The present invention generally relates to contactors, and more specifically relates to addressing disturbance effects causing bouncing contacts in contactors.
BACKGROUND OF THE DISCLOSURE A contactor is essentially a switch that is actuated by powering an electromagnet, which in
turn pulls a conductive bar across two contacts, bridging them and allowing power to flow across them into a load. In some applications, a contactor is used to selectively deliver power to a particular load. Firing a military aircraft's guns causes a high transient vibration and is one instance where an onboard contactor's contacts can bounce or chatter during the vibration event. This causes damaging contact arcing and creates power transients to the loads that the contactor is powering. Contact bounce can be partially mitigated by special vibration dampening mounts for the contactors, however, such mitigation is often insufficient and/or unreliable.
As illustrated in
Once the power delivery contacts are closed and power is being delivered to the load, the switch 108 is opened, thereby allowing the hold coil 104 to set a lower magnetic field sufficient to energize the hold coil 104 (but not the pull-in coil 102) in order to keep the power delivery contacts closed. In contrast to the pull-in coil 102, the hold coil 104 needs a much smaller magnetic field in order to keep or maintain the closed contacts in a closed state. Under high vibration conditions or other disturbances, the power delivery contacts may bounce or chatter, or otherwise move, resulting in arcing, power transients, or other undesirable conditions. Since during this time, the contactor is operating using only a lower magnetic field hold coil 104, the contactor may not be able to sufficiently move the power delivery contacts, which otherwise requires the higher magnetic field pull-in coil 102. This results in interrupted power delivery. Fully engaging the pull-in coil 102 all the time is also undesirable, as it results in an excessive amount of power being consumed, as well as generating high levels of thermal energy which in turn may cause additional undesirable faults or conditions.
The present invention addresses these and other noted deficiencies in conventional power delivery contactor arrangements. In an embodiment, the present invention detects contact bouncing by measuring contact voltage fluctuations caused by the bouncing contacts. When these fluctuations are detected, a circuit causes the pull-in coil to be temporarily re-energized to re-establish the higher magnetic field needed to pull the contacts tighter together, which eliminates the bouncing. Because of the high power required by the pull-in coil, the time that it is actuated is limited in order to avoid thermal damage to the coil or other electronic components.
For a more complete understanding of the present invention, the objects and advantages thereof, reference is now made to the following descriptions taken in connection with the accompanying drawings in which:
Disclosed are several embodiments of the present invention which may be used to selectively control the actuation of the pull-in coil in a contactor arrangement, in order to minimize the heat produced when delivering power to a load under conditions in which disturbances may affect the delivery of the power and/or the operation of the contactor.
Referring now to
If a disturbance occurs while power is being delivered to a load, this will typically cause a difference between the voltages seen at high voltage in 212 and high voltage out 214. This voltage difference is detected by voltage sense 210, causing its output to activate, which in turn activates switch 208 to a closed position, thereby shorting hold coil 204, and allowing pull-in coil 202 to increase the magnetic field, thereby moving the power delivery contacts back into place in order to reliably deliver power to the selected load. As soon as the power is properly delivered to the selected load, then the high voltage out 214 should revert back to essentially being the same as high voltage in 212. As soon as this voltage equilibrium is obtained, the differential input to voltage sense 210 will become negligible. As a result, the output of voltage sense 210 will be deactivated, which in turn will cause deactivation of switch 208. As soon as switch 208 is deactivated, the hold coil 204 is no longer shorted and will act to set the magnetic field at a much lower level than what was needed by pull-in coil 202.
As long as no additional disturbances or vibrations are encountered, the power delivery contactor will continue under normal operation, with power being delivered to the load, while only hold coil 204 is energized by way of a lower magnetic field, as compared with the much higher magnetic field required by pull-in coil 202. As soon as another disturbance or vibration is detected, this will typically manifest as a voltage difference between high voltage in 212 and high voltage out 214, and voltage sense 210 will have its output activated, and the process will continue as described above, by closing switch 208 and causing the pull-in coil 202 to energize once again. In this way, every disturbance or vibration is sensed, for example, by way of a voltage difference, and the contactor reset to energize the pull-in coil 202.
Referring now to
As described above in connection with the various embodiments, the amount of current required to hold the power delivery contacts closed may be pre-determined based on the aircraft or vehicle design Also, a software algorithm or digital logic can be made to start reducing the current to the pull-in coil after a set amount of time, reducing it to zero if the vibration has ceased, or alternatively, increasing the current again if contact chatter resumes.
It will be understood that the embodiments disclosed in this specification extend to all alternatives and combinations. It will be further understood by those of ordinary skill in the art that the present invention is susceptible to broad utility and application. Many embodiments and variations of the present invention other than those described herein, as well as many adaptations, variations and equivalent arrangements, will be apparent from or reasonably suggested by the present invention and its description, without departing from the substance or scope of the present invention.
Accordingly, while the present invention has been described herein in detail in connection with exemplary embodiments, it is to be understood that the present disclosure is only illustrative and exemplary of the present invention and is made to provide a sufficiently enabling disclosure. Further, the foregoing description is not intended to be construed or limited to the present invention, or to exclude any adaptations, modifications, or equivalents thereof
This application claims the benefit under 35 U.S.C. § 119(e) of Provisional Application Ser. No. 63/219,684, filed Jul. 8, 2021, the entire contents of which are hereby incorporated by reference as if fully set forth herein.