1. Technical Field
The present invention relates to an improved network data processing system. Particularly, the present invention relates to security attribute propagation in a network data processing system. Still more particularly, the present invention relates to handling propagation of custom tokens without using Java™ serialization.
2. Description of Related Art
As the popularity of the Internet has increased in recent years, more and more consumers and service providers perform transactions over the World Wide Web. These transactions include secured transactions, which require authentication and authorization of a user or a service requester. An example of a secured transaction is a banking transaction, which requests a user to enter a login name and password prior to giving access to the user's bank account information. This type of transaction prevents perpetrators from gaining access to protected information.
However, service providers discover that single point of authentication is more suitable to secured transactions that require many disparate systems, including, for example, the WebSphere Application Server, a product available from International Business Machines Corporation. The single point of authentication is facilitated by using reverse proxy servers (RPS). A RPS is a proxy server placed in front of the firewall that mirrors an actual Web server behind the firewall, such that malicious attacks on the actual Web server are prevented by denying invalid incoming requests.
Within the reverse proxy servers, security attributes from users or service requesters' original logins are retained. These attributes include, for example, static attributes from the enterprise user registry and dynamic attributes from custom login logic based upon location, time of day, and authentication strength. By having access to these attributes, application servers, such as, for example, the WebSphere Application Server, may perform necessary authentication and authorization operations. In addition, backend systems may use these attributes to determine identity of the original requester and make access decisions and audit records accordingly. The backend systems include Customer Information Control System (CICS) and DB2 Universal Database, which are products available from International Business Machines Corporation.
In existing security infrastructures, attempts are made to propagate these security attributes beyond the server which performs the login. Such attempts include a trust association interceptor (TAI) interface that acts as a security gateway to the WebSphere Application Server for incoming requests that are received through the reverse proxy server. However, the TAI interface is designed to only accept a user name of the authenticated user and ignore all other security attributes that are collected from the original login at the reverse proxy server. Other security attributes may include custom tokens that carry authorization attributes useful to other systems downstream. As a result, a “re-login” to the configured user registry is required by the application server to re-gather many of the security attributes. Unfortunately, the “re-login” attributes gathered may not include attributes that are originally collected at the reverse proxy server, which are useful to a third-party authorization engine or other custom applications. These attributes include original authentication strength, client location and IP address, among other custom attributes gathered during a login.
Furthermore, no mechanism currently exists that allows a service provider to handle custom objects without using Java™ serialization. Java™ serialization is an application programming interface, available from Sun Microsystems, Inc., that serializes an object's state into a sequence of bytes and provides a process to rebuild the serialized bytes back into a live object at a future time. Although Java™ serialization provides a standard for serialization of objects, it is problematic to use Java™ serialization across different operation system platforms, Java™ versions and Java™ class versions. Therefore, a need exists for an improved network data processing system that can handle serialization of custom objects without using Java™ serialization.
The present invention provides a method, apparatus, and computer instructions for handling propagation of custom objects without using Java™ serialization. The mechanism of the present invention handles token propagation by allowing a service provider to plug in a first custom login module or a first default login module. The custom or default login module adds an object implementing one of the four marker token interfaces defined by the present invention to a subject.
The present invention then invokes a getBytes( ) method on the object to retrieve serialized bytes from the object in an outbound request. The present invention then adds serialized bytes along with a name and a version into an opaque token and propagates the opaque token downstream using a communication protocol.
Once the opaque token is detected, a service provider downstream may plug in a second custom login module or a second default login module to identify the token from a list of tokens. The custom login module or the second default login module deserializes the token by retrieving a byte array based on the name and the version and processes the token accordingly.
