cardboard and in each case layers of polyethylene sealed on the outside which protects the cardboard from moisture. The composite material can also contain an aluminium layer for aseptic filling products in order to achieve a good barrier effect against gases and also light. The actual forming and filling of the packaging and the subsequent sealing to form a package occurs in a packaging machine which is generally also referred to as an FFS machine (form-fill-seal machine). The known packages are manufactured either from individual package sleeve blanks (so-called blanks) or filled with product from a package laminate of the roll and sealed and separated only after the manufacturing of the package.
The filled and sealed packages are often provided in a subsequent step with package aids such as for example resealable opening and dispensing elements. This occurs by means of separate applicators, to which the finished packages have to be supplied individually. The application takes places in this case normally on a predetermined weakened area on the package gable, such as for example a so-called “an overcoated hole” which is matched to the dispensing element to be applied in each case.
A method and an apparatus for applying dispensing elements onto packages with all the features of the preamble of claim 1 or claim 8 are known from the generic EP 1 813 533 A1. In this case, dispensing elements supplied linearly are firstly delivered to individual stations of an applicator. The applicator delivers, in the case of the known apparatus by means of a plurality of gripping devices, the dispensing elements to the surface sections of the packages intended for this purpose which are also supplied to the apparatus on a linear transport path. To this end, means for the coordinated movement of the gripping devices are present in order to move them to apply the dispensing elements onto the packages in a vertical plane. The packages are removed after the application of the dispensing elements.
What is disadvantageous with the previously described apparatus is that the dispensing elements supplied upside down by means of the gripping devices of the applicator must change their position in the spatial environment about a horizontal axis in a vertical plane. To this end, a significant structural height of the applicator is required.
Proceeding from here, the object underlying the present invention is to design and further develop the method mentioned in the introduction and a corresponding apparatus for gripping and holding dispensing elements, having a flange and a screw cap, for subsequent application onto packages such that an applicator with lower structural height can, even in the case of higher speeds, also reliably provide packages comprising an oblique gable with dispensing elements, in the case of which the surface sections provided for the application with a dispensing element run in a plane inclined to the horizontal plane.
This object is achieved in the case of a method with the features of the preamble of claim 1 by the following steps:
According to the invention, a very exact and therefore operationally-secure delivery of the individually supplied dispensing elements to the gripping device is achieved which operates essentially free of interruptions even at high machine speeds.
In the case of an apparatus with the features of the preamble of claim 8, the object is achieved in that the gripping devices are arranged in a height-adjustable manner on an applicator designed as a rotary machine, in that each gripping device is arranged above a package transported by the applicator, in that each gripping device has at least two corresponding gripper jaws to grip a dispensing element, in that the dispensing elements are supplied by means of a transport belt and lateral guide rails to a delivery region to be received by the gripping devices and in that the transport belt has a plurality of engagement cams to receive the dispensing elements and in that the distance between two supplied dispensing elements corresponds to the distance between two gripping devices. The construction according to the invention is particularly expedient in regards to the relatively low space requirement of the applicator.
According to the invention, the dispensing elements are supplied by means of a transport belt and lateral guide rails to a delivery region to be received by the gripping devices. By using a transport belt, it is possible to accelerate the supplied dispensing elements very precisely to the speed of the gripping devices.
Furthermore, the transport belt has according to the invention a plurality of engagement cams to receive the dispensing elements and the distance between two supplied dispensing elements corresponds to the distance between two gripping devices. Since the distance between two gripping devices is predefined by the construction of the applicator, the length of the transport belt can also be freely selected accordingly, with an integral multiple of the distance always determining the entire length of the belt.
Rotary machines are understood as all applicators, in the case of which the transport paths of the dispensing elements to be applied and transported on the applicator are transported along a path which is largely identical to the transport path of the packages transported by the applicator. Ideally, rotary tables are also understood by this, with the term rotary machines, however, also expressly comprising such applicators in the case of which the transport paths of the dispensing elements and packages deviate from a round shape.
A further teaching according to the invention is characterised in that the supplied dispensing elements are accelerated by means of the transport belt to the speed of the gripping devices. In this way, there is always synchronisation between rotational speed of the applicator and belt speed. For the actual delivery of the supplied dispensing elements, it is provided according to a further configuration of the invention that in the case of lowering each gripping device the opened gripper jaws engage the dispensing element provided therebelow in a positive-locking manner in the region of a screw cap. Expediently, the dispensing element is preferably released following the positive-locking engagement of the opened gripper jaws from its forced guidance and transported further only by the opened gripper jaws. If a dispensing element is located on the flat delivery region, it will be released by the gripper jaws from its forced guidance and gripped in the region between the screw cap lower edge and the flange in a positive-locking and force-fitting manner and transported further by the gripping device.
A further teaching of the invention provides that the flange of each dispensing element is wetted with an adhesive after gripping by an application station to wet the flange of the dispensing element.
Alternatively, it is, however, also provided that the flange of each dispensing element is activated by means of heat, UV light or the like after gripping by an activation station to activate the contact region of the flange of the dispensing element.
According to a further teaching of the invention, each gripping device is arranged on the applicator pivotable about a horizontal axis. In this way, it is possible to always pivot the gripping device in a vertical plane in the correct alignment to the package located directly therebelow.
A preferred configuration of the invention provides that the gripping devices are arranged uniformly distributed over the circumference of the applicator. In this way, the highest possible number of gripping devices can be accommodated on the outer circumference of the applicator.
