The present invention pertains to the field of hemometry. The present invention pertains more particularly to hemometry performed on human tissue.
Diffuse optical imaging techniques are known in medical and biological applications. Overviews of diffuse optical imaging techniques can be found in “Recent Advances in Diffusion Optical Imaging” by Gibson, et al, Phys. Med. Biology, vol. 50 (2005), R1-R43 and in “Near-infrared Diffuse Optical Tomography,” by Hielscher, et al, Disease Markers, Vol. 18 (2002), 313-337. Briefly, diffuse optical imaging involves the use of near-infrared light incident upon a sample of interest. An example in the medical and biological field is optical mammography where near infrared light is used to illuminate breast tissue. A detector is placed on the opposite side of the breast from the incident light some distance away and collects scattered light from the breast tissue. The scattered light of interest that is detected may be directly scattered incident light or scattered fluorescence light caused by the excitation of an injected fluorescing material that fluoresces when exposed to the incident light. By measuring the amplitude of the light of interest at the detector and the distribution of photon arrival times at the detector for various source and detector positions, a reconstruction of the underlying tissue optical properties can be made. An overview of image reconstruction techniques can be found in the citations given in the aforementioned review articles.
Measurements of the photon flight-time distributions are typically carried out using either a time-domain or a frequency-domain technique. In the time-domain technique, the sample is excited with pulse of light from a pulsed laser and the scattered light is measured using a detector with single-photon sensitivity. The detector measures the time delay between the excitation pulse and the first detected photon. The flight-time distribution is determined by using many repeated pulses and building up a histogram of the measured time delays. Unfortunately, the pulsed laser sources and single-photon detectors are relatively expensive. Because detection is typically done at the single-photon level, it can require a significant amount of time to build-up enough data to approximate the flight-time distribution. One disadvantage of the frequency-domain approach is that it is not a direct measurement of the photon flight time. Rather, it provides an estimate of the mean flight time based on the phase shift between a detected signal and the excitation signal. In some cases, more accurate image reconstructions can be obtained using more complete measurements of the flight-time distributions. This data is not readily obtained with frequency-domain instrumentation. A further disadvantage of the frequency-domain approach is the need for accurate high-frequency analog electronics. An overview of both the time-domain and frequency-domain techniques can be found in the above-referenced article by Hielscher, et al.
U.S. Pat. No. 5,565,982 discloses a time-resolved spectroscopy system using digital processing techniques and two low power, continuous wave light sources. The disclosed system requires two light transmitters of different wavelengths modulated with separate codes for interrogating a sample of interest. Properties of the sample are inferred by differential comparison of the return signals from each of the two light sources. It is undesirable to have two distinct light sources due to the cost and complexity involved. Furthermore, the noise level associated with a measurement made with two separate light sources will be higher than with a single source even if the codes used to drive the two sources are orthogonal. It is desirable to have a means of interrogating a particular tissue volume with a single light source at one wavelength in order to obtain temporal information.
When measurements of the concentration of an analyte in blood or in tissue are desired, variable conditions within the patient can contribute noise. For example, bone may obstruct a certain photon path, or changes in blood vessel volume may cause variation across measurements. One manner of isolating a signal from arterial blood is to perform measurements at both the systole and diastole of a pulse, and use the measurement at the diastole to subtract all signal elements that do not come from arterial blood.
However, many patients for whom these measurements could provide valuable data have soft or weakened pulses. What is needed is a manner of performing in vivo determination of blood analytes in patients with a weak pulse.
The present invention pertains to a method and apparatus for hemometry in humans. The system for hemometry has a signal generator for generating a digital modulation signal representing a code sequence and an optical illumination source for receiving the digital modulation signal and for transmitting a modulated optical signal along an optical transmission path to a target area in human tissue in response to the digital modulation signal. The system for hemometry also has a pressure-applying device for applying pressure to the human tissue proximal to the target area. A detector for receiving the modulated optical signal after transmission through human tissue and a processor for deriving a temporal transfer characteristic for the optical signal and for determining the concentration of an analyte based on the temporal transfer characteristic are also included in the system. In another embodiment, a method for hemometry involves generating a digital modulation signal associated with a code sequence and generating a modulated optical signal based on the digital modulation signal. It also involves applying pressure to two regions proximal to the target area. The embodiment further involves transmitting the modulated optical signal to human tissue and receiving a modified version of the modulated optical signal after transmission through human tissue. It also involves deriving a temporal transfer characteristic for the modified version of the modulated optical signal and calculating the concentration of an analyte based on the temporal transfer characteristic.
These and other objects and advantages of the various embodiments of the present invention will be recognized by those of ordinary skill in the art after reading the following detailed description of the embodiments that are illustrated in the various drawing figures.
The present invention is illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings and in which like reference numerals refer to similar elements.
Reference will now be made in detail to embodiments of the present invention, examples of which are illustrated in the accompanying drawings. While the invention will be described in conjunction with these embodiments, it will be understood that they are not intended to limit the invention to these embodiments. On the contrary, the invention is intended to cover alternatives, modifications and equivalents, which may be included within the spirit and scope of the invention as defined by the appended claims. Furthermore, in the following detailed description of embodiments of the present invention, numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, it will be recognized by one of ordinary skill in the art that the present invention may be practiced without these specific details. In other instances, well-known methods, procedures, components, and circuits have not been described in detail as not to unnecessarily obscure aspects of the embodiments of the present invention.
A functional block diagram of a preferred photon measurement system 100 is depicted in
In the preferred photon measurement system 100, the detection optics 6 preferably include a second 3 mm diameter fiber bundle located between the optical filter and the optical detector 7. The optical detector 7 converts the scattered optical waves 21 to an electronic signal. In the preferred photon measurement system 100, the optical detector 7 is preferably a photomultiplier tube, model R7400U-20 from Hamamatsu Corp. In other embodiments, the optical detector 7 may be a PIN photodiode, an avalanche photodiode, a charge-couple device, or other suitable photosensitive element. As previously stated, the optical detector 7 preferably converts detected scattered optical waves 21 into an electronic signal which is communicated to the detected signal conditioner 8. The detected signal conditioner 8 preferably formats the signal so it may be converted to discrete samples by an Analog to Digital (A/D) converter 9. The A/D converter 9 outputs a detected response signal 19. The detected response signal 19 is communicated to a signal detector 10, where it is preferably correlated with the electronic reference signal 17 to extract a sample transfer characteristic.
Information about the temporal properties of the photons is preferably calculated from the sample transfer characteristic. This information preferably includes such properties as direct measurements of photon time-of-flight and the fluorescence lifetime. The estimate of photon times-of-flight is then preferably used to estimate characteristics of the tissue such as the absorption coefficient, scattering coefficient, or location of fluorescing material.
Another embodiment of the photon measurement system 100 includes an optical reference generator 22. The optical reference generator 22 preferably includes an optical splitter 12A or 12B that routes a portion of the modulated optical wave 20 to a secondary optical detector 13. The position of the optical splitter 12A or 12B can be either before or after the light delivery optics. The output of the secondary optical detector 13 is preferably routed to a secondary signal conditioner 14 whose output is communicated to a secondary A/D converter 15. The secondary A/D converter 15 preferably outputs a source reference signal 18 which can be correlated with the detected response 19 to extract the sample transfer characteristic. Using the source reference signal 18 as opposed to the electronic reference signal 17 allows the filtering of the temporal properties of the signal conditioner 2 and the modulated optical source 3 from the measured transfer characteristic.
The preferred hardware implementation of the A/D converter module and its interfaces to the signal detector 10 are shown in
The acquisition synchronizer 92 is preferably synchronized with an externally provided synchronization clock (SClk) 40 which is also preferably used to synchronize the signal generator 1. The signals CClk[1 . . . N] are preferably generated within the acquisition synchronizer 92 and preferably have the same frequency as SClk 40 but are offset in phase from SClk 40 in N fixed increments of (360/N).degree., with the phase of CClk[1] set to the fixed offset of Z.degree. In the preferred system the internal clock generation capabilities of the Xilinx FPGA are used to implement the acquisition synchronizer 92 directly. The A/D converters 90 preferably perform their conversions in sync with the conversion clocks 96 such that they generate samples at N discrete sample times spread evenly throughout the fundamental sample interval defined by the period of SClk 40. The effective sample rate for the array of converters is preferably N times the rate defined by SClk 40. This process of using multiple A/D converters sampling out of phase to increase the effective sample rate is what we call parallel over-sampling. In the preferred photon measuring system, parallel over-sampling results in an effective sample rate of 2 Gsamples/sec. The offset value Z allows the entire sample set to be offset by some phase from the synchronization clock 40. The acquisition synchronizer 92 preferably is configured such that the value of Z can be varied synchronously with the modulation frame, or with a block of frames called a frame block. This allows Z to follow a sequence of K values smaller than (360/N).degree. such that on successive modulation frames/frame blocks the effective sampling phases (relative to the synchronization clock) take on K values intermediate to those created by the N conversion clocks in any given frame. In this case preferably the input signal at any given A/D converter 90 will be sampled at K discrete phases over K blocks. The detected response 19 is preferably assumed to be stationary with respect to the start of the code pattern block over that time interval. The preferred K discrete sampling phases correspond to K discrete sample times and the effective temporal resolution of the sampling process is preferably increased by a factor of K. This process is referred to as temporal over-sampling.