The novel features believed characteristic of the invention are set forth in the appended claims. The invention itself, however, as well as a preferred mode of use, further objectives and advantages thereof, will best be understood by reference to the following detailed description of an illustrative embodiment when read in conjunction with the accompanying drawings, wherein:
With reference now to the figures,
In the depicted example, server 104 is connected to network 102 along with storage unit 106. In addition, clients 108, 110, and 112 are connected to network 102. These clients 108, 110, and 112 may be, for example, personal computers or network computers. Also in the depicted example, server 114 is connected to server 104. Server 104 may serve authentication purpose for server 114. When a user logs in to server 104, the user id/password may be passed from server 104 to server 114. Firewall 122 acts as a gateway for servers 104, 114 and storage 106 to network 102 and firewall 124 acts as gateway for clients 108, 110 and 112. Firewalls 122 and 124 prevent unauthorized users from accessing server 104, storage 106, and clients 108-112.
In the depicted example, server 104 provides data, such as boot files, operating system images, and applications to clients 108-112. Clients 108, 110, and 112 are clients to server 104. Network data processing system 100 may include additional servers, clients, and other devices not shown.
In the depicted example, network data processing system 100 is the Internet with network 102 representing a worldwide collection of networks and gateways that use the Transmission Control Protocol/Internet Protocol (TCP/IP) suite of protocols to communicate with one another. At the heart of the Internet is a backbone of high-speed data communication lines between major nodes or host computers, consisting of thousands of commercial, government, educational and other computer systems that route data and messages. Of course, network data processing system 100 also may be implemented as a number of different types of networks, such as for example, an intranet, a local area network (LAN), or a wide area network (WAN).
Referring to
Peripheral component interconnect (PCI) bus bridge 214 connected to I/O bus 212 provides an interface to PCI local bus 216. A number of modems may be connected to PCI local bus 216. Typical PCI bus implementations will support four PCI expansion slots or add-in connectors. Communications links to clients 108-112 in
Additional PCI bus bridges 222 and 224 provide interfaces for additional PCI local buses 226 and 228, from which additional modems or network adapters may be supported. In this manner, data processing system 200 allows connections to multiple network computers. A memory-mapped graphics adapter 230 and hard disk 232 may also be connected to I/O bus 212 as depicted, either directly or indirectly.
Those of ordinary skill in the art will appreciate that the hardware depicted in
The data processing system depicted in
With reference now to
In the depicted example, local area network (LAN) adapter 312, audio adapter 316, keyboard and mouse adapter 320, modem 322, read only memory (ROM) 324, hard disk drive (HDD) 326, CD-ROM driver 330, universal serial bus (USB) ports and other communications ports 332, and PCI/PCIe devices 334 may be connected to ICH 310. PCI/PCIe devices may include, for example, Ethernet adapters, add-in cards, PC cards for notebook computers, etc. PCI uses a cardbus controller, while PCIe does not. ROM 324 may be, for example, a flash binary input/output system (BIOS). Hard disk drive 326 and CD-ROM drive 330 may use, for example, an integrated drive electronics (IDE) or serial advanced technology attachment (SATA) interface. A super I/O (SIO) device 336 may be connected to ICH 310.
An operating system runs on processor 302 and is used to coordinate and provide control of various components within data processing system 300 in
Instructions for the operating system, the object-oriented programming system, and applications or programs are located on storage devices, such as hard disk drive 326, and may be loaded into main memory 304 for execution by processor 302. The processes of the present invention are performed by processor 302 using computer implemented instructions, which may be located in a memory such as, for example, main memory 304, memory 324, or in one or more peripheral devices 326 and 330.
Those of ordinary skill in the art will appreciate that the hardware in
For example, data processing system 300 may be a personal digital assistant (PDA), which is configured with flash memory to provide non-volatile memory for storing operating system files and/or user-generated data. The depicted example in
With reference to
When an application running on client 402 sends a request for authentication login, such-as a single sign-on request, to reverse proxy server 404, reverse proxy server 404 maintains static login attributes in user registry 405. Examples of static login attributes include user id, password, groups the user is a member of, and the full username, for example, John R. Smith. Typically, reverse proxy server 404 is placed in front of firewall 406 and acts as a single entry point of authentication for login to server 1408, server 2410 and database 412.
