The present invention relates to the field of food science, and, more particularly, to the area of aseptically handling food products.
In the field of food processing, it is common to process food at one location and transport bulk quantities to another location for further processing or final packaging. Various methods have been developed for containing and transporting food products. For example, fruit juice or milk is often processed at one facility and sent to another facility for final packaging. The two facilities may be located in close proximity to each other or may be in different countries. Because food products are susceptible to degradation due to microbial spoilage, various processing methods are used to retard or prevent the growth of microorganisms during this transportation and storage. These include sterilizing the food product inside a container, hot-filling a clean container, or putting the sterile food product into a sterile container. Other methods include freezing, refrigeration or the use of preservatives.
Disadvantages of sterilizing inside a container include the expense of such a container and the food product degradation due to the amount of heat required. Also, because of the need to sterilize the cold point of the food product, this type of processing is common for final packaging, but not typically done for bulk products. Bulk food product is food product in a quantity that is much larger than that in the final retail or food service package. Bulk food product is typically more than 50 gallons, for example. Likewise, hot filling is typically used for final packaging, but not for bulk products.
In contrast, freezing is a typical method for processing bulk products for transportation. For example, pasteurized fruit juices are often filled into 55 gallon drums, often with a drum liner, and then frozen prior to shipping. Disadvantages of freezing include the energy required for freezing, the energy required to keep the product frozen during the transportation and storage cycle, and the cost of the drums. Additional disadvantages include the potential physical and chemical changes of the product due to freezing. For example, when citrus pulp cells are frozen, the cell walls are disrupted. Upon thawing, the pulp cells have different physical characteristics than pulp cells that have not been frozen.
There are many disadvantages to the use of chemical preservatives for certain food products. These include consumer perception and changes in flavor. In many food products, the use of preservatives is not allowed under standard of identity or by law.
For certain food products, the method of putting a sterile food product into a sterile container has many advantages over the above mentioned processes. This method is typically referred to as aseptic processing. In aseptic processing, a food product is pasteurized to a point where it is considered commercially sterile. In such a state, there is a very low probability of the presence or growth of microorganisms. The sterilized food product is then placed into a sterile container in such as way as to avoid the introduction of microorganisms. Aseptic processing can be used to put sterilized food product into the final consumer container (for example, shelf stable milk or juice) or can be used to store and transport bulk food products in an aseptic state. For example, juices and tomato products are often pasteurized and aseptically filled into 300 gallon bags for storage and transportation to other food processing facilities. Likewise, juices may be pasteurized and aseptically filled into large permanent bulk containers (currently up to two million gallons) for storage prior to blending and packaging.
The most common form of aseptic food product transportation includes the use of 300 gallon bags as mentioned above. Such a bag is filled within a disposable or re-usable container such as a wooden box, or re-usable plastic container, and the bag is sealed with a cap after filling. The wooden or plastic container supports the bag and allows for the boxes to be stacked during transportation. Citrus pulp is currently aseptically filled into such “bag-in-the-box” containers. While widely used, the disadvantages of this method include the cost of the bags and the boxes. When shipped overseas, the return of empty boxes for further use incurs additional cost. An additional disadvantage of such a system is that the bags cannot be aseptically unloaded. At the point of use, the bags are cut open and the product is dumped or pumped out of the bags. It is therefore necessary to further pasteurize the product prior to final packaging.
Another method of aseptic transportation involves the use of aseptic tankers or rail cars and over-the-road containers. The rail cars typically had cone shaped hoppers on the bottom. This method was used by Bishopric Products Co. (formerly of Cincinnati, Ohio) to transport tomato product (Food Technology, July 1976). Tankers were sterilized through the use of steam or chemical sterilant (iodophor, for example) and then filled with sterile product. Such food product was kept under pressure with sterile gas during transportation and was successfully transported in an aseptic state from one site to another.
