This invention relates in general to a method of manufacturing roofing shingles, and in particular to an improved method of stacking shingles.
Known methods for stacking shingles include U.S. Pat. No. 4,124,128 which discloses a catcher 30 having a pair of starwheels 32 and 33 which selectively flip shingles for subsequent stacking at a stacker and squarer 100.
Another known method for stacking shingles is disclosed in U.S. Pat. No. 4,384,813. U.S. Pat. No. 4,384,813 discloses a shingle stacker in which a star wheel catcher 20, a stack collection hopper 30, and a flipper arm 40 cooperate to catch, flip, and stack shingles.
Known methods of catching and/or stacking shingles often include accelerating the shingles to increase the space between sequential shingles. Such shingle acceleration is also disclosed in U.S. Pat. No. 4,384,813.
It is desirable however, to provide an improved method of stacking shingles.
The present application describes various embodiments of a method and apparatus for stacking shingles. One embodiment of the method of stacking shingles includes manufacturing a plurality of shingles having a granule covered surface and a bottom surface opposite the granule covered surface. Every other shingle is separated into first and second paths. The shingles in the second path are inverted 180 degrees. A shingle from the first path is positioned onto a shingle from the second path, such that the bottom surfaces of each shingle are engaged, thereby defining a stacked pair of shingles.
The present application also describes various embodiments of a shingle stacking apparatus including a first assembly for moving a stream of shingles. A diverter assembly engages and separates every other shingle in the stream of shingles into a first stream on a first conveyor and a second stream on a second conveyor. The second conveyor inverts 180 degrees from a first end to a second end thereof and the shingles on the second conveyor are also inverted 180 degrees. An inverted shingle from the second conveyor is first deposited on a shingle receiving portion, and a shingle from the first conveyor is then deposited on the inverted shingle, such that the bottom surfaces of the shingles from each of the first and second conveyors are engaged, thereby defining a stacked pair of shingles.
In another embodiment, the shingle stacking apparatus includes a diverter assembly. The diverter assembly engages and separates every other shingle in a stream of shingles into a first stream on a first conveyor and a second stream on a second conveyor. The second conveyor inverts 180 degrees from a first end to a second end thereof and the shingles on the second conveyor are also inverted 180 degrees. A shingle receiving portion is provided, wherein the first and second conveyors intersect such that an inverted shingle from the second conveyor is first deposited upon the shingle receiving portion, and a shingle from the first conveyor is then deposited on the inverted shingle from the second conveyor, such that the bottom surfaces of the shingles from each of the first and second conveyors are engaged, thereby defining a stacked pair of shingles.
Other advantages of the method of stacking shingles will become apparent to those skilled in the art from the following detailed description, when read in light of the accompanying drawings.
The present invention will now be described with occasional reference to the specific embodiments of the invention. This invention may, however, be embodied in different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art.
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The terminology used in the description of the invention herein is for describing particular embodiments only and is not intended to be limiting of the invention. As used in the description of the invention and the appended claims, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise.
Unless otherwise indicated, all numbers expressing quantities of ingredients, properties such as molecular weight, reaction conditions, and so forth as used in the specification and claims are to be understood as being modified in all instances by the term “about,” Accordingly, unless otherwise indicated, the numerical properties set forth in the specification and claims are approximations that may vary depending on the desired properties sought to be obtained in embodiments of the present invention. Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical values, however, inherently contain certain errors necessarily resulting from error found in their respective measurements.
As used in the description of the invention and the appended claims, the phrase “inverting 180 degrees” is defined as turning over, rotating, or flipping a shingle along its longest axis, such that the granule covered surface of the shingle is oriented 180 degrees opposite its starting position, and the headlap portion is oriented 180 degrees opposite its starting position.
Referring now to the drawings, there is shown in
In a first step 12 of the manufacturing process, a continuous sheet of substrate or shingle mat is typically paid out from a roll. The substrate can be any type known for use in reinforcing asphalt-based roofing materials, such as a nonwoven web of glass fibers. In a second step 14, a coating of asphalt is then applied to the sheet. The asphalt coating can be applied in any suitable manner sufficient to completely cover the sheet with a tacky coating of hot, melted asphalt. In a third step 16, granules are applied to the upper surface of the asphalt-coated sheet, thereby defining a granule covered sheet. Typically the granule covered sheet travels at a line speed greater than about 400 feet per minute, and may travel at a faster line speed, such as a line speed within the range of from about 600 feet per minute to about 800 feet per minute. Even faster line speed are possible.
In a fourth step 18, the granule covered sheet may be cut into continuous underlay sheets and continuous overlay sheets. In a fifth step 20, each continuous underlay sheet is directed to be aligned beneath a continuous overlay sheet, and the two sheets are laminated together to form a continuous laminated sheet. In a sixth step 22, the continuous underlay sheet is passed into contact with a cutter, including but not limited to a rotary shingle cutter that cuts the laminated sheet into a running series of laminated individual laminated shingles 48 ready of stacking and packaging.