Currently, when the original authentication login is performed at reverse proxy server 404, only a username is passed along to server 1408. This username is converted to a secure authentication token which is then the only information passed to server 2410. Thus, no dynamic attributes may be propagated downstream. Only static login attributes are presented to server 2410 and database 412 at the time of access. Other original login information including attributes in user registry 405 and dynamic attributes, such as, for example, time of day, location and authentication strength, are not propagated to either server 1408, server 2410 or database 412. Therefore, server 1408 is forced to “re-login” to reverse proxy server 404 through request 414 in order to gather information from user registry 405. Since the original login information at server 1408 is not propagated, server 2410 and database 412 are also forced to “re-login” to user registry 405 through requests 416 and 418 in order to further gather necessary original login information.
The requirements of “re-login” affects performance throughput, since a remote user registry call is made to user registry 405 at each hop, which significantly increases network traffic. Particularly, in a high traffic flow system, remote registry calls become very expensive and inefficient. In addition, since the user registry is accessible by many different processes, it often becomes a bottleneck when multiple processes compete for a registry lookup.
Turning now to
Turning next to
In the prior art, with only user's identity, application server 510 has to re-login to reverse proxy server 504 to gather original login information. With the present invention, a default JAAS login module 512 or custom login module may be plugged in JAAS login configuration implemented by application server 510 to map original login information from reverse proxy server 504 to a credential and principal of a Subject stored at run time. The Subject is created using TAI.getSubject method 514 in these illustrative examples. Thus, using a default or custom login module of the present invention, authorization and authentication information may now be propagated downstream to other servers.
The present invention provides a method, apparatus and computer instructions for handling token propagation without using Java™ serialization. The mechanism of the present invention enables identification of a token and handling of the token at a target server downstream based on a name and a version given to the token when the token is serialized upstream. The present invention also provides a service provider the capability to search an array list of tokens at the target server for a specific token.
In the present invention, a token is an object that encapsulates information, which may or may not be security related. There are three types of tokens: custom Java™ objects, default token interface implementations and custom token interface implementation. Custom Java™ objects are serialized using current Java™ serialization by the security infrastructure. Default token interface implementations are handled by the security infrastructure, such as WebSphere Application Server security infrastructure, and may be encoded or encrypted prior to being propagated downstream. The present invention provides four default token interfaces: authentication token interface, authorization token interface, single sign-on token interface and propagation token interface.
Custom token interface implementations or custom tokens are handled by custom login modules that are plugged in by a service provider. Custom tokens may also be encoded, signed or encrypted prior to being propagated downstream. The security infrastructure handles the custom objects and default token interfaces while the custom login modules handles the custom tokens.
These three types of tokens are different by the way each type of token is handled upstream and downstream. At a server upstream, the security infrastructure handles the custom objects by serializing the objects using existing Java™ serialization prior to propagating the objects downstream. The security infrastructure handles the default token interfaces by plugging in default login modules to identify each default token within a subject and serializing each default token into an opaque token. Default login modules may encode a custom token by specifying a name and a version for the token.
However, custom tokens are handled differently from the other two token types. Custom tokens are handled by the custom login modules plugged in by a service provider. In a preferred embodiment of the present invention, the default token interface provides a set of methods that each token implements. The name may identify an owner of the token and the version may identify a version of the same token. In addition, the name and version in combination may be used to identify a unique token.
When the custom token is propagated downstream, a custom login module at the target server may identify and handle this custom token accordingly. In this way, the service provider may control how the custom token is accessed downstream and by whom without relying on Java™ serialization.
In addition, the present invention provides a getBytes method in the default token interface, which is implemented by the custom token implementation, to retrieve security attributes stored in the custom token and perform custom operations on the attributes. The result of the getBytes method is a serialized byte array, which may or may not be signed or encrypted. The serialized byte array is added to an opaque token along with a name and a version and is propagated downstream.
At a server downstream, the security infrastructure deserializes all custom objects from an opaque token. The custom objects are propagated on a best effort basis. If any serialization or deserialization problem occurs, the custom objects may not be propagated. However, this problem does not cause a request to fail. In addition, the security infrastructure deserializes the default tokens from the opaque token. In the present invention, default login modules may be plugged in to handle the default tokens, for example.
