The invention relates to a method and an apparatus for handling slabs, in particular, those produced by continuous casting, where the faces of the slabs are ground in a rolling mill train before rolling, and the slab lying on a reversing grinding table is moved back and forth under a grinding assembly of a grinding machine disposed in a grinding cabin, the grinding table being moved in a straight line out of the grinding cabin after the grinding of its face, the slab being raised from the grinding table and delivered to a turner, and where after being turned the slab is removed from the turner and transferred to the grinding table with the other unworked face facing up, the table then returning into the grinding cabin to allow machining of this face.
A typical approach in practice in particular is to have the wide and optionally also the narrow sides of the slabs ground before rolling in a rolling mill train according to the above-indicated procedure, which slabs have been continuously cast and cut to the desired length
In order to convey and turn the slabs, the equipment employed for this purpose requires numerous mechanical parts and large complex hydraulics—in particular, in addition to the turners and conveyor equipment that receive the continuously cast workpiece and deliver it to the immediately following working station, or that maintain the flow of material. This is because cross-conveyor or low-profile trolleys running on rails must first be moved onto the grinding table, which then also must be equipped with rails for this purpose, thereby resulting in a heavy design capable of removing the slab raised by hydraulic supports from the grinding table. The multiple cross-conveyor trolleys running side-by-side in parallel on separate rails then transfer the received slab to a stationary slab-turner, for example a tilting cradle. The slab turned here is positioned in a stationary slab-holding zone, raised off it by the cross-conveyor trolley, and conveyed back onto the grinding table.
The object of this invention is therefore to provide a significantly simplified method and apparatus to effect handling during the grinding of continuously cast slabs, while simultaneously having significantly reduced mechanical complexity.
This object is achieved by a method according to the invention in which the slab is moved by a slab manipulator including a rotating slab clamping and lifting means that serves to both convey and turn the gripped slab. This thus allows all relevant functions of conveying, raising, lowering, clamping, and turning the slabs to be integrated into one assembly, specifically the multifunction slab manipulator, that is programmed for this purpose from a central controller.
A preferred embodiment of the invention provides an approach whereby the slab, which has been positioned on the grinding table, has been temporarily held in a stationary holding zone, or has been delivered by a roller conveyor, can be engaged by a slab manipulator that is moved up from a starting position, that is laterally offset from and parallel to the slab, and that grasps the slab with opened slab clamping and lifting means, after which the slab clamping and lifting means is closed and the slab manipulator with the gripped slab is moved to a turning station in which the slab is rotated by the slab clamping and lifting means, and the slab clamping and lifting means is then moved over the grinding table, whereupon the slab clamping and lifting means is lowered until the slab rests on the grinding table and is then opened, and, after depositing the slab, the slab manipulator is moved into its starting position laterally offset to a position parallel to another slab. Nothing changes in the sequence if the slab is deposited for temporary holding in a holding zone instead of being deposited immediately on the grinding table.
The result preferably achieved is that the slab manipulator can be transversely moved as desired between at least one available grinding table, one or more stationary slab-holding zones, or the turning station, or optionally a roller conveyor to receive a slab to be ground, or to allow removal of the completed ground slab. The multifunction slab manipulator, whose substructure can be constructed of concrete for the running track or rails of the cross conveyor, thus performs all logistical functions.
A continuous grinding operation and continuous loading of a slab to be worked into the grinder not momentarily grinding can be ensured when operating preferably two grinding machines situated adjacent each other at a certain spacing, while temporarily holding them in slab-holding zones. When in the starting position of the conveying and turning cycle, the slab is thus located either on a grinding table or in a stationary slab-holding zone. When in the turning station between, for example, two stationary slab-holding zones and/or the grinders, the slab manipulator has sufficient clearance to pivot the slab 180° to allow grinding of the wide faces.