As shown in
Referring again to the drawings, there is shown in
The first cam 72 has a first portion 72A having a substantially circular circumferential edge and a first radius R1. A second portion 72B has a substantially circular circumferential edge and a second radius R2. In the illustrated embodiment the first radius R1 is about 11 inches and the second radius R2 is about 13 inches. Alternatively, the first radius R1 can be any desired length relative to the second radius R2. For example, the dimensions of the cams 72 and 74 may be determined according to the formula:
(R1+R2)/2=2×the length of the shingle.
As best shown in
The illustrated cam plates 84 are about ½ inch thick. It will be understood that the cam plates 84 may be any desired thickness, such as within the range of from about ⅛ inch to about 3 inches thick. It will be understood that there will be sufficient space between each plate 84, such that the plates 88 of the diverter 86 may be disposed between adjacent cam plates 84 without engaging the cam plates 88. Alternatively, the first cam 72 may be formed having a continuous outer circumferential surface.
The second cam 74 is substantially identical to the first cam 72 and includes a first portion 74A and a second portion 74B. The second cam 74 rotates about a second axis of rotation A2.
As shown at the angle 76 in
A radially extending cam surface 78 is defined between the outer circumferential surfaces of the first portion 72A and the second portion 72B, respectively, of the first cam 72. Similarly, a radially extending cam surface 79 is defined between the outer circumferential surfaces of the first portion 74A and the second portion 74B, respectively, of the second cam 74. As shown in
The first and second axes of rotation A1 and A2 of the first and second cams 72 and 74, respectively, may be spaced any desired distance apart. In the exemplary embodiment shown in
In the illustrated embodiment, the plates 84 of the first and second cams 72 and 74 are vertically aligned (transverse to the axes A1 and A2). Alternatively, the plates 84 of the first cam 72 and plates 84 of the second cam 74 may be offset in the axial direction.
Referring now to
The diverter plates 88 may be formed from any suitable material. Examples of suitable materials include steel, engineered plastics, and aluminum. Any suitable wear resistant material suitable for use in a roofing material manufacturing plant, such as steel with a high-wear resistant circumferential surface, can be used. The selection of material, and number and dimensions of the plates 88 may be determined by the dimensions of the dimensions of the shingle used in the particular application.
The illustrated diverter plates 88 are about ½ inch thick. It will be understood that the diverter plates 88 may be any desired thickness, such as within the range of from about ⅛ inch to about 3 inches thick. Alternatively, an upper surface of the diverter 86 may be formed having a continuous planar surface.
As best shown in
A diverter guide member 94, the purpose for which will be explained in detail below, is disposed below and spaced apart from the diverter 86.
The exemplary embodiment of the diverter guide member 94 is formed from as a substantially planar member. If desired, the diverter guide member 94 may be formed from a plurality of substantially parallel and spaced apart diverter plates (not shown) fixedly mounted together in a manner similar to the diverter plates 88. It will be understood that the diverter guide member 94 may not be required. For example, if the shingles 48 travel fast enough between the cams 72 and 74 and the downstream shingle processing apparatus, the diverter guide member 94 may be omitted.
The diverter guide member 94 may be formed from any suitable material. Examples of suitable materials include steel, engineered plastics, and aluminum. Any suitable wear resistant material known to be suitable for use in a roofing material manufacturing plant, such as steel with a high-wear resistant circumferential surface and/or planar surface can be used. Any other suitable metal and non-metal may also be used. The selection of material, structure, and dimensions of the diverter guide member 94 may be determined by the dimensions of the shingle used in the particular application.
Referring again to
The first conveyor 96 includes a continuous conveyor belt 98 extending between a conveyor head pulley 100 and a conveyor tail pulley 102. An intermediate pulley 104 is disposed intermediate the pulleys 100 and 102.
The exemplary embodiment of the twister assembly 108 includes a first twister conveyor 110 and a second twister conveyor 118. The first twister conveyor 110 includes a continuous conveyor belt 112 extending between a conveyor head pulley 114 and a conveyor tail pulley 116. The second twister conveyor 118 includes a continuous conveyor belt 120 extending between a conveyor head pulley 122 and a conveyor tail pulley 124. An optional intermediate pulley 126 is disposed intermediate the pulleys 122 and 124
If desired, a speed-up roller 130 may be provided adjacent the tail pulley 124 to increase the speed of the shingle pairs 51 relative to the speed of the first and second conveyors. The speed-up roller 130 moves the shingle pairs 51 to a catcher, schematically illustrated at 132 in
Referring again to
Additional conveyor belts (not shown) or other structure (not shown), including but not limited to portions of the apparatus 68, may be provided adjacent the longitudinal edges of the continuous belts 112 and 120 to prevent the shingle from moving laterally outwardly from between the adjacent belts 112 and 120 while the belts 112 and 120 move in the direction of the arrow 128 and twist 180 degrees, as described above. Such other structure includes, but is not limited to, pairs of pin rolls (not shown) positioned on opposite sides of the twisted belt pair 112 and 120. The location of such pin rolls may include, but is not limited to a mid-point of the twister assembly 108.