For custom tokens, the mechanism of the present invention allows a service provider to plug in custom login modules to deserialize and handle custom tokens. A custom login module identifies a specific custom token from the array list of token holders, which is deserialized from the opaque token, based on a name and a version. The mechanism of the present invention provides a getName method and a getVersion method to determine a token's uniqueness, name and version, such that the custom login module may identify a specific custom token that it recognizes.
Once the custom token is identified, the custom login module may retrieve a byte array from the custom token holder. The present invention provides a getBytes method that retrieves a byte array from a custom token holder based on input name and version. When the byte array is retrieved, the custom login module then handles the byte array. For example, the custom login module may perform a custom operation, such as decryption, on the custom token. In this way, a service provider may handle its own security of the tokens without using Java™ serialization while still allowing the security infrastructure to propagate the tokens.
Turning now to
The present invention provides default login configurations, which include Web inbound login configuration 602, inbound login configuration 604 and outbound login configuration 606. Each login configuration includes a number of login modules that are called in sequence for an authentication login.
In this example implementation, Web inbound login configuration 602 is used for Web resource login and handling of hypertext transfer protocol (HTTP) requests and responses. Web inbound login configuration 602 includes custom login module 614, authentication login module 616 and map Web inbound login module 618.
When a TAI.getSubject call 610 is invoked at server 612, Web inbound login configuration 602 receives a user “identity from the trust association interceptor (TAI), which is an interface used by an application server, such as a WebSphere Application Server, to gather user information. The user identity passed in may include authorization attributes gathered at the reverse proxy server along with authentication data or only authentication data. The authentication data may include a token or user id/password. If the user identity passed into Web inbound login configuration 602 includes gathered authorization attributes, authentication login module 616 is bypassed and map Web inbound login module 618 is invoked to map authorization and authentication data from the user identity to a principal and credential of a Subject.
According to the JAAS framework, a Subject represents the source of a request. In these examples, a Subject may be an entity, such as a person or service. Once the Subject is authenticated, the Subject is populated with associated identities or principals. A Subject may have many principals. In addition, a Subject also has security attributes, referred to as credentials, which may be private or public. Different permissions are required to modify different credentials in these examples.
Using the user identity passed in from TAI, Subject 620 is created by map Web inbound login module 618 to map all gathered authorization attributes into corresponding principals and credentials 622. The map Web inbound login module 618 is a default login module provided by the present invention. A custom login module, such as custom login module 614, may be implemented by a service provider to specify already gathered authorization attributes included in a Java hash table into the shared state of the login context. By specifying well-known attribute names in the Java hash table, other login modules configured in the same login configuration do not need to duplicate the same remote user registry calls and may re-use the well-known attributes specified in the hash table. The shared state of the login context is accessible by the login modules at run time.
In addition to credentials and principals, the present invention allows a service provider to add custom objects 624 and other security information in a form of a token into Subject 620. The present invention provides a set of token interfaces that define behaviors of security runtime objects. The set of token interfaces is herein referred to as marker tokens. There are four types of marker tokens: authorization token 626, authentication token 628, single sign-on token 630 and propagation token 632. Each marker token extends from a generic token interface that defines default methods implemented by each token. A service provider may use these default marker tokens or create its own version of the marker tokens to make access control decisions for an incoming request.
In the present invention, authentication token 628, authorization token 626 and single sign-on token 630 are Subject-based. They are stored within a Subject, such as Subject 620, at run time. Propagation token 632 is invocation-based or thread-based. In other words, propagation token 632 is stored in a security context or thread local associated with the thread of execution at run time and is not specific to a Subject. Propagation token 632 is sent along with the request downstream and is set on the target server's thread of execution.
Authorization token 626 represents the identity of a user or service requester and flows downstream. Authentication token 628 represents attributes used to make authorization decision for a user or service requester and is propagated at the authorization token layer downstream. Multiple authentication and authorization tokens may be present in Subject 620 to store authentication and authorization attributes for different mechanisms.