An apparatus according to the invention, in particular, one to implement the method, provides an approach wherein at the outlet end of at least one grinder in which the grinding table has been longitudinally moved with the slab resting thereon, a slab manipulator is provided that is movable transversely thereto, the manipulator having a traveling frame with synchronously driven turning mechanism frames on each side, the traveling frame spanning the length of the grinding table, wherein the turning mechanism frames are each linked to each other through one upper and one lower lifting cross-member that are raisable and lowerable in the turning mechanism frames, and wherein the one lifting cross-member is provided with support elements that extends under the lower slab face while the other lifting cross-member is provided with support elements that extend over the upper slab face. Once the slab has been received between the two lifting cross-members, the lower support element carries the slab while it is clamped and gripped by moving down the other support element.
In order to effect the vertical adjustment of the lifting cross-members extending over and under the slab, these cross-members are linked to the turning mechanism frame preferably by hydraulic cylinders, and are also advantageously mounted on guides of the turning mechanism frames.
In a preferred proposed approach of the invention, the lifting cross-members are raisable and lowerable independently of each other. When in the holding position, only one of the lifting cross-members thus has to be lowered and then moved under the slab coming from the side until the narrow side of the slab contacts a stop advantageously provided on the lifting cross-members. The lower lifting cross-member is then raised while the upper lifting cross-member is lowered only at a later point to clamp and grip the slab. After the turning procedure, the lower lifting cross-member takes over the function of the upper lifting cross-member, then once again visa versa.
Turning the slab can be advantageously done by providing the turning mechanism frames with a pivotal mount for the traveling frame, the pivotal mount being operated by a rotary drive. A geared motor is preferably employed as the rotary drive.
In another proposed approach according to the invention, the lifting cross-members are provided with prong-like support rods as support elements that are offset relative to each other in the longitudinal direction of the cross-member. Holding, as well as clamping or gripping the slab is effected here by linear contact faces and support elements that are offset at the top and bottom along the length of the slab.
To this end, the invention provides an approach whereby the support rods overlap each other and extend beyond half the maximum slab width and beyond the minimum slab width. The width of this type of slab to be manipulated can be, for example, 800 mm up to 1700 mm, with a length of 5000 mm up to 12,000 mm, and thicknesses of 150 mm up to 240 mm.
The prong-like support rods of the lower and upper lifting cross-members are consequently of a length that enables any slab appearing the intended width spectrum to be reliably received, clamped, and turned.
Additional details and advantages of the invention are revealed in the claims and following description in which an embodiment of the invention, which is illustrated in the figures, is described more fully. Therein:
a is a diagram corresponding to
b is a diagram corresponding to
Two grinders that are not shown in
In the embodiment of
The slab manipulators each have a circumferentially closed traveling frame 13 that spans the respective substructure 6 with the two tracks 7a and 7b (see
The upper and lower lifting cross-members 14a and 14b are provided with respective prong-like support rods 21a and 21b serving as supporting and holding elements. The support rods 21a of the lower lifting cross-member 14a are offset in the longitudinal direction of the cross-member relative to the support rods 21b of the upper lifting cross-member 14b (see
In the starting position of the conveying and turning cycle, the slab 2a or 2b is either on the grinding table 12a or 12b, or in one of the holding zones 10a, 10b, 10c, or 10d. The slab manipulator 9 can travel on the substructure 6 as desired over the slab-holding zones 10a through 10d, and the grinding tables 12a, 12b take care of the desired distribution of the slabs. In order to receive a slab, the slab manipulator 9 is moved with opened lifting cross-members 14a and 14b into a position parallel to the holding zone 10a through 10d, or to the grinding table 12a or 12b as illustrated in
As soon as the slab manipulator 9 has moved to adjacent a grinding table or a stationary slab-holding zone, and is in a position parallel thereto as shown in
The lower lifting cross-member 14a with the slab above on it is then raised, after which the upper lifting cross-member 14b is lowered down to grip the slab as illustrated in
Number | Date | Country | Kind |
---|---|---|---|
10 2009 037 784.0 | Aug 2009 | DE | national |
10 2010 025 250.6 | Jun 2010 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP10/04819 | 8/6/2010 | WO | 00 | 12/1/2011 |