The illustrated process of twisting and stacking involves moving individual shingles 48 in a machine direction (indicated by the arrows 106 and 128) through a diverter assembly 70, and the first conveyor 96 and the twister assembly 108.
In a first step of the twisting and stacking process, manufactured shingles 48, with the granule covered surface 49 facing upwardly, are engaged by a roller 64 and moved between the cams 72 and 74 of the diverter assembly 70. As shown in
The phase of the rotating cams 72 and 74 is controlled such that the cam surfaces 78 and 79 pass the point P) coincident with the passing of the end cuts E of any two sequential shingles 48, as best shown in
In a second step of the twisting and stacking process, a second of the series of spaced apart shingles 48, with the granule covered surface 49 facing upwardly, is engaged by a roller 64 and moved between the cams 72 and 74 of the diverter assembly 70. As shown in
As the shingle 48 moves with the belts 112 and 120 the shingle 48 is rotated 180 degrees as the belts 112 and 120 also twist 180 degrees between the head pulleys 114 and 122 and the tail pulley 116 and the intermediate pulley 126, respectively. The shingle 48 then emerges from the twister assembly 108, between the pulleys 116 and 126, such that the shingle 48 is disposed on the upper portion of the continuous belt 120 with the granule covered surface 49 facing downwardly. The first shingle 48 traveling on the first or upper conveyor 96 is then dropped onto the second shingle 48 traveling on the belt 120 at the region identified by the numeral 140, thereby defining a shingle pair 51. As shown in
In the illustrated embodiment of the apparatus for twisting and stacking shingle 68, the conveyors 96, 110, and 120 all travel at the same speed. To ensure that each shingle 48 of the pair of first and second shingles 48 simultaneously arrive at the region 140, the first conveyor 96 is about one shingle length longer than the first twister conveyer 110, as shown in
As explained above, the conveyors 96, 110, and 118 all travel at the same speed. In the embodiment described above, these conveyors travel at the same speed as the line speed of the shingles 48 that are being fed by the feed rollers 64 in an end-to-end condition into the diverter assembly 70. There is no need for the conveyors 96, 110, and 118 to be speeded up to operate at a speed greater than the line speed of the input stream of end-to-end shingles being fed through the feed rollers 64 because the diverter assembly is capable of separating every other shingle at the same speed as the line speed of the supply stream. It is to be understood that conveyors 96, 110, and 118 could be configured to operate at a faster speed than that of the input stream if needed for another purpose.
The shingle 48 has been described as a two-layered laminated shingle. It will be understood however, that the method and apparatus for stacking shingles described herein may be successfully practiced with any desired shingle, including, but not limited to a single layer shingle or a laminated shingle having more than two layers.
In one embodiment, a mechanism, not shown, can be used to pinch or squeeze the twister conveyors 110, and 118 together in the vicinity of the midway point between the two ends of those conveyors, i.e., midway between the conveyor head pulleys 114 and 122 and the conveyor tail pulleys 116 and 124. The purpose of the mechanism is to prevent the shingles carried by the twister conveyors 110 and 118 from falling out or slipping when the shingles and conveyors are oriented vertically. Such a mechanism can take a number of forms. In one embodiment the mechanism includes the use of a rim or lip on the edge of the twister conveyors 110 and 118 to prevent vertical slippage of the shingles. In another embodiment, one or more pairs of rollers, not shown, are used to pinch the twister conveyors 110 and 118 together at the point of vertical orientation. Such rollers can be an opposed pair of rollers arranged to be spaced apart from each other with a gap slightly less than the thickness of the thickest portion of the expected shingle and the thickness of the two conveyors twister 110 and 118. In one embodiment the rollers are 4 inch diameter wheels with a wheel surface having a width of about 1 inch. Any number of pairs of rollers can be used, with the pairs being spaced apart from each other along the middle portion of the twister conveyors 110 and 118. For example, three pairs of rollers could be employed.
Although a pair of twister conveyors 110 and 118 is shown for inverting the shingles, it is to be understood that in other embodiments a single conveyor could be configured to convey the shingles while inverting them.
The principle and mode of operation of the method of stacking shingles have been described in its preferred embodiment. However, it should be noted that the method of stacking shingles described herein may be practiced otherwise than as specifically illustrated and described without departing from its scope.