For example, U.S. Pat. No. 3,209,675 discloses an apparatus for the aseptic transportation of perishable liquids. The apparatus described is a transportable container, sterilized by a chemical sterilant (peracetic acid) and kept pressurized during transportation by the use of a cylinder of inert gas. U.S. Pat. Nos. 6,030,580 and 6,277,328 also disclose a method of aseptically transporting bulk food product in a transportable container. The use of aseptic tankers or rail cars as described in these patents overcomes the cost of bags and boxes and provides for a more economical method of transporting aseptic product.
Hawaii Intermodal Tank Transport LLC, of Palmetto, Fla., supplies aseptic intermodal containers for the aseptic transportation of food product. Such intermodal containers use the same principles as mentioned above for aseptic tankers and rail cars, but provide the additional advantage of being configurable to be transportable by truck, rail or ship. Juice is currently being aseptically transported in such intermodal containers.
With reference to
While providing a safe and economical method to aseptically transport liquid food products, the use of aseptic tankers, rail cars and intermodal containers does not lend itself to the aseptic transportation of high viscosity products, such as, for example, tomato paste, high viscosity fruit purees or citrus pulp. High viscosity food products may be considered as food products that do not readily flow by gravity. These products, if placed into a typical tank with a free-draining bottom will not flow out of the tank or will flow at such a slow speed that gravity draining is impractical. Such products may be pumpable with the correct pump selection and can thus be pumped into an aseptic container. However, because these products do not readily flow by gravity, it is not easy to remove such high viscosity food products from such a container.
An intermodal container typically also includes an aseptic filling/discharge valve that is used to both fill and discharge the food product. When switching from one container to another, a hose is disconnected from one container and connected to another. Since the hose is disconnected and exposed to the atmosphere, the aseptic condition is lost. Therefore, the hose is re-sterilized when connected to the next container. In addition, an outer chamber of the filling valve is also sterilized before passing sterile food product through the valve. This sterilization process may require a substantial amount of time between containers. Since it is a manually intensive process, it may be susceptible to user-error which could result in product contamination. Such aseptic filling of tanks and containers is disclosed, for example, in U.S. Pat. Nos. 3,951,184 and 4,047,547, the entire disclosures of which are incorporated herein by reference in their entireties.
U.S. Pat. No. 3,209,675, for example, discloses an apparatus for the aseptic transportation of perishable liquids. The apparatus described is a transportable container, sterilized by a chemical sterilant (peracetic acid) and kept pressurized during transportation by use of a cylinder of inert gas. U.S. Pat. Nos. 6,030,580 and 6,277,328 both describe the aseptic transportation of food product with a chemical sterilant.
Juice and other liquid food products are currently being aseptically transported in intermodal containers by Hawaii Intermodal Tank Transport. The intermodal containers can be transported by truck, rail or ship, and they are filled and discharged through a single valve located on the low point of the tank. Re-sterilization of the filling line is required between each container.
In view of the foregoing background, an object of the present invention is to provide a method for the efficient aseptic handling of food products, such as food products having a high viscosity.
These and other objects, features and advantages in accordance with the invention are provided by a method for handling a sterilized food product including sterilizing an intermodal container comprising a rigid shell having an elongate shape with opposed closed ends and a discharge port in one of the closed ends, and at least one support frame assembly supporting the rigid shell and configured to permit rotation between a generally horizontal orientation and a generally upright orientation. The method may also include aseptically filling the intermodal container with the sterilized food product; and transporting the filled intermodal container in the generally horizontal orientation via at least one of rail, truck, and ship and while maintaining the sterilized food product in aseptic conditions. In addition, the method may also include rotating the intermodal container to the generally upright orientation, and emptying the sterilized food product from the discharge port. Accordingly, a bulk quantity of sterilized food product may be efficiently transported and emptied from the intermodal container using the advantage of gravity-based emptying. Of course, the method is particularly advantageous for such emptying when the sterilized food product comprises a viscous sterilized food product, such as citrus pulp, for example, or other food product having an absolute viscosity of greater than 500 centipoise.