In the preferred photon measuring system the value of Z is always zero and temporal over-sampling is achieved by adjusting the phase of the modulation as described below rather than by adjusting the phase of the A/D converter sampling. Preferably the FIFOs latch input data to the A/D converters 90 synchronously with the corresponding conversion clock 96. The FIFO 91 output data is preferably provided to the internal components of the signal detector 10 synchronously with the synchronization clock 40 such that all further processing is synchronized with the synchronization clock 40.
The preferred implementation of the Temporal Response Analysis Engine 11 are shown in
The functional blocks of the preferred signal generator 1 are shown in
The modulation signal 16 for both the LFSR 30 or pattern memory implementation is preferably buffered by an output buffer 35 to make the signals 16 more robust when driving external components. Timing for presentation of the code pattern bits is preferably controlled by a generation synchronizer 34 which preferably generates the master clock (MClk) 38 for the LFSR 30 and the address sequencer 33. The master clock 38 is preferably synchronized to a system synchronization clock (SClk) 40 which preferably controls both code pattern generation and response signal acquisition. MClk 38 preferably operates at the same frequency as SClk 40 but is preferably offset in phase by an amount specified by the phase input 39, which is preferably an externally programmable parameter. This phase offset allows the relative phase between the modulation signal 16 and the detected response 19 to be adjusted. If the phase is adjusted by some increment, (360/K).degree., at the end of each code pattern block or set of blocks the detected response resulting from the modulation signal will preferably be sampled at K discrete phases over K blocks. In this embodiment of the photon measuring system as with the preferred embodiment, the detected response 19 is assumed to be stationary with respect to the start of the code pattern block over that time interval so that the K discrete sampling phases correspond to K discrete sample times and the effective temporal resolution of the sampling process is increased by a factor of K.
This temporal over-sampling is functionally equivalent to the technique described for temporal over-sampling in the A/D converter embodiment. In other embodiments the external phase specification may represent the phase increment rather than the absolute phase, and the generation synchronizer 34 may increment the phase internally.
The preferred implementation of the LFSR 30 is shown in
The preferred functional blocks for the signal detector 10 are shown in
The details of the preferred frame accumulator 50 or 51 are shown in
The details of the preferred frame correlator 55 is shown in
The photon measurement system 100 is useful for interrogating a section of tissue located generally between the light delivery optics and the detection optics. In order to interrogate a larger tissue volume, it is useful to have a system where the photon measurement system is replicated so that separate tissue sections can be interrogated with separate source-detector pairs. One embodiment of such a system is shown in
The present invention is utilized for sentinel lymph node mapping as presently described. A patient is injected near the site of a malignancy with a dye that fluoresces when exposed to near-infrared light. In particular, indocyanine green (ICG) can be excited at wavelengths around 785 nm and fluoresces at wavelengths around 830 nm. The dye serves both as a visual guide for the surgeon and as a contrast agent for the optical imaging system. ICG has the advantage that it is already approved for use in medical procedures such as angiography; however, several alternative contrast agents are also available. Imaging proceeds as follows. Assuming the imaging is performed reasonably soon after injection of the dye, the dye will be relatively well-localized in the sentinel node or nodes. If the dye is ICG, this amount of time is one the order of minutes. The imaging head is placed in contact or in close proximity to the tissue suspected of containing the sentinel node. The correlator output, or characteristic transfer function, is measured for each source-detector pair. For any given source and detector position, it is possible to calculate a priori the expected characteristic transfer function for a given location of fluorescence dye. In practice, because the tissue is so highly scattering, neighboring source-detector pairs can have somewhat overlapping interrogation regions. The image reconstruction problem consists of estimating the most likely distribution of dye given all the measurements of characteristic transfer functions from all the source-detector combinations. Various techniques are known for performing such an inversion problem, including such methods as singular-value decomposition and the Algebraic Reconstruction Technique, also known as the Gauss-Seidel method. The result of the inversion is a volumetric map of the location of dye within the tissue. Because the dye collects predominantly in the sentinel node(s), this map is effectively a map of the sentinel node location. This map is displayed in the form of an image or images on a monitor attached to the instrument. The surgeon uses this image to plan his surgical incisions. The estimated positions of the sentinel node with respect to the instrument are also displayed on the monitor, allowing the surgeon or other operator to mark the body before the surgery begins.
A preferred imaging method for locating the sentinel lymph node or nodes is as follows. The patient is injected with fluorescent material near the site of a malignancy. Imaging begins after an amount of time sufficient for the fluorescent material to reach the sentinel lymph node or nodes. The instrument head is placed over the patient at a position that represents an initial estimate for the location of the sentinel node. With the instrument head in position, the first optical source is turned on for an amount of time corresponding to the desired number of repeats of the code sequence. Scattered optical waves are measured at each corresponding detector. The output of each detector is correlated with the reference signal as described above to produce a temporal transfer characteristic corresponding to the source-detector combination. The temporal transfer characteristics for each source-detector combination are stored in memory. The process is repeated for each subsequent optical source until temporal transfer characteristics are collected for all desired source-detector pairings. The acquired temporal transfer characteristics are then used to reconstruct an image of the underlying tissue volume using an algorithm implemented in software. The algorithm is based on the ability to estimate a priori the temporal transfer characteristic that will be obtained for any source-detector pairing for any particular location of fluorescent dye. The algorithm generates a most likely estimate of the fluorescent material locations based on the a priori models given the measured temporal transfer characteristics. This estimate of fluorescent material locations is displayed in the form of a volumetric image on a monitor connected to the instrument. The user of the instrument can conclude based on the image whether or not the underlying tissue contains a sentinel node. Generally, the node will be imaged as a subset of the volume with a high estimated concentration of fluorescent material. If the user judges that the sentinel node has been located, he may physically mark the body where the instrument head had been placed with a pen to indicate the area in which to cut. Alternatively, he may save the image on the screen or on a printout so that it may be referred to during surgery. If the user concludes that the sentinel lymph node has not been located, he moves the instrument to a different location and the process is repeated.
Under an embodiment of the present invention, Temporal Response Analysis Engine 11 comprises a general purpose microprocessor. Temporal Response Analysis Engine 11 can also comprise software which provides instructions to the microprocessor. Alternatively, Temporal Response Analysis Engine 11 can comprise an embedded processor or other processor, application specific integrated circuit (ASIC), field programmable gate array (FPGA) or other integrated circuits. Temporal Response Analysis Engine 11 can also comprise firmware.
Under another embodiment of the present invention, the chosen code sequence of digital modulation signal 16 is a unipolar code sequence. Digital modulation signal 16 can be transmitted to optical illumination source 3 or can be used with an external modulator or electro-optic modulator with optical illumination source 3. A unipolar code sequence allows for the use of commercially available continuous wave lasers or light emitting diodes (LEDs) as a light source, for example as optical illumination source 3. A bipolar code sequence does not allow for the use of commercially available continuous wave lasers or LEDs as a light source because a bipolar code sequence requires the transmission of −1's or negative states. With commercially available continuous wave lasers or LEDs, −1's or negative states are difficult to achieve. In addition, the chosen code sequence of digital modulation signal 16 can be a code sequence where the autocorrelation is orthogonal. An orthogonal code sequence can result in a correlation which is flat or relatively flat away from both sides of the peak and can make the processing and analysis for the temporal transfer characteristic or the temporal point spread function easier as well as reducing errors. This characteristic also allows for simultaneous transmission of multiple code sequences and analysis of the multiple code sequences without interference from each code sequence.