Single sign-on token 630 is used by a service provider to set the token in the Subject such that a cookie is returned via a HTTP response to the client browser. Single sign-on token 630 has tighter security requirements because it may flow as a cookie in the external Internet space. Single sign-on token 630 would also likely be associated with a strong encryption mechanism and has different attribute information than authentication token 628 or authorization token 626. Based on the implementation, single sign-on token 630 may also be propagated to servers downstream such that downstream servers may use single sign-on token 630 if the servers downstream are used to serve other Web-based application.
In addition, the present invention provides a getUniqueID method to define uniqueness of a Subject above and beyond the user id that is currently available. When getUniqueID method is called at run time, a service provider may return null if no uniqueness is desired for a Subject or return a string to represent uniqueness of the Subject. The unique id is used for caching purposes such that a service provider may identify a particular Subject at run time. The subject unique id is generated by aggregating the unique ids from each token included in that subject. In addition, the unique id may be carried in a single sign-on token for other servers to lookup a particular Subject, in order to ensure that the correct Subject is obtained.
Once authentication login is complete using mapped credentials/principals and marker tokens are added to Subject 620, the caller list of propagation token 632 is updated with a new user, such as user 1, and the host list of propagation token 632 is updated with a new host, such as host 1. The caller list of propagation token 632 tracks each user switch along an invocation chain and the host list of propagation token 632 tracks each server or resource the propagation token lands on during invocation.
Once the propagation token is updated, the present invention provides outbound login configuration 604, which determines target server or resource capabilities and security domain prior to propagating tokens downstream. If security attribute propagation is enabled at the target server or resource, both authentication token 640 and a new authorization token 642 will be sent downstream. Otherwise, only authentication token 640 is sent downstream. New authorization token 642 includes a hash table comprising credential attributes, an authorization token comprising credential attributes, a propagation token comprising thread-based attributes and other custom objects to be propagated downstream.
In this example implementation, outbound login configuration 604 includes custom mapping login module 634 and map outbound login module 635. Custom mapping login module 634 may be implemented as a mapping module. Based on information passed into custom mapping login module 634 including a target server realm and a effective policy, which indicates which layers of security will be performed and what security within the layer will be performed, an effective perform policy is generated. If the target server realm is supported and the perform policy allows propagation to the target server, custom mapping login module 634 maps the current authorization token and authorization attributes to a new identity that the target server understands.
Once the mapping is complete, outbound login configuration 604 invokes map outbound login module 635 to serialize contents of Subject into opaque authorization token 636. The present invention provides a Java™ helper class, such as WSOpaqueTokenHelper class, that provides protocol agnostic methods allowing any protocol to create an opaque authorization token from contents of a Subject and to convert an opaque authorization token back to contents of a Subject at the target server. The helper class first converts contents of a Subject, which may include authorization tokens, hash tables and custom objects, as well as the propagation tokens stored on the thread, to an array list of token holders. A token holder includes a name, a version and a byte array. A service provider downstream may query a specific token or object based on the name and the version of the token holder. Once the array list of token holder is created, the helper class serializes the array into opaque authorization token 636.
Thus, the helper class of the present invention enables a service provider to serialize a list of token objects into a byte array and propagate them downstream. In addition, the present invention enables custom serialization of objects by attaching a name and a version to a token holder, such that a service provider may implement a custom login module at a server downstream to look for the specific object.
After opaque authorization token 636 is created, outbound login configuration 604 sends the request, which includes opaque authorization token 636 and authentication token 638, downstream using a communication protocol, such as remote method invocation (RMI), to the target server, in this example, server 640. At server 640, inbound login configuration 606 allows normal login to occur if information passed into inbound login configuration 606 is a user id (identity assertion), a userid/password or a lightweight third party authentication (LTPA) token. An LTPA token is a token typically created when login occurs, which includes user id and password from the user registry. The LTPA token is validated by a target server using an LTPA key, which allows the target server to decrypt a signed LTPA token. LTPA login module 642 is then invoked by inbound login configuration 606 to perform normal login.