The rotating may comprise engaging the at least one support frame assembly with a lifting device. The generally upright orientation may be at an angle greater than 40° from horizontal, and the generally horizontal orientation may be less than 40° from horizontal.
In typical embodiments, the intermodal container may have a capacity greater than 10,000 liters. The discharge port may be in a medial portion of the closed end of the intermodal container, in contrast to a lower or peripheral portion of the closed end. In addition, the closed end of the intermodal container having the discharge port therein may have a conical shape, and the discharge port may be at an apex of the conical shape.
The method may also include supplying a sterile gas to maintain a positive pressure within the intermodal container, such as during transporting, and also during emptying. The method may further include maintaining at least one of a desired pressure and desired temperature within the intermodal container during transporting. The desired pressure and/or desired temperature may be recorded or wirelessly transmitted, for example. In addition, the sterilizing may comprise sterilizing the interior of the intermodal container using at least one of steam and a chemical sterilant.
Another method aspect is also for handling a sterilized food product having an absolute viscosity of greater than 500 centipoise. The method may comprise rotating an intermodal container filled with the sterilized food product having the absolute viscosity of greater than 500 centipoise to a generally upright orientation from a generally horizontal orientation. The intermodal container may comprise a rigid shell having an elongate shape with opposed closed ends and a discharge port in one of the closed ends, and at least one support frame assembly supporting the rigid shell and configured to permit rotation between the generally horizontal orientation and the generally upright orientation. The method may also comprise emptying the sterilized food product having the absolute viscosity of greater than 500 centipoise from the discharge port while the intermodal container is in the generally upright orientation.
Another aspect is directed to an intermodal container for handling a sterilized food product. The intermodal container may include a rigid shell for maintaining the sterilized food product in aseptic conditions and having an elongate shape with opposed closed ends and a discharge port in a medial portion of one of the closed ends. The intermodal container may also include at least one support frame assembly supporting the rigid shell and configured to permit rotation of the rigid shell between a generally horizontal orientation for transporting, and a generally upright orientation for emptying the sterilized food product through the discharge port.
The rigid shell may have a capacity greater than 10,000 liters. In addition, the closed end of the rigid shell having the discharge port therein may have a conical shape, and the discharge port may be at the apex of the conical shape. The conical shape may define an included angle greater than 45° and less than 90°, for example.
The at least one support frame assembly may comprise respective first and second rectangular frames connected to respective ones of the opposed closed ends. The rigid shell further may have a gas port permitting a flow of sterile gas to maintain a positive pressure within the rigid shell, such as during transporting and/or emptying. The rigid shell may further have a sterilized food product filling port therein, and a manway port therein.
In some embodiments the intermodal container may comprise a thermal insulation layer adjacent the rigid shell. In addition or alternatively, the intermodal container may include a refrigeration unit coupled to the rigid shell.
The intermodal container may also comprise at least one of a temperature sensor and a pressure sensor associated with the rigid shell, and a data recorder to record at least one of the temperature and pressure. Further, the intermodal container may comprise a wireless transmitter to wirelessly transmit at least one of the temperature and pressure.
The present invention will now be described more fully hereinafter with reference to the accompanying drawings, in which preferred embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Like numbers refer to like elements throughout, and prime and multiple prime notation are used to indicate similar elements in alternative embodiments.
Referring initially to the flowchart 50 of
In some embodiments, the intermodal container may be of the conventional type described above and offered by Hawaii Intermodal; however, in other embodiments, the intermodal container may be of the advantageous types as described below. The intermodal container may include at least one support frame assembly supporting the rigid shell and configured to permit rotation between a generally horizontal orientation and a generally upright orientation.
The generally upright orientation may be at an angle greater than 40° from horizontal, and the generally horizontal orientation may be less than 40° from horizontal. Of course, oftentimes it may be that the intermodal container is transported in a nearly exact horizontal orientation, and that the intermodal container is emptied in a fully upright or vertical orientation as will be appreciated by those skilled in the art.