Under another embodiment, the chosen code sequence of digital modulation signal 16 is a code sequence with high autocorrelation approaching the delta function and low cross-correlation values. The chosen code sequence can be an Optical Orthogonal Code. Two codes of length N=36 or 36 elements can be used, 11010001000000000000000000000000 and 10000100000001000000000010000000. The maximum autocorrelation value is 4 and the maximum cross-correlation value is 1. The ratio of the maximum autocorrelation value to maximum cross-correlation value is 4. However, Optical Orthogonal Codes generally have many more 0s (or low states) than 1s (or high states) making them difficult to implement with commercially available continuous wave lasers or LEDs. In addition, the relatively high cross-correlation values hinder the processing and analysis for the temporal transfer characteristic or the temporal point spread function and can introduce errors.
Under another embodiment, the chosen code sequence of digital modulation signal 16 comprises individual code elements where the individual code elements have a length of one nanosecond. Alternatively, individual code element lengths of 25 ps, 50 ps, 75 ps, 100 ps, 125 ps, 150 ps, 175 ps, 200 ps, 250 ps, 500 ps, 750 ps, 1 ns, 1.5 ns, 2 ns, 2.5 ns, 3 ns, 4 ns, 5 ns, 6 ns, 7 ns, 8 ns, 9 ns, 10 ns, 11 ns, 12 ns, 13 ns, 14 ns, 15 ns, 16 ns, 17 ns, 18 ns, 19 ns, 20 ns or any length in between such lengths or any range of lengths in between 25 ps and 20 ns. could be used. Individual code element lengths that are longer allow the use of slower and less expensive lasers or LEDs for optical illumination source 3. However, the amount of time to transmit and process the chosen code sequence of digital modulation signal 16 is dependent on the individual code element lengths multiplied by the number code elements in each sequence. In addition, the width of the temporal transfer characteristic or the temporal point spread function can be as narrow as one nanosecond or less. For narrow temporal transfer characteristics or the temporal point spread functions, a long code element length would lack adequate resolution to properly derive the temporal transfer characteristic or the temporal point spread function.
Under another embodiment, multiple code sequences of 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 1,000, 10,000, 100,000, 1,000,000 code sequences or any code sequence in between such code sequences or any range of code sequences in between 2 and 1,000,000 code sequences can be used and correlation performed on averaged data or average performed on correlations of data. The multiple code sequences can be multiple identical code sequences. Use of multiple code sequences allows photon measurement system 100 to average out noise effects, improve signal-to-noise ratio, temporary deviations in the system or the sample or average out data prior to stabilization of optical illumination source 3. However, a long individual code element length can result in long processing time particularly for high number of code elements in each sequence and particularly if a large number of multiple code sequences is utilized.
Under another embodiment, the chosen code sequence of digital modulation signal 16 is a code sequence from the Golay class of codes. Golay codes are bipolar making them difficult to use with commercially available continuous wave lasers or LEDs as a light source. However, in this embodiment, the bipolar Golay code sequence is converted into two unipolar code sequences. For example, a bipolar code sequence represented by A(t) can take on values 1 and −1. Two unipolar code sequences UA1(t) and UA2(t) can be constructed where UA1(t)=1/2[1+A(t)] and UA2(t)−1/2[1−A(t)].
In addition, complementary Golay codes can be used where the sum of the autocorrelations is a delta function with the maximum autocorrelation value equal to N where N is the length of the code sequence or the number of individual code elements in the code sequence. In this example, the bipolar code sequence represented by A(t) can be converted to two unipolar code sequences UA1(t) and UA2(t) where UA1(t)=1/2[1+A(t)] and UA2(t)=1/2[1−A(t)]. The complementary bipolar code sequence represented by B(t) can be converted to two unipolar code sequences UB1(t) and UB2(t) where UB1(t)−1/2[1+B(t)] and UB2(t)=1/2[1−B(t)]. Four code sequences UA1(t), UA2(t), UB1(t) and UB2(t) would be used to drive optical illumination source 3. Four readout traces could be obtained RA1(t)=UA1(t)*f(t), RA2(t)=UA2(t)*f(t), RB1(t)=UB1(t)*f(t), and RB2(t)=UB2(t)*f(t). The temporal transfer characteristic or the temporal point spread function can be obtained by performing the following calculation: fest=A(t)·[RA1(t)−RA2(t)]+B(t)·[RA1(t)−RA2(t)]. Using the four unipolar code sequences has the advantage that commercially available continuous wave lasers or LEDs can be utilized as a light source, for example as optical illumination source 3. In addition, the sum of the autocorrelations approaches a delta function where width is related to code element length, making it easier to derive the temporal transfer characteristic or the temporal point spread function. However, using four code sequences has the disadvantage that longer transmission time and longer processing time is required. If optical illumination source 3 is unstable or exhibits amplitude variations or different DC biases, errors can be introduced in processing and processing can be more difficult. In addition, because each code sequence can result in a different DC bias and optical illumination source 3 may require a period of stabilization during each code sequence, the stabilization would introduce additional transmission time and processing time for each code sequence.
Under another embodiment, the chosen code sequence of digital modulation signal 16 is a code sequence from the Galois class of codes. Galois codes do not have ideal autocorrelation but the autocorrelation is uniform on both sides of the peak. The uniformity allows for better or enhanced noise processing and enhanced ability to derive the temporal transfer characteristic and the temporal point spread function. Galois codes have the advantage that it can be implemented with a single unipolar code sequence. The single unipolar code sequence makes photon measurement system 100 less susceptible to instability, amplitude variations or differing DC biases in optical illumination source 3. In addition, to the extent optical illumination source 3 may require a period of stabilization during each code sequence, the stabilization time would have less of an impact on transmission time and processing time. The chosen code sequence of digital modulation signal 16 using a code sequence from the Galois class of codes has a circular autocorrelation of N or approaching N near the peak and −1 or approaching −1 away from the peak, where N is the length of the code sequence or the number of individual code elements in the code sequence. The ratio of the maximum circular autocorrelation value to maximum cross-correlation value is N. A circular code sequence has the important feature that the circular autocorrelation can begin at any point or any code element. The phase of the code sequence does not need to be tracked. The chosen code sequence of digital modulation signal 16 using a code sequence from the Galois class of codes can have 31, 63, 127, 255, 511, 1023, 2047, 4095 and 8191 individual code elements in the code sequence.
Under another embodiment, the chosen code sequence of digital modulation signal 16 is a linear-feedback shift-register sequence, in particular a maximal-length sequence or m-sequence. An n-bit shift register can encode 2n states, so an m-sequence or maximal-length sequence can have 2n-1 elements before repeating. All zeros in the shift register is a fixed-point unto itself so it cannot be part of any sequence longer than 2n-1. Maximal-length sequences or m-sequences have one more 1's than 0's. The circular autocorrelation of a maximal-length sequence or m-sequence with itself has one value of 2n-1 at zero lag and the rest of the values equal to 2n-2. Although the non-zero value at the other lag is undesirable, it results in a finite transmission of a DC component through the system which can be removed through filtering. A bipolar sequence comprising 1's and −1's can have better autocorrelation. However, −1's require phase sensitive detection.
Under another embodiment, multiple identical code sequences of 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 1,000, 10,000, 100,000, 1,000,000 code sequences or any code sequence in between such code sequences or any range of code sequences in between 2 and 1,000,000 code sequences can be used. The detected response signal 19 resulting from the entire set of multiple identical code sequences is correlated with the electronic reference signal 17 or source reference signal 18 of the entire set of multiple identical code sequences. The multiple identical code sequences can be periodic or circular. Use of periodic or circular multiple identical code sequences, particularly for Galois class of codes, results in high autocorrelations approaching the delta function and low cross-correlation. This characteristic allows for simultaneous transmission of multiple code sequences and analysis of the multiple code sequences without interference from each code sequence. Each code sequence can be a separate channel and can start at different times. In addition, the autocorrelation of a single code sequence or the correlation of detected response signal 19 resulting from a single code sequence with the electronic reference signal 17 or source reference signal 18 of a single code sequence can result in significant side-lobes. The side-lobes hinder the processing and analysis for the temporal transfer characteristic or the temporal point spread function and can introduce errors. Use of periodic or circular multiple identical code sequences can significantly reduce or eliminate the side-lobes in the autocorrelation or correlation. However, a long individual code element length can result in long processing time particularly for high number of code elements in each sequence and particularly if a large number of multiple code sequences is utilized.
Under another embodiment, radio frequency (RF) shielding is applied to the components of photon measurement system 100. Certain components in photon measurement system 100, for example, signal generator 1, signal conditioner 2, or optical illumination source 3, can generate noise which can appear at optical detector 7, A/D converter 9 or signal detector 10. This noise can then appear in the temporal transfer characteristic or the temporal point spread function making it difficult to analyze or introducing errors for photon time-of-flight, fluorescence lifetime, tissue absorption coefficient, tissue scattering coefficient, location of fluorescing material or other tissue properties or characteristics. Signal generator 1, signal conditioner 2, or optical illumination source 3 can be RF shielded to reduce or avoid noise appearing at optical detector 7, A/D converter 9 or signal detector 10.