However, if the information passed into inbound login configuration 606 includes an opaque authorization token, such as opaque authorization token 636, inbound login configuration 606 invokes map inbound login module 644 to convert the opaque authorization token 636 back to contents of a Subject. Map inbound login module 644 first validates authentication token 638. Then, map inbound login module 644 deserializes the opaque authorization token 636 into an array list of token holder objects and cycles the array list to obtain desired token holder based on the name and version of each token holder.
Once a desired token holder is located, map inbound login module 644 further converts the byte array from the token holder into a credential within a Subject. Thus, the present invention allows a service provider to implement a default or custom login module to look for a specific token or object from an array list of token holders deserialized from an opaque authorization token. This feature is achieved by examining the name and version of each token holder.
Once the Subject is recreated at server 640, map inbound login module 644 updates the host list of the deserialized propagation token by appending the host list with host 2 identifying server 640. The host list is updated since propagation token 632 lands on server 640. Similarly, outbound login configuration 608 may be implemented at server 640 in order to propagate the request further downstream.
Thus, using the set of token interfaces defined in the present invention, service providers may implement different tokens based on their different roles or behaviors in the system. Each token may be associated with different token factories and have different token formats and encryption requirements. For example, the format of a single sign-on token may be different from an authorization token and may require encryption.
In addition, having a token interface defined by the present invention, logins may be differentiated using the getUniqueID method, which allows implementation of each token to be unique. For example, if user 1 logs into server 1 at 4 pm, different access right may be implemented by giving a token a different unique id than a token that allows user 1 to login into server 1 at 5 pm. The getUniqueID method allows different value to be returned for a Subject look up. An aggregation of all unique token ids may also be placed into a single sign-on token to be used for Subject lookup.
With reference to
If Web inbound propagation is disabled, operation terminates. If Web inbound propagation is enabled in block 704, Web inbound login configuration determines whether a hash table is present in shared state of the login context (block 706). The hash table is used to specify security attributes without using a user registry. Therefore, if a hash table exists, a registry call is not necessary.
If a hash table does not exist in shared state, Web inbound login configuration invokes authentication login module (block 708), which gets callbacks from shared state (block 710). If a hash table exists in shared state in block 706, Web inbound login configuration bypasses initial login and invokes map Web inbound login module (block 712). Map Web inbound login module processes callbacks (block 714), which include name callback, password callback, credential token callback and token holder callback. Credential token callback returns a LTPA token and token holder callback returns an array list of token holder objects.
Once callbacks are processed or gathered, a determination is made as to whether a credential of the Subject exists (block 716). A credential is created based on typical login information, such as a single sign-on token or userid/password callbacks. If a credential does not exist, map Web inbound login module maps attributes from the hash table (block 718). If a Credential already exists, map Web inbound login module creates and initializes an authorization token, an authentication token, and a single sign-on token, if single sign on is enabled, using attributes from the credential (block 720).
Once the marker tokens are created, login is complete (block 722) and the propagation token is set by map Web inbound login module to the thread of execution or thread local (block 724). Thus, the operation terminates thereafter.
With reference to
As depicted in
Once a propagation token is created or if a propagation token already exists, attributes may be added by a service provider to the propagation token (block 736). Added Attributes may include authentication strength, authentication location, and time of day. Finally, the caller list of the propagation token is updated if a user switch occurs and the host list is updated with a host identifying the current server or resource (block 738). The caller list may be appended, for example, in the form of cell:node:server:caller. The host list may be appended, for example, in the form of cell:node:server. Thus, operation terminates thereafter.
Turning next to
Turning back to block 802, if outbound propagation is not enabled, but outbound login is enabled, only the custom mapping module is invoked by outbound login configuration (block 804). If outbound propagation is enabled, but outbound login is disabled, map outbound login module is invoked (block 816).
When custom mapping module is invoked at block 804, it performs credential mapping by first locating target server realm and effective policy (block 806). The target server realm and effective policy is passed into the login configuration, by which a perform policy is generated. Next, a determination is made by custom mapping module as to whether the target server realm is supported (block 808). The determination is made by examining the target server realm passed in and identifying whether the current server realm matches the target server realm or that the target server realm is in a delimited list of supported/trusted realms. If the target server realm is not supported, the operation terminates.