The method also includes aseptically filling the intermodal container with the sterilized food product at Block 56. At Block 58 the method also includes transporting the filled intermodal container in the generally horizontal orientation via at least one of rail, truck, and ship and while maintaining the sterilized food product in aseptic conditions. At the desired emptying destination, the method includes at Block 60 rotating the intermodal container to the generally upright orientation, and emptying the sterilized food product from the discharge port (Block 62) before stopping at Block 64. The method advantageously permits a bulk quantity of sterilized food product to be efficiently transported and emptied from the intermodal container using the advantage of gravity-based emptying. The emptying may also be carried out aseptically as will be appreciated by those skilled in the art.
The method is particularly useful for such emptying when the sterilized food product comprises a viscous sterilized food product, such as citrus pulp, for example, or other food product having an absolute viscosity of greater than 500 centipoise. Attempting to pump such a viscous food product in a conventional fashion from a conventional intermodal container in the horizontal orientation may take a relatively long time and/or leave an undesirably large amount of food product within the container as will be appreciated by those skilled in the art.
With additional reference to
The intermodal container 70 is illustratively lifted from the truck bed 80 (
In typical embodiments, the intermodal container may have a capacity greater than 10,000 liters, and typically about 24,000 liters, for example. Unlike a conventional intermodal container 30 as shown in
As will be appreciated by those skilled in the art, the method may also include supplying a sterile gas to maintain a positive pressure within the intermodal container 70, such as during transporting or storage, and also during emptying, as the positive pressure helps maintain the aseptic conditions for the sterile food product and may help in emptying the rigid shell 71. Additionally, the method may further include maintaining at least one of a desired pressure and desired temperature within the intermodal container 70 during transporting. The desired pressure and/or desired temperature may be recorded or wirelessly transmitted.
Referring now additionally to
The intermodal container 70′ also illustratively includes a temperature sensor 101′ and a pressure sensor 102′ coupled to or positioned within the rigid shell 71′. A data recorder in the form of a temperature and/or pressure monitor 103′ is coupled to the sensors 101′, 102′. This monitor 103′ can include electronic circuitry carried by the rigid shell 71′ or carried by one of the support frame assemblies, for example. The monitor 103′ can be manually read as desired, or, as shown in the illustrated embodiment, the data stored by the monitor may be wirelessly downloaded via the wireless transceiver 104′ as will be appreciated by those skilled in the art. The data may be exceedance data or just periodically sampled data, for example.
In the embodiments where it is desired to keep the sterilized food product at a temperature lower than ambient, a refrigeration unit 105′ may be coupled to the rigid shell 71′. The refrigeration unit 105′ may be carried by one of the support frame assemblies or by the rigid shell 71′.
With particular reference to
The rigid shell 71′ further has a sterilized food product filling port 91′ therein, and a manway port 92′ therein. The gas port 90′ may include a suitable fitting coupled thereto, not shown, for external connection. The food product filling port 91′ may also include a suitable fitment, not shown, coupled to the port. And the manway port 92′ may have a suitable manway hatch, not shown, associated therewith. Other configurations of ports are also possible as will be appreciated by those skilled in the art.
Another aspect relates to a method for aseptically filling the intermodal container 70′. Referring to the flowchart 120 of
The intermodal container 70′ may be of the type described above, although the placement of the discharge port in a medial portion of the rear closed end is not necessary to these embodiments directed to filling. Of course, the discharge port placement, conically shaped closed end, and aseptic fitment as now described may be advantageously used in combinations or all together in some embodiments.
The method also includes sterilizing the intermodal container (Block 126) and aseptically filling the sterilized intermodal container with the sterilized food product through the aseptic fitment at Block 128. At Block 130 the method also includes sealing the aseptic fitment after aseptic filling. The filled intermodal container 70′ may be transported (Block 132) before emptying (Block 134) and before stopping at Block 136.