Alternatively or concurrently, a delay component or element can be placed between optical illumination source 3 and optical splitter 12A, between optical splitter 12A and optical detector 13, between optical splitter 12B and optical detector 13, between sample 5 and detection optics 6 or between detection optics 6 and optical detector 7. The delay component or element can be a length of free space or a length of optical fiber, optical waveguide or optical bundle. Optical fiber, optical waveguide or optical bundle can be dispersive, both spectral and temporal, can propagate multimodes in the cladding which can distort the optical signal. Free space has the advantage of causing less distortion to the optical signal. A single mirror or 2, 3, 4 or 5 mirrors can be used. Alternatively, retroreflectors, prisms, reflectors or other reflective surface can be used. Use of a reflective surface or a plurality of reflective surfaces allows a given length of free space to occupy significantly less physical dimension and be more compact. A single reflective surface can allow the light to travel back along its original path. In this manner, the physical length can be reduced up to fifty percent. The physical length can be further reduced by using multiple reflective surfaces. With two reflective surfaces, the light can travel along the same path three times, reducing the physical length by up to 66⅔ percent. With three reflective surfaces, the light can travel along the same path four times, reducing the physical length by up to 75 percent. With four reflective surfaces, the light can travel along the same path five times, reducing the physical length by up to 80 percent. With five reflective surfaces, the light can travel along the same path six times, reducing the physical length by up to 83⅓ percent. Alternatively, instead of using three reflective surfaces, two reflective surfaces can be used with the light reflecting off of one reflective surface twice and travelling along the same path four times. Instead of four reflective surfaces, two reflective surfaces can be used with the light reflecting off of each reflective surface twice and travelling along the same path five times. Instead of five reflective surfaces, two reflective surfaces can be used with the light reflecting off of one reflective surface twice and one reflective surface three times, travelling along the same path six times.
The amount of delay resulting from the delay component or element can be adjusted by altering the length or by material selection of materials with differing index of refraction. The delay causes the noise to separate from the temporal transfer characteristic or the temporal point spread function after correlation of detected response signal 19 with the electronic reference signal 17 or source reference signal 18. The separation of noise from the temporal transfer characteristic or the temporal point spread function aides analysis and reduces errors for photon time-of-flight, fluorescence lifetime, tissue absorption coefficient, tissue scattering coefficient, location of fluorescing material or other tissue properties or characteristics. The amount of delay can be 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15 nanoseconds or greater or any delay amount in between such delay amounts or any range of delay amounts in between 1 nanosecond and 15 nanoseconds. A greater amount of delay would require a delay component or element of greater length.
Under another embodiment, photon measurement system 100 is used to measure oximetry in human tissue or more specifically, noninvasive human cerebral oximetry. Photon measurement system 100 can comprise a second optical detector associated with a second optical transmission path from optical illumination source 3 through sample 5. The first optical detector, i.e. optical detector 7, can be associated with a first optical transmission path through sample 5, e.g. through the human scalp and skull only. The second optical detector can be associated with a second optical transmission path e.g. through the human scalp, skull and brain. Tissue characteristics can be derived for the brain alone by comparing the optical signal from the first optical transmission path with the second optical transmission path.
Light attenuation through tissue can be described by the Beer-Lambert law:
I=I
oexp[−(μa+μs′)/l] (Eqn 1)
where I is the measured light intensity after passing through the medium, Io is the initial light intensity, μa is the absorption coefficient and μs′ is the reduced scattering coefficient, and l is the optical path length through the medium. This equation can be rewritten as:
where n is the number of absorbing species, s is the molar absorptivity (also known as the molar extinction coefficient), and C is the concentration of the absorbing species. The absorption coefficient and molar absorptivity are wavelength-dependent and characteristic of a particular molecule. The molar absorptivities for many compounds can be readily determined.
From Eqn 2, the following can be determined:
μa=2.303(∈1C1+∈2C2+ . . . ∈nCn) (Eqn 3)
In other words, from the absorption coefficient, concentration can be determined without need of optical pathlength. At least n wavelengths of light are required to identify any one absorber of light out of a system of n absorbers.
The primary absorbers in human tissue and blood are oxyhemoglobin and reduced hemoglobin (also known as deoxyhemoglobin). Water is the next strongest absorber. Therefore, to determine functional oxygen saturation, which is defined as
a minimum of 2 wavelengths, preferably 3 to account for the combined effect of water and other absorbers should be used. These 3 wavelengths should fall in the range of 650 nm to 1000 nm, preferably (1) 740 nm to 770 nm, preferably 760 nm; (2) 770 nm to 820 nm, preferably 805 nm (isosbestic point); (3) 820 nm to 1000 nm, preferably 850 nm.
The temporal transfer characteristic or temporal point spread function of the tissue can be extracted from the temporal response profile by using of the Temporal Response Analysis Engine 11. The tissue temporal transfer characteristic or temporal point spread function can be fit with diffusion theory or similar to extract the absorption coefficient, μa, independently from the scattering coefficient, optical path length, or other parameters. Alternatively, μa can be found by correlation with other statistical measures of the temporal transfer characteristic or temporal point spread function such as moments of the distribution, peak width at various fractional peak heights, peak area, or by fitting a linear slope to the tail of the profile. Once μa has been determined at each selected wavelength, Eqn 3 can be used to find the concentrations of oxyhemoglobin, deoxyhemoglobin and, if desired, water and other absorbers. The resulting concentrations can then be used in Eqn 4 to calculate oxygen saturation.
Using this technique, the measured concentrations of hemoglobin (and derivatives) can be absolute and accurate, without influence from tissue scattering or variations in optical path length. The oxygen saturation value calculated using these absolute concentrations can also be absolute and accurate.
Photon measurement system 100 can further comprise a second optical illumination source operating at a second wavelength. The first wavelength and second wavelength can be used to determine the amount of oxygenated hemoglobin and deoxygenated hemoglobin. Alternatively, photon measurement system 100 can further comprise a third optical illumination source operating at a third wavelength. The third wavelength can be used to determine the contribution of water or other absorbers to obtain more accurate measurement of oxygenated hemoglobin and deoxygenated hemoglobin. Alternatively, photon measurement system 100 can further comprise a fourth optical illumination source operating at a fourth wavelength. The fourth wavelength can be used to determine the amount of carboxyhemoglobin. Alternatively, photon measurement system 100 can further comprise a fifth optical illumination source operating at a fifth wavelength. The fifth wavelength can be used to determine the amount of methemoglobin. A single optical detector can be used for each wavelength. However, many optical detectors would be required particularly if multiple optical transmission paths are involved. In the example of two wavelengths and two optical transmission paths for each wavelength, four optical detectors would be required. In the example of three wavelength and two optical transmission paths for each wavelength, six optical detectors would be required. However, the difficulty exists of separating and deriving the temporal transfer characteristic or the temporal point spread function for each wavelength since the output signal from the optical detector will represent the combination of multiple wavelengths. In addition, use of multiple detectors can require the use of an optical filter to separate wavelengths, adding loss.
Alternatively, a single optical detector could be used for multiple wavelengths. In the example of two wavelengths and two optical transmission paths, two optical detectors would be required instead of four. In the example of three wavelengths and two optical transmission paths, two optical detectors would be required instead of six. In addition, it can still present difficulties especially if wavelengths are close in spectrum to each other resulting in incomplete separation. Photon measurement system 100 or Temporal Response Analysis Engine 11 can further comprise a separate signal generator for a wavelength or an optical illumination source. The timing of the initiation of the chosen code sequence of the digital modulation signal for multiple signal generators can be delayed. The initiation delay can cause the temporal transfer characteristic or the temporal point spread function for the associated wavelength or associated optical illumination source to be delayed with respect to another wavelength or optical illumination source. This delay can result in separation of the temporal transfer characteristic or the temporal point spread function for individual wavelengths making it easier to distinguish the temporal transfer characteristic or the temporal point spread function for individual wavelengths. Alternatively, the same result can be achieved by using different code sequence for separate signal generators. Code sequence could be chosen that result in separation or delay of the temporal transfer characteristic or the temporal point spread function for different wavelengths. The separation or delay can also be implemented by placing a delay component or element between optical illumination source 3 and optical splitter 12A, between optical splitter 12A and optical detector 13, between optical splitter 12B and optical detector 13, between sample 5 and detection optics 6 or between detection optics 6 and optical detector 7. The delay component or element can be a length of free space or a length of optical fiber, optical waveguide or optical bundle.