Alternatively, if the target server realm is supported, a determination is then made by the custom mapping module as to whether perform policy allows the target server to be propagated (block 810). If the perform policy does not allow the target server to be propagated, operation terminates. If the perform policy allows target server to be propagated in block 810, a determination is made as to whether current authentication token or authorization attributes requires customization (block 812). If customization is not required, the operation continues to block 816 to invoke map outbound login module. Otherwise, if customization is required, the custom mapping module maps the current authentication token or authorization attributes to a new identity that the target server will understand using service configuration name of the target server and the operation continues to block 816 to invoke map outbound login module.
Once map outbound login module is invoked by outbound login configuration at block 816, map outbound login module queries the Subject to get all forwardable tokens (block 818). The query is performed by searching credential of the Subject for any objects that implement the default token interface. Next, map outbound login module queries the Subject to get custom objects that are serializable (block 820). An exclude list is checked to ensure custom objects are not propagated if present on this list. This list may be a colon delimited list of class or package names. If a custom object equals the class name or starts with the package name, then it is not propagated.
Map outbound login module then queries the Subject for propagation tokens from the security context of the thread local that are forwardable (block 822). After tokens are located in blocks 818-822, a getBytes method is invoked on the token to return a byte array. This byte array is then added to the array list of token holders (block 824).
Once an array list of token block is created, an opaque authorization token is created (block 826) by instantiating an opaque token object, which may be a byte array. Finally, the opaque token byte array is populated by cycling the array list of token holders and serializing each token holder in the list into the byte array (block 826). Thus, operation terminates thereafter.
Turning next to
If a hash table is not present, inbound login configuration invokes LTPA login module (block 908). The LTPA login module carries out primary login using normal authentication information, such as userid and password, LTPA token, or a TAI user name. However, if a hash table is present, the LTPA login module is bypassed and inbound login configuration then invokes map inbound login module (block 910) to perform primary login. Once the map inbound login module-is invoked, a determination is made as to whether token holder callback is present (block 912). If the token holder callback is not present, map inbound login module maps well-defined attributes from the hash table into credential of the Subject (block 914) and the operation terminating thereafter.
However, if the token holder callback is present in block 912, map inbound login module creates an array list of token holders by deserializing the opaque authorization token received from the protocol (block 916). The login module first processes callbacks passed into a JAAS login via a token holder callback object (block 918).
Next, map inbound login module validates the authentication token passed in outside of the opaque authentication token (block 920). The map inbound login module then processes each authorization token in the array list of token holders deserialized from the opaque authorization token (block 922). The login module processes the authorization token by mapping the attributes in the token into credential of the Subject. If there is any custom authorization token implementation made by the service provider upstream, a custom login module should be plugged in just prior to or right after this block to handle the custom authorization token.
Once the authorization token is processed, map inbound login module then processes each propagation token in the array list of token holders (block 924). The login module processes the propagation token by setting it on the thread of execution of the current resource. If there is any custom propagation token implementation made by service provider upstream, a custom login module should be plugged in just prior to or right after this block to handle the custom propagation token.
Once the propagation token is processed, map inbound login module processes all custom tokens or objects that are serialized using normal Java™ serialization (block 926). This allows service provider upstream to implement custom object serialization and provide handler downstream to handle the object. Finally, map inbound login module creates a credential and principal needed at runtime from information in the processed authorization token and authentication token (block 928) with the operation terminating thereafter.
Turning now to
In addition, credential token mapper 1004 provides methods to create propagation token 1014 from the security context of the thread of execution, since propagation token 1014 is associated with a thread of execution, not credential 1010. Once the tokens are created, the map outbound login module uses methods provided by security propagation helper 1020 to get all forwardable tokens from credential 1010 and forwardable propagation token and add each token into an array list of token holders 1022. Next, the map outbound login module invokes the opaque token helper 1024 methods to create an opaque authorization token 1026 that is used to send tokens downstream. Then, opaque authorization token 1026 is serialized by map outbound login module into byte array 1027 and is propagated downstream using protocol 1028.