As already explained, after aseptic filling the method may also include maintaining at least one of a desired pressure and desired temperature within the intermodal container during transporting. The method may include recording at least one of the desired pressure and desired temperature, and wirelessly transmitting the data. The sterilizing may be performed using at least one of steam and a chemical sterilant. Accordingly, the method permits large bulk quantities of sterilized food product to be aseptically transported, and without additional sterilization and/or pasteurization steps.
Turning now additionally to
Of course, the relatively large intermodal container 70′ will typically be maintained in a fixed position during aseptic filling, such as when positioned on the bed of a truck. Accordingly, filling comprises aligning the moveable aseptic filling head 142 relative to the intermodal container 70′, since the intermodal container is stationary.
To facilitate aligning the moveable aseptic filling head 142 relative to the rigid shell 70′ and the aseptic fitment 150′, the filling head may have coupled thereto at least one sensor 145. The sensor 145 may operate based upon at least one of optical, mechanical and electrical sensing. For example, the sensor 145 may be a camera. Of course other configurations and types of sensors may be used. In addition, the intermodal container 70′ may include at least one alignment feature 146′ adjacent the aseptic fitment 150′. For example, the alignment feature 146′ may comprise an optically viewable pattern of indicia, mechanically sensed ridges or patterns, or capacitive or inductive components for electrical sensing as will be appreciate by those skilled in the art. In some embodiments, no alignment feature may be needed on the rigid shell 70′, such as for optical sensing using a camera, for example.
The truck carrying the intermodal container 70′ may be positioned within a range of possible motion of the moveable filler head 142, and, thereafter, the moveable filler head 142 may guide itself into precise engagement with the aseptic fitment 150′, or may be guided with the assistance of an operator.
In some embodiments, the aseptic fitment 150′comprises a membrane-type aseptic fitment, and the moveable aseptic filling head 142 is compatible with the membrane-type aseptic fitment. In other embodiments, the aseptic fitment 150′ comprises a cap-type aseptic fitment, and the moveable aseptic filling head 142 is compatible with the cap-type aseptic fitment. The method may further comprise supplying a sterile gas to maintain a positive pressure within the intermodal container 70′ during aseptic filling. The sterile gas may be introduced through the gas port 90′ (
The sterilized food source 144 may contain a viscous sterilized food product having an absolute viscosity of greater than 500 centipoise, such as sterilized citrus pulp. In other embodiments, the sterilized food product may comprise sterilized fruit or vegetable juice, or other fluid food product as will be appreciated by those skilled in the art.
Other aspects and features of the intermodal container 70′ have already been described with respect to transporting and emptying, and these same features are also advantageous for aseptically filling and transporting. For example, the optional refrigeration, insulation, and data logging may also be used after aseptic filling through the aseptic fitment 150′ as will be appreciated by those skilled in the art.
The conventional filling approaches typically require the re-sterilization of the feed pipe and hoses during every filling cycle. These approaches are time consuming and susceptible to possible contamination.
An aseptic filling head for the bag containers is known in the art. For example, U.S. Pat. Nos. 4,445,550 and 4,805,378 each discloses such an aseptic filling head and each is incorporated herein by reference in its entirety.
An aseptic fitment with a frangible membrane (rupture disk) is described in U.S. Pat. No. 4,494,363, incorporated herein by reference in its entirety, and assigned to FranRica Mfg. Inc. This type of fitment is currently made by companies such as Scholle Corporation of North Lake, Ill. under the model designations 1700 and 5100. An aseptic fitment with a plastic cap is disclosed in U.S. Pat. Nos. 4,355,742 and 4,120,134 each incorporated herein by reference in its entirety. Scholle Corporation also makes the cap-type fitments under the model designations 800X, 800L and 2600. Other prior art packaging material and filling apparatus are disclosed U.S. Pat. Nos. 3,514,919; 2,930,170; 3,340,671; 3,356,510; 3,427,646; 4,137,930; and 4,201,208 each incorporated herein by reference in its entirety.