A further preferred teaching of the invention provides that the gripping devices move on a circular path and that the lateral guide rails are designed such that they divert the dispensing elements initially to the applicator before the delivery region until they are guided on the circular path by means of the correspondingly running lateral guide rails to the delivery region where firstly the lateral guide rails and subsequently also the transport belt end. In this way, it means that the time, in which each dispensing element and the gripping device lowering above on the dispensing element are positioned exactly over one another, is increased. This is in particular notably important in the case of higher machine speeds.
For the actual delivery of the dispensing elements to the gripping devices, it is provided in a further configuration of the invention that the still open gripping jaws of the lowering gripping devices engage the dispensing elements in the region of the bent lateral guide rails of the circular path and pull them, through contact of the open gripper jaws with the screw cap of the dispensing elements, into the delivery region where the closing gripper jaws grip the respective dispensing elements in the region between the screw cap lower edge and the flange in a positive-locking and force-fitting manner. To this end, it is particularly expedient when the delivery region is formed by a sliding surface on which the dispensing elements slide along the circular path until being received by the gripper jaws. The length of the sliding surface must in this case only be configured so large that the gripper jaws fixedly hold the screw cap enclosed.
In a further preferred configuration of the invention, it is provided that an application station for adhesive on the flange is arranged in the transport direction along the circular path behind the sliding surface forming the delivery region. This can be designed for example as a glue roller such that the dispensing elements there can also be uniformly wetted with adhesive with the flange underside pointing downwards. Instead of an application station, an activation station can alternatively be provided for activating joining agent already present on the flange or even the flange material itself. This can for example occur by means of heat, UV light or the like.
According to a further teaching according to the invention, the gripper jaws of each gripping device can be moved towards one another. To this end, each gripping device preferably has two gripper jaws in order to keep the constructive complexity and also the structural size of the gripping device low.
Alternatively to the linearly movable solution, however, it is also possible that the gripper jaws of the gripping device are pivotable towards one another in a further configuration of the invention.
Different technical solutions are conceivable as the drive for opening and closing the gripper jaws. The gripper jaws are particularly preferably pneumatically actuated to open and close. However, it is also possible that the drive for opening and closing the gripper jaws takes place hydraulically or electromechanically.
The invention is explained in greater detail below by means of a drawing merely depicting a preferred exemplary embodiment. In the drawing,
The apparatus according to the invention is represented in plan view in
The applicator 1 designed as a rotary machine has, in the exemplary embodiment represented in
In the represented exemplary embodiment, each application unit 5 has a housing 7 which is fastened at the top on a carrier disc 8 arranged in the upper region of the applicator 1, with the carrier disc 8 being connected in a torque-proof manner to the drive shaft 3 of the applicator 1 in the represented and in this respect preferred exemplary embodiment. The housing 7 is supported below on a rotating bezel 9 which is arranged coaxially about a support ring 10 of the applicator 1. The support ring 10 is connected to an adjustment device to adjust the transport units 2. As will be explained in more detail further below, both the rotating bezel 9 and the support ring 10 are designed in two parts and thus enclose a common bearing 11. In this way, the position of the gripping device 6 can be modified in the circumferential direction in relation to the position of the transport unit 2 located therebelow within predefined limits in order to align the dispensing element F to be applied optimally on its application location on the package gable.
In the interior of the housing 7, a gear wheel 12 can be discerned which is rotatable about a horizontally running rotary axis 13. The teeth located in the lower region of the gear wheel 12 engage into the teeth of a rack 15 fixedly arranged on a control rod 14. The free end of the control rod 14 has a rotatably arranged control roll 16 which rolls on a control curve 17. The control curve 17 is fastened on a stationary carrier disc 18 of the applicator 1. In order that the control roll 16 always rolls in fixed contact on the control curve 17, the application unit 5 is designed spring-loaded by a spring not designated in further detail which acts via the gear wheel 12 indirectly on the control rod 14.
The delivery of the dispensing elements F to the gripping devices 6 can be particularly clearly discerned from
To explain better, the end region of the guide rails 19 and the adjoining delivery region is represented in
The core piece of each gripping device is represented in greater detail in
In order that the middle point of the gripper jaws 26A and 26B are now always located exactly at the correct point (which is optimised for subsequent application) of the circular path TP, a pinion 32 is provided between the two guide axes 29 and 30. Furthermore, the guide axes 29 and 30 are preferably provided at least on the side facing one another in each case with a rack such that the teeth of the pinion 32 can interlock with the teeth of the racks (not represented) and in this way synchronisation of the opening and closing movement of the gripper is achieved.
Lastly,
Thereafter, the vertical pivoting of the gripping device 6 begins in the direction of the package P located below the gripping device 6. Here, a somewhat deeper position {circle around (3)} is firstly shown in an intermediate position. The gripping device 6 is now pivoted further downwards into its lowermost position in which the dispensing element F is applied on the gable surface of the package P, represented as position {circle around (4)}. The gripping device 6 remains in this application position in the applicator 1 and presses the dispensing element F against the gable of the package until the adhesive dries. Then, it releases the dispensing element F and moves back into its uppermost position, position {circle around (1)} in order to receive a further dispensing element F following a rotation of the applicator 1. This operation is repeated in the case of constant rotational movement of the applicator 1 for each attached gripping device 6 during the application operation.
For a better overview, an oblique position of gripping device 6 and dispensing element F and the package gable of the packages P have been dispensed with in the schematic representation in
Number | Date | Country | Kind |
---|---|---|---|
10 2017 115 337.3 | Jul 2017 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2018/025176 | 6/26/2018 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
20210078744 A1 | Mar 2021 | US |