The separation or delay can be characterized in terms of time or number of code elements. The amount of time for the separation or delay can be calculated as the number of code elements for the separation or delay multiplied by the length of the individual code element. The separation or delay can also be characterized in terms of fractions or percentage of the number of individual code elements in each code sequence. The amount of separation or delay can be set by starting the code sequence at a different point for each wavelength. As an example, if two wavelengths are used with a code sequence of 31 individual elements and individual code element length of 1 nanosecond, the first wavelength could be transmitted starting with the first code element and the second wavelength could be transmitted starting with the 15th or 16th code element. The amount of separation or delay between the first wavelength and second wavelength in this example would be 14 nanoseconds and 15 nanoseconds for transmission starting with 15th and 16th code element, respectively. Starting the second wavelength at the 15th or 16th code element provides maximum amount of separation or delay between first wavelength for code sequence of 31 individual elements. Increased amount of separation or delay allows the temporal transfer characteristic or the temporal point spread function for different wavelengths to be more easily distinguished from one another. For code sequence of 63 individual elements, starting the second wavelength at the 31st or 32nd code element provides maximum amount of separation or delay between the first wavelength. For code sequence of 127 individual elements, starting the second wavelength at the 63rd or 64th code element provides maximum amount of separation or delay between the first wavelength. For code sequence of 255 individual elements, starting the second wavelength at the 127th or 128th code element provides maximum amount of separation or delay between the first wavelength. For code sequence of 511 individual elements, starting the second wavelength at the 255th or 256th code element provides maximum amount of separation or delay between the first wavelength. For code sequence of 1023 individual elements, starting the second wavelength at the 511st or 512nd code element provides maximum amount of separation or delay between the first wavelength. For code sequence of 2047 individual elements, starting the second wavelength at the 1023rd or 1024th code element provides maximum amount of separation or delay between the first wavelength. For code sequence of 4095 individual elements, starting the second wavelength at the 2047th or 2048th code element provides maximum amount of separation or delay between the first wavelength. For code sequence of 8191 individual elements, starting the second wavelength at the 4095th or 4096th code element provides maximum amount of separation or delay between the first wavelength. Alternatively, for each of the code sequences of 31, 63, 127, 255, 511, 1023, 2047, 4095 and 8191 individual elements described, the second wavelength can start at the code element representing 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48 or 49 percent of the total number of individual elements in the code sequence or any percentage in between such percentages or any range of percentages in between 25 percent and 49 percent. Alternatively, for each of the code sequences of 31, 63, 127, 255, 511, 1023, 2047, 4095 and 8191 individual elements described, the second wavelength can start at the code element representing 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74 or 75 percent of the total number of individual elements in the code sequence or any percentage in between such percentages or any range of percentages in between 51 percent and 75 percent.
If three wavelengths are used with a code sequence of 31 individual elements and individual code element length of 1 nanosecond, the first wavelength could be transmitted starting with the first code element, the second wavelength could be transmitted starting with the 10th or 11th code element and the third wavelength could be transmitted starting with the 20th or 21st code element. The amount of separation or delay between the first wavelength and second wavelength in this example would be 9 nanoseconds and 10 nanoseconds for transmission starting with 10th and 11th code element, respectively. Starting the second wavelength at the 10th or 11th code element and the third wavelength at the 20th or 21st code element provides maximum amount of separation or delay between wavelengths for code sequence of 31 individual elements. For code sequence of 63 individual elements, starting the second wavelength at the 21st code element and the third wavelength at the 42nd code element provides maximum amount of separation or delay between wavelengths. For code sequence of 127 individual elements, starting the second wavelength at the 42nd or 43rd code element and the third wavelength at the 84th or 85th code element provides maximum amount of separation or delay between wavelengths. For code sequence of 255 individual elements, starting the second wavelength at the 85th code element and the third wavelength at the 170th code element provides maximum amount of separation or delay between wavelengths. For code sequence of 511 individual elements, starting the second wavelength at the 170th or 171st code element and the third wavelength at the 340th or 341st code element provides maximum amount of separation or delay between wavelengths. For code sequence of 1023 individual elements, starting the second wavelength at the 341st code element and the third wavelength at the 682nd code element provides maximum amount of separation or delay between wavelengths. For code sequence of 2047 individual elements, starting the second wavelength at the 682nd or 683rd code element and the third wavelength at the 1364th or 1365th code element provides maximum amount of separation or delay between the first wavelength. For code sequence of 4095 individual elements, starting the second wavelength at the 1365th and the third wavelength at the 2730th code element provides maximum amount of separation or delay between wavelengths. For code sequence of 8191 individual elements, starting the second wavelength at the 2730th or 2731st code element and the third wavelength at the 5460th or 5461st code element provides maximum amount of separation or delay between wavelengths. Alternatively, for each of the code sequences of 31, 63, 127, 255, 511, 1023, 2047, 4095 and 8191 individual elements described, the second wavelength can start at the code element representing 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 or 33 percent of the total number of individual elements in the code sequence or any percentage in between such percentages or any range of percentages in between 17 percent and 33 percent. Alternatively, for each of the code sequences of 31, 63, 127, 255, 511, 1023, 2047, 4095 and 8191 individual elements described, the second wavelength can start at the code element representing 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49 or 50 percent of the total number of individual elements in the code sequence or any percentage in between such percentages or any range of percentages in between 34 percent and 50 percent. Alternatively, for each of the code sequences of 31, 63, 127, 255, 511, 1023, 2047, 4095 and 8191 individual elements described, the third wavelength can start at the code element representing 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65 or 66 percent of the total number of individual elements in the code sequence or any percentage in between such percentages or any range of percentages in between 51 percent and 66 percent. Alternatively, for each of the code sequences of 31, 63, 127, 255, 511, 1023, 2047, 4095 and 8191 individual elements described, the third wavelength can start at the code element representing 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82 or 83 percent of the total number of individual elements in the code sequence or any percentage in between such percentages or any range of percentages in between 67 percent and 83 percent.
Under another embodiment, Temporal Response Analysis Engine 11 analyzes and processes the correlation of detected response signal 19 with the electronic reference signal 17 or source reference signal 18. The correlation contains both the instrument response function and the temporal transfer characteristic or the temporal point spread function. Temporal Response Analysis Engine 11 derives or separates the instrument response function from the temporal transfer characteristic or the temporal point spread function in the correlation. The temporal transfer characteristic or the temporal point spread function can change over time based on changes in properties or characteristics of sample 5 over time, particularly if sample 5 is live human tissue. However, the instrument response function can be less susceptible to change over time depending on the stability of the hardware or equipment. Temporal Response Analysis Engine 11 can measure the instrument response function independently without the temporal transfer characteristic or the temporal point spread function by implementing a calibration procedure where the instrument response function is measured while sample 5 is removed from the optical path between optical illumination source 3 and optical detector 7. This removal can be accomplished by physically removing sample 5 or altering the optical transmission path between sample 5 and optical detector 7 to avoid sample 5. Once the instrument response function is determined, the temporal transfer characteristic or the temporal point spread function can be derived from the correlation of detected response signal 19 with the electronic reference signal 17 or source reference signal 18.
Alternatively, the instrument response function can be approximated without independent or direct measurement. By avoiding independent or direct measurement, the calibration procedure is avoided. In addition, when photon measurement system 100 is operating for a longer period of time, re-calibration may be required if photon measurement system 100 drifts. By avoiding independent or direct measurement, re-calibration is also avoided. The instrument response function is assumed to be fixed or constant over time or varying slowly over time. Temporal Response Analysis Engine 11 first obtains or stores a set of correlations of detected response signal 19 with the electronic reference signal 17 or source reference signal 18. Each correlation can result from a single code sequence, multiple code sequences or multiple identical code sequences. Each correlation is associated with a given point in time. The set of correlations can comprise 20 correlations or 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 25, 50, 75, 100, 150, 200, 250, 300, 350, 400, 450, 500 or any number in between such numbers or any range of correlations in between 4 and 500. Temporal Response Analysis Engine 11 initially selects one of the correlations from the set of correlations which can be the first correlation. The selected correlation can initially be assumed to be or treated as the instrument response function.
Temporal Response Analysis Engine 11 generates a set of temporal transfer characteristics or the temporal point spread functions associated with a range of photon times-of-flight, fluorescence lifetimes, tissue absorption coefficients, tissue scattering coefficients, location of fluorescing material or other tissue properties or characteristics, either prior to or after selection of the selected correlation. For noninvasive human cerebral oximetry, Temporal Response Analysis Engine 11 generates a set of temporal transfer characteristics or the temporal point spread functions associated with a range of oxygenated and deoxygenated hemoglobin levels.