Bag-in-box (300 gallon) containers and other packaging materials as disclosed above are currently being filled with aseptic filling heads. However, these are flexible bag containers with limited capacity and that are also not pressurized. In these systems, the filling head is fixed in the x-y plane and the fitment of the flexible container is moved to mate with the filling head. Over the road tankers and intermodal containers are currently being filled through a common filling/discharge valve. Unfortunately, sterilization of the valve and filling hose is required between each tanker. The methods, intermodal containers and filling station described herein overcome these and other deficiencies of the prior art approaches.
For a membrane-type fitment, during filling the moveable aseptic filling head 142 is aligned and sealed against the aseptic filling fitment 150′. The external surfaces of the aseptic fitment and filling head are then sterilized by steam or chemical sterilant. The rupture membrane is broken by the filling head and sterile food product is introduced into the intermodal container 70′. A sterile cap is sealed over the fitment while still under sterile conditions, and the aseptic filling head 142 is removed from the aseptic fitment 150′. For a cap-type fitment the cap is first removed, then replaced after filling.
Further aspects of the embodiments described herein are now described with additional reference to
The aseptic filling head 190 includes a movable frame 191 that allows the aseptic filling chamber 192 to move in the x-y plane to align with the aseptic fitment 200. The aseptic filling chamber 192 includes alignment features in the form of alignment rod receiving recesses 193 cooperating with the alignment rods 194 for aligning the filling head 190 with respect to the manway cover 189, and, hence, with respect to the aseptic fitment 200. Contact and/or proximity sensors 195 are also provided for sensing when the filling chamber 192 is in the correct upright position relative to the intermodal container 180. The filling chamber 192 may be one of many types available in the industry, such as those made by JBT Corporation or Scholle Corporation. The aseptic filling head 190 also illustratively includes an actuator 196 for upright movement (i.e. along the z-axis) and a flexible hose 197 for the transport of the food product.
Other parts of the intermodal container 180 include a product discharge valve 184, and a gas line 186 having an inlet 187 for introducing sterile gas into the container through a sterile gas filter cartridge 185 as shown in
Referring now additionally to
The fitment body 201 also includes a clamping flange 207 to accommodate the clamping jaws of the filling head 190, a threaded neck 208 adapted to receive the screw cap 203, and a beveled clamping shoulder 210 for clamping onto a receiving tank ferrule 211 (
An alternative embodiment of the membrane-type aseptic fitment 200′ is shown in
Another alternative embodiment of the membrane-type aseptic fitment 200″ is now described with specific reference to
The membrane-type aseptic fitment 200 as assembled onto the intermodal container 180 is further described with more specific reference to
As best shown in
Turning now to
An alternative embodiment of the cap-type aseptic fitment 220′ is shown in
Another alternative embodiment of the cap-type aseptic filling fitment 220″ is shown in
The cap-type aseptic fitment 220 is assembled onto the intermodal container 180 at a receiving ferrule 211 that is connected to the manway cover 189 of the intermodal container 180 as shown in
The only surface of the cap-style filling fitment 220 that is not sterilized during the container sterilization process or the aseptic filling process is the contact surface 235 (
After filling and sealing either of the aseptic fitments 200, 220 a hinged protective cover 236 may be positioned over the fitment to protect the fitment during transportation, as shown in
In addition, other features relating to the area of aseptically handling food products are disclosed in the copending patent application filed concurrently herewith and assigned to the assignee of the present invention and is entitled METHOD AND APPARATUS FOR ASEPTIC FILLING OF FOOD PRODUCT, attorney work docket number 11-14134/56111, the entire disclosure of which is incorporated herein in its entirety by reference. Many modifications and other embodiments of the invention will come to the mind of one skilled in the art having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. For example, the methods and structures disclosed herein for intermodal containers could also be applied to over-the-road tankers, and/or railcars as will be appreciated by those skilled in the art. Therefore, it is understood that the invention is not to be limited to the specific embodiments disclosed, and that modifications and embodiments are intended to be included within the scope of the appended claims.