When byte array 1027 is received at a server or resource downstream, inbound login configuration 1030 detects the incoming request and invokes map inbound login module to call methods of opaque token helper 1032, in order to deserialize byte array 1027 into a opaque authorization token 1034. Opaque token helper 1032 provides methods that deserializes opaque authorization token 1034 into array list of token holders 1036. The array list includes authorization token 1038, propagation token 1040, hash table 1042 and custom objects 1044 that are propagated downstream.
Next, each token in array list of token holders 1036 is processed by map inbound login module to determine which-of the token holders is desired based on the name and the version of the token holder. If the custom propagation token or authorization token is implemented upstream, custom login module may be implemented to identify the custom token. Once desired tokens are identified, the map inbound login module invokes methods in credential token mapper 1046 and maps authorization and authentication token obtained from the token holder to credential 1048.
Turning now to
As illustrated in
Next, a determination is made as to whether the marker token implementation is forwardable using the getForwadable method (block 1110). If the-marker token implementation is forwardable, the outbound login configuration invokes getBytes method on the marker token implementation to retrieve a byte array (block 1112). However, if the marker token implementation is not forwardable in block 1110, the operation terminates.
At this time, the attributes in the marker token implementation are serialized by invoking a get bytes method on the marker token implementation and a serialized byte array is returned (block 1114). After the byte array is serialized, the outbound login configuration invokes the getName and getVersion method on the marker token implementation to set the name and version that is to be identified downstream (block 1116). The outbound login configuration then adds the serialized byte array, the name and the version to an opaque token (block 1118), and serializes the opaque token and propagates it downstream (block 1120).
Finally, a determination is made by the outbound login configuration as to whether additional marker token implementations exist in the subject (block 1122). If additional Java object exist in the subject, the operation returns to block 1104 to retrieve the next Java object in the subject. Otherwise, the operation terminates thereafter.
Thus, the present invention enables custom serialization to be performed on both default and custom marker token implementations, while allowing Java serialization to be performed on other Java objects. The custom serialization is performed by invoking the get bytes method to serialize the byte array.
Turning now to
In summary, the present invention provides mechanisms that allow custom serialization to be performed without using Java™ serialization. The present invention enables tokens to be handled and identified at a target server based upon a name and a version given by a service provider upstream. The present invention also allows a service provider downstream to plug in a custom login module in order to search a list of tokens for a specific token and deserialize the specific token without Java™ serialization. Furthermore, custom operations may be performed on the custom token by using the getBytes method provided by the present invention.
It is important to note that while the present invention has been described iii the context of a fully functioning data processing system, those of ordinary skill in the art will appreciate that the processes of the present invention are capable of being distributed in the form of a computer readable medium of instructions and a variety of forms and that the present invention applies equally regardless of the particular type of signal bearing media actually used to carry out the distribution. Examples of computer readable media include recordable-type media, such as a floppy disk, a hard disk drive, a RAM, CD-ROMs, DVD-ROMs, and transmission-type media, such as digital and analog communications links, wired or wireless communications links using transmission forms, such as, for example, radio frequency and light wave transmissions. The computer readable media may take the form of coded formats that are decoded for actual use in a particular data processing system.
The description of the present invention has been presented for purposes of illustration and description, and is not intended to be exhaustive or limited to the invention in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art. The embodiment was chosen and described in order to best explain the principles of the invention, the practical application, and to enable others of ordinary skill in the art to understand the invention for various embodiments with various modifications as are suited to the particular use contemplated.
The present invention is related to the following applications entitled “METHOD AND APPARATUS FOR IDENTIFYING PURPOSE AND BEHAVIOR OF RUN TIME SECURITY OBJECTS USING AN EXTENSIBLE TOKEN FRAMEWORK”, Ser. No. ______, attorney docket no. AUS920040248US1, filed on ______; “METHOD AND APPARATUS FOR TRACKING SECURITY ATTRIBUTES ALONG INVOCATION CHAIN USING SECURE PROPAGATION TOKEN”, Ser. No. ______, attorney docket no. AUS920040250US1 filed on ______. Both related applications are assigned to the same assignee and are incorporated herein by reference.