Temporal Response Analysis Engine 11 convolves the set of temporal transfer characteristics or the temporal point spread functions with the selected correlation resulting in a set of convolutions. The set of convolutions is compared with the set of correlations using the least squared method and the difference recorded or stored. Temporal Response Analysis Engine 11 then modifies the selected correlation or assumed instrument response function and convolves the set of temporal transfer characteristics or the temporal point spread functions with the modified correlation resulting in a set of modified convolutions. The set of modified convolutions is compared with the set of correlation using the least squared method and the difference recorded or stored. Temporal Response Analysis Engine 11 repeats the steps or process for different modified or assumed instrument response functions iteratively until the difference between the set of modified convolution and the set of correlations is minimized under the least squared function analysis. The modified convolution or assumed instrument response function that results in the minimal difference between the set of convolutions and the set of correlations is treated as or assumed to be the actual instrument response function. The temporal transfer characteristic or the temporal point spread function is separated from the instrument response function and then used as described to obtain μa and the concentrations of interest.
Total hemoglobin can be also essential to the accurate calculation of blood oxygen saturation. Fractional oxygen saturation can be determined by dividing the concentration of oxyhemoglobin by the concentration of total hemoglobin. If only oxyhemoglobin plus reduced hemoglobin is used to calculate total hemoglobin, the resulting oxygen saturation can be defined as functional oxygen saturation.
Accurate measurement of total hemoglobin can be vital, yet the majority of point-of-care hemometry devices actually measure hematocrit and apply an assumption of hemoglobin content per cell to calculate hemoglobin. Hematocrit is the percentage of red blood cells in whole blood. To convert from hematocrit to hemoglobin, the mean corpuscular hemoglobin concentration must be known. This value ranges from 32 to 36 g/dL in normal individuals.
Hematocrit can be measured in many blood gas analyzers by conductimetry. This technique is based on the principle that plasma is rich in electrolytes and is highly conductive, whereas blood cells are non-conductive. Thus, the greater the electrical conduction, the fewer the cells. While this technique can be fairly robust under normal physiological conditions, many illnesses and therapies can cause erroneous readings. Fluid resuscitation, for example, can produce significant hemodilution with hyperosmolar solutions. The injection of radiographic contrast media, which has very high osmolarity, can greatly increase conduction while not significantly diluting the blood. Some protocols can include the administration of proteins, such as albumin, which are similar to blood cells in that they are non-conductive. As a result, conductimetric readings can be very inaccurate and can adversely impact the course of treatment for a patient.
Other point-of-care devices can extract a small volume of blood from a fingerprick to measure hematocrit. However, the process of applying pressure to the capillary bed can result in a different proportion of plasma to extracted red blood cells as exists in the vessels.
One spectrophotometry system has the potential to accurately measure hemoglobin itself without need for assumptions or calculations and is not adversely affected by hemodilution or hyperosmolar solutions. The challenges of using such spectrophotometry to measure hemoglobin include contributions from other skin chromophores, variations in blood vessel location and density, and changes in vessel diameter and subsequent optical path length during pulsation. Measurement of arterial diameter or pulsatile path length is a prerequisite for accurate noninvasive determination of hemoglobin concentration with such spectrophotometry.
The total hemoglobin system of one embodiment of the present invention mitigates the problems encountered by other methods and provides an accurate measure of hemoglobin concentration, with inherent optical pathlength correction. Modulated light at two to four or more wavelengths using a pseudo-random sequence is detected either in transmission mode, such as through a finger or earlobe, or in reflection mode, such as through the forearm, temple, neck, or other suitable location. The detected light contains the temporal response of the sample, which may be fit using diffusion theory or similar techniques to obtain the absorption coefficient, the scattering coefficient, and the optical path length independently. The absorption coefficient, μa, is related to concentration by μa=2.303(∈1C1+∈2C2+ . . . ∈nCn) where n is the number of absorbing species present in the sample, ∈ is the wavelength-dependent molar absorption coefficient (a known constant), and C is the concentration. Hemoglobin is the primary absorbing species in blood and tissue. To determine the concentrations of oxyhemoglobin and reduced hemoglobin, measurements at two wavelengths can be used to isolate each contribution. Alternatively, a single measurement at the isosbestic point for the two species, 805 nm wavelength, can give the combined concentration, i.e. total hemoglobin under the approximation that oxy- and reduced hemoglobin dominate. For a more accurate measurement, additional measurements at additional wavelengths can be included to account for other absorbing species. It is not necessary to add wavelengths to account for scatter. To determine the concentrations of all four of the primary forms of hemoglobin, oxyhemoglobin, reduced hemoglobin, carboxyhemoglobin, and methemoglobin, measurements at a minimum of four wavelengths can be used to isolate each contribution.
Wavelengths used can be in the range of 650 nm to 1000 nm preferably 850 nm, 805 nm (isosbestic point of oxy- and reduced hemoglobin), 780 nm (isosbestic point of reduced hemoglobin and methemoglobin), 760 nm, 660 nm (isosbestic point of reduced hemoglobin and methemoglobin), and 630 nm. Additional wavelengths can be added to compensate for water absorption and, if desired, bilirubin absorption. The preferred wavelengths for bilirubin absorption is 400-500 nm, more specifically 450 nm.
The absorption coefficient obtained by transmission or reflection measurement through at least in part a blood vessel, can also include contributions from surrounding tissue, capillary beds, and venous blood. To obtain the absorption coefficient due solely to arterial hemoglobin, measurements can be acquired at systole and diastole and the resulting absorption coefficients subtracted from one another to remove unwanted contributions. Using multiple wavelengths as described, hemoglobin concentration can be determined from absorption coefficients. It is desirable to measure at least twice during systole and twice during diastole or 3, 4 or 5 times during systole and diastole, preferably 6, 7, 8, 9 or 10 times during systole and diastole. Additionally, a trigger could be utilized to trigger measurement during the lowest pressure of diastole and highest pressure of systole. Photon measurement system 100 can be used to take measurements during systole and diastole with heart rates of 60 to 100 beats per minute and up to 220 beats per minute. With a heart rate of 60 beats per minute and two measurements for systole and diastole, photon measurement system 100 would take a minimum of four measurements per second or measure at a rate of 0.25 seconds per measurement. The code sequence utilized would not exceed 0.25 seconds. With a heart rate of 220 beats per minute and 10 measurements for systole and diastole, photon measurement system 100 would take a minimum of 73⅓ measurements per second or measure at a rate of 0.0136 seconds per measurement. The code sequence utilized would not exceed 0.0136 seconds. Photon measurement system 100 can take measurements at a rate of 4, 5, 6, 7, 8, 9, 10, 15, 20, 30, 40, 50, 60, 70 or 73⅓ measurements per second or any rate in between such rates or any range of rate in between 4 and 73⅓ measurements per second. Photon measurement system 100 can measure at a rate of 0.0136, 0.015, 0.0175, 0.02, 0.03, 0.04, 0.05, 0.075, 0.1, 0.125, 0.15, 0.2, 0.25 seconds per measurement or any rate in between such rates or any range of rate in between 0.0136 and 0.25 seconds per measurement. Prior systems utilizing short-pulsed lasers and single photon counting detectors are not sufficiently fast to make enough measurements during the heartbeat cycle. On the other hand, photon measurement system 100 can derive the temporal transfer characteristic or the temporal point spread function and determine absorption coefficients or hemoglobin levels with a single code sequence providing the capability to make measurements at the rates described.
Alternatively, the source or plurality of sources and the detector or plurality of detectors can be aligned over a blood vessel or capillary bed such as an artery near the temple with the source or plurality of sources and the detector or plurality of detectors spaced apart approximately twice the distance that the artery is deep. This alignment ensures the photon path travels at least in part through the artery. Depth discrimination can be possible utilizing time-domain information. Photons that have traveled longer paths have longer arrival times.
When measuring vessels near the surface, external temperature control can be necessary as local blood flow may vary with temperature. Temperature control can be achieved by placing one or more heaters in the unit contacting the patient and a temperature feedback system in the main instrument.
One embodiment of the present invention can allow a non-invasive measurement of hemoglobin concentration in-vivo. This measurement could be made in grams/deciliter (g/dL), millimoles (mMol), or any other unit of concentration. Additionally, the presence and/or concentration of hemoglobin derivatives, e.g. oxyhemoglobin, deoxyhemoglobin, methemoglobin, or carboxyhemoglobin can be measured.
One embodiment of the present invention makes use of optical waves, but the invention is not limited to optical or other certain wavelengths. It can be utilized with any one of a number of types of waves, including but not limited to optical waves, radio waves, ultrasound waves, microwaves, and infrared waves.
In another embodiment of the invention, measurements can be made for any other analyte with an absorption spectrum, including but not limited to: glucose, myoglobin, and/or proteins. The concentration of analytes with a predetermined absorption spectra, e.g. characteristic absorption coefficients at different wavelengths, may be determined through application of the Beer-Lambert equation as previously described or any other method. Additionally, the measurement of concentration for any analyte can be used to determine other physiological and/or chemical properties. For example, fractional oxygen saturation can be determined by dividing the concentration of oxyhemoglobin by the concentration of total hemoglobin.
A targeted area, e.g. an area of human tissue from which a measurement is desired, can be variable and can include without limitation a finger, forearm, temple or other various body parts and combinations thereof. Targeted areas can further include tissues and/or organ systems such as the heart, liver, kidneys, or brain. Embodiments of the present invention are not necessarily restricted to human tissues but may be applied to other types of living organisms.
One embodiment of the present invention includes ceasing or partially occluding blood flow to the targeted area in order to allow for a more accurate calculation of analyte concentration. The constriction or occlusion of blood flow can take place proximal to the targeted area. A region proximal to the targeted area may be a region which is closer to the heart, e.g. closer to the supply of arterial blood, than the targeted area, and may be directly adjacent to the target area or further removed. Arterial flow may be partially or fully occluded by an external mechanism while initial measurements are taken, then released to increase flow to a less occluded state or up to normal flow, whereupon additional measurement(s) may or may not be taken. The restriction of blood flow could be implemented in various fashions.
In one embodiment, blood flow can be restricted by a tourniquet or tourniquet-like apparatus, including for example strings, tubes, or similar. The tourniquet or apparatus may partially or fully constrict a blood vessel or vessels, depending on whether pressure applied by the tourniquet or apparatus to tissue surrounding the vessels is greater than, less than, or equal to systolic pressure. Systolic pressure is a maximum arterial blood pressure, e.g. pressure during the surge of a pulse caused by heart beat, and may differ between individuals as well as for a given individual at different times of day. Releasing or undoing the tourniquet or tourniquet-like apparatus could therefore temporarily increase blood flow relative to the earlier constricted state.
Systolic pressure can be measured using a sphygmomanometer; a figure reported from blood pressure measurements may be the systolic pressure over the diastolic pressure, e.g. the maximum arterial pressure over the minimum arterial pressure. Systolic pressures may range from less than 90 mmHG to greater than 180 mmHG and may be between 90 mmHG and 120 mmHG for healthy individuals. However, individuals can also experience hypertension, e.g. high blood pressure, or hypotension, e.g. low blood pressure. The American Heart Association has associated systolic pressures that are less than 120 mmHG with healthy overall blood pressure, between 120 mmHG and 139 mmHG with prehypertension, between 140 mmHG and 159 mmHG with first-stage hypertension, greater than 160 mmHG with a second-stage hypertension, and greater than 180 mmHG with hypertensive crisis.
This and other embodiments of the present invention may apply pressures between 0 mmHg and 200 mmHg. An embodiment may also apply pressures between 40 mmHg and 60 mmHg, 60 mmHg and 80 mmHg, 80 mmHg and 100 mmHg, 100 mmHg and 120 mmHg, 120 mmHg and 140 mmHg, 140 mmHg and 160 mmHg, or 160 mmHg and 180 mmHg, inclusive, and any combination of the enumerated ranges or subsets of these ranges. For example, an embodiment of the present invention may apply pressures in the range of 20 mmHg to 180 mmHg, 40 mmHg to 110 mmHg, 60 mmHg to 140 mmHg, 60 mmHg to 130 mmHg, 60 mmHg to 120 mmHg, 60 mmHg to 115 mmHg, 70 mmHg to 120 mmHg, 80 mmHg to 100 mmHg, 90 mmHg to 105 mmHg, and so forth.
An additional embodiment of the present invention can utilize a pressure cuff to modify blood flow into the targeted area. In this embodiment, a pressure cuff, similar to that of a sphygmomanometer or with any other cuff design, may be utilized. Building pressure through the cuff can cause blood flow to reduce or, with enough pressure, cease completely until the pressure is released. The pressure cuff can be operated manually or automatically, and can implement precise or non-precise pressure increments. Decreasing pressure below the systolic pressure can increase blood flow to the region.
Alternatively, in one embodiment of the present invention, manual pressure can be used to slow or stop blood flow into the target area. This can be done with hands, clamps, or any other non-automated apparatus that can provide a pressure sufficient to obstruct regular blood flow. Upon release of this pressure, blood flow could increase compared to the flow during the previously constricted state.
Blood flow could also be ceased using a weight or weighted item to place pressure onto the blood vessel. By reducing or increasing the weight, it may be possible to adjust the level of blood vessel constriction.
Embodiments of the present invention may use any type of pressure-applying device to partially or totally constrict blood vessels. Pressure-applying devices may include previously described tourniquet apparatuses, pressure cuffs, and electroactive polymers. A pressure-applying device may also be an actuator—electrical, mechanical or otherwise—including but not limited to a piezo-electric device or mechanical clamp. Other types of actuators include but are not limited to mechanical, electro-mechanical, hydraulic, and pneumatic actuators.
In one embodiment of the present invention, an actuator can be positioned such that it can depress tissue lying above a blood vessel or blood vessels running through a target area. For example, it may be positioned on the forehead of the patient shown in
The actuator in this embodiment may be attached to or incorporated within a probe head or other tissue analyte measurement system, e.g. photon measurement system 100, or may be used in conjunction with such a system. The actuator may be a piezoelectric actuator. Alternatively, it may be any type of electro-mechanical actuator, including but not limited to a lead screw actuator. It may also be a hydraulic or pneumatic actuator. The surface of the actuator which contacts tissue may be circular, rectangular, polygonal, or any other shape. The size of the surface, e.g. the radius of a circular surface, may be between 1 mm and 10 cm, or any other range. For example, the size of the surface may be between 1 mm and 5 mm, 5 mm and 1 cm, 1 cm and 1.5 cm, 1.5 cm and 2 cm, 2 and 2.5 cm, 2.5 cm and 3 cm, or 3 cm and 3.5 cm, inclusive.
The surface may be tailored to apply pressure to only a single vessel, such as a primary artery in a wrist, arm, scalp, or other body part. Alternatively, the surface may be tailored to apply pressure to a bed of vessels or to a general region of tissue. Aspects of the surface which tailor it to a certain target area may include size, shape, curvature, or any other characteristic. For example, an actuator surface may be curved to conform to the curvature of a target area, such as the underside of a wrist, in order to apply pressure relatively uniformly across the wrist.
Detector 202 can also be used for spectrophotometric measurement of total hemoglobin or other blood analytes in the scalp. In one embodiment of the present invention, an actuator can have a cylindrical shape, or a surface that otherwise conforms to the edges of a probe or detector, and encircle a probe or detector receiving a photon signal through the scalp.
A further embodiment to cease completely or partially occlude flow externally makes use of artificial muscles that can mimic natural muscle through use of materials provided with power via electrical and/or other means. Electroactive polymers, e.g. artificial muscles, can undergo physical changes, such as expansion or contraction along a given dimension or dimensions, under the application of an electric field or voltage.
In embodiments of the present invention, an artificial pulse can be created and aid in the collection of valuable data. These embodiments may be particularly useful for collecting data from patients whose natural pulse is weakened, as can occur with some medical conditions. The creation of an artificial pulse can be facilitated by the methods described above for partially or fully occluding blood flow, such as by the repeated partial or full constriction and release of blood vessels. This technique could force blood from blood vessels proximal to the target area to the vessels at the target area, allowing increased blood volume in the latter vessels. This can produce a signal similar to a normal pulse caused by systolic flow.
One embodiment of the present invention may artificially create a pulse using a two-step approach. An initial partial or full constriction may be made proximal to the target area. A second partial or full constriction may be made distal to the initial constriction but proximal to the target area while the first constriction is kept in place. The second constriction can allow blood to pulse into the vessels at the target area, while the first constriction can prevent the backflow of blood away from the target area, producing a pulse more efficiently, with a larger increase in blood volume at the target area.
In another embodiment of the present invention, this two-step approach can be implemented with a segmented pressure cuff. The cuff may include two adjacent chambers, where the pressure in each chamber can be modified independently of the other. The segmented cuff can be affixed around a volume of patient tissue upstream of arterial blood flow to the targeted area. This volume of tissue may be on the patient's arm, wrist, hand, finger, or any other location. One chamber, which may be farthest from the target area, may be filled to a predetermined pressure. Subsequently, the second chamber, which may be nearer to the target area, may be filled to an equal or lesser pressure. Pressures may be released from the two chambers simultaneously or in series. Pressure can be supplied and released from the chambers manually, such as with a hand pump and release valve, or automatically, such as by an electric pump and automated valve.
The width of the cuff when deflated, e.g. the distance across two flattened chambers, may be any width between 1 cm and 30 cm, inclusive. This width may be between 1 cm and 5 cm, 5 cm and 10 cm, 10 cm and 15 cm, 15 cm and 20 cm, or any integer or non-integer number of centimeters within the enumerated ranges. The width of the cuff may be tailored to its intended application, such as the body part or parts that may contain the targeted area. For example, a cuff tailored to wrap around a human finger may be between 1 cm and 3 cm in width. It may also be between 1 cm and 1.25 cm, 1.25 and 1.5 cm, 1.5 cm and 1.75 cm, 1.75 cm and 2 cm, 2 cm and 2.25 cm, 2.25 cm and 2.5 cm, 2.5 cm and 2.75 cm, or 2.75 and 3 cm, inclusive, or any integer or non-integer number of centimeters within the enumerated ranges. A cuff tailored to wrap around a human arm may, in comparison, be between 5 cm and 30 cm in width. It may also be between 5 cm and 10 cm, 10 cm and 15 cm, 15 cm and 20 cm, 20 cm and 25 cm, or 25 cm and 30 cm, inclusive, or any integer or non-integer number of centimeters within the enumerated ranges.
The two cuff chambers in this embodiment may be of equal or unequal size. For example, the volume distribution of the cuff between the two chambers may be 50:50, e.g. 50% of the volume of the cuff in one chamber and 50% of the volume of the cuff in the other chamber, but may also be 5:95, 10:90, 15:85, 20:80, 25:75, 30:70, 35:65, 40:60, 45:55, or any other distribution between the enumerated values. Either the first or second chamber may be relatively larger. The division between the chambers may be made by stitching a firm seam in an otherwise undivided cuff, bonding such seam with glue or in some other manner, or with any other technique or combination of techniques. Alternatively, the two chambers may comprise two cuffs which have been stitched or bonded together, or used in conjunction with one another.
In another embodiment of the present invention, the two-step approach to pulse creation can be implemented with electroactive polymers (EAP), e.g. artificial muscles. Any one of a variety of configurations may be utilized to contract tissue around blood vessels in different body parts with electroactive polymers, which can respond in a predetermined manner to electrical stimulation including but limited to expansion, contraction, and bending or straining.
For example, band 301 may be a strip of electronic EAP, the ends of which are isolated from one another by connection 303. Connection 303 can stimulate band 301 by applying a unique voltage to each of its ends, applying a unique voltage to each side of one end, or otherwise applying a voltage or voltages, depending on the characteristics of the utilized EAP. Band 301 and band 302 can be separated by a thin layer of insulating material 305, such that the two bands can be stimulated independently of the other. Insulating material 305 may be any pliable insulating material, including but not limited to rubber, paper, plastic, or any insulating polymer.
Two or more bands of EAP may be configured in any other manner to produce an artificial pulse according to the two-step process. For example, band 301 and band 302 may instead be continuous, e.g. connection 303 and connection 304 may be excluded, and a different means of stimulation provided. Furthermore, stimulation may include applying a voltage or lessening or removing and applied voltage, depending on the characteristics of the EAP.
Use of electronic EAP's in embodiments of the present invention may enable particularly precise control of the both timing and amount of constriction implemented during artificial pulse creation. Some electronic EAP's can respond to changes in an electrical signal within milliseconds, and the magnitude of a response resulting from a given amount of stimulation can be accurately characterized.
In another embodiment of the present invention, two or more actuators can be configured to implement a multi-step approach to vessel occlusion. For example, two or more of aforementioned actuators, including but not limited to piezoelectric, electro-mechanical, hydraulic, or pneumatic actuators, may be positioned adjacently to one another along a vessel or vessels proximal to a target area. The most proximal, e.g. the actuator farthest from the target area, may be activated first. The actuator nearest to this first actuator may be activated second, and so forth, until the actuator nearest the target area has been activated.
In some embodiments of the present invention, artificial pulse techniques can create a pulse that matches the pulse of the subject. These embodiments may use timing derived from electrocardiography measurements (EKG), measurements of systolic pulse at a different location on the body, or by any other methodology to determine pulse rate. In other embodiments, an artificial pulse rate can be created that does not match the heart rate of the subject. A further embodiment can allow for a pulse to be created that does not follow a regular pulse pattern.
Embodiments of the present invention may create pulses between 60 to 100 beats per minute (bpm), less than 60 beats per minute, and up to 220 beats per minute. Pulses may be created which either match or do not match the natural pulse rate of a patient, and may be between 40 bpm and 60 bpm, 60 bpm and 80 bpm, 80 bpm and 100 bpm, 100 bpm and 120 bpm, 120 bpm and 140 bpm, 140 bpm and 160 bpm, 160 bpm and 180 bpm, 180 bpm and 200 bpm, or 200 bpm and 220 bpm, inclusive, and any other bpm within the enumerated ranges. For example, embodiments of the present invention may create a pulse rate of 65 bpm, 70 bpm, 75 bpm, 80 bpm, 85 pm, 90 bpm, 95 bpm, 100 bpm, 105 bpm, 110 bpm, 115 bpm, 120 bpm, 125 bpm, 130 bpm, 135 bpm, 140 bpm, 145 bpm, 150 bpm, 155 bpm, 160 bpm, 165 bpm, 170 bpm, 175 bpm, 180 bpm, or any integer or non-integer number of beats per minutes between the enumerated values.
In another embodiment of the invention, the procedure can progress with the targeted area being placed under various physical and/or chemical states. For example, parameters that may be varied to determine analyte concentrations under various conditions include but are not limited to temperature, pressure, and acidity (pH) of the target area.
In one embodiment of the present invention, a heating element can be incorporated into or used in conjunction with any one of the analyte-measurement or pulse-creation configurations which have been described. This embodiment can further regulate or normalize blood flow during measurements as temperature can affect local blood flow, for example by responsive vasoconstriction or vasodilation. Vasoconstriction, the narrowing of blood vessels, can occur in response to a relative drop in temperature, whereas vasodilation, the widening of blood vessels, may occur in response to a relative rise in temperature. Any type of heating element can be positioned proximal to the target area in order to maintain a constant tissue or blood temperature and thereby avoid temperature-related vasoconstriction or dilation. This temperature may be a normal body temperature, e.g. 98.6° F., or another temperature. This temperature may be any integer or non-integer temperature in the range of 70° F. to 130° F., 80° F. to 120° F., 90° F. to 110° F., 95° F. to 105° F., or 97° F. to 103° F., inclusive. For example, this temperature may be 98° F., 98.2° F., 98.4° F., 98.6° F., 98.8° F., 100° F., 100.5° F., and so forth. The temperature of the heating element can be controlled by feedback electronics that can measure the temperature of the tissue in the target area and tune the temperature of the heating element or elements appropriately to maintain a constant tissue temperature.
Heating elements which may be used include but are not limited to thermoelectric (TEC) heaters, other electronic heating elements, and lasers. One or more heating elements can be positioned before pulse-creation mechanisms, e.g. cuffs, EAP's, actuators, or others, interleaved with said mechanisms, after said mechanisms, or in any other location proximal to the target area.
Acidity, or pH, can also affect blood flow or oxygenation of blood in a tissue. Septic patients can have an abnormal blood acidity. In embodiments of the present invention, pH may be determined by spectrophotometric methods. For example, light with wavelengths in the absorption spectrum of pH indicators may be delivered to the tissue via previously described methods and a temporal response characteristic collected and analyzed to determine their concentration. These measurement may be completed at the systole, diastole, both, or neither, as well as with or without artificial pulse creation. pH may be determined prior to measurements of other analytes, such as oxy- and deoxyhemoglobin, and used to normalize a calculation of blood oxygenation to a predetermined pH standard.
Another embodiment of the invention can utilize previously described techniques and apparatuses for determination of analyte concentrations in non-biological models. Models may include but are not limited to fluid chambers surrounded by anisotropic media, e.g. tubing containing a fluid or other medium suspended in another fluid or medium.
The foregoing descriptions of specific embodiments of the present invention have been presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the invention to the precise forms disclosed, and many modifications and variations are possible in light of the above teaching. The embodiments were chosen and described in order to best explain the principles of the invention and its practical application, to thereby enable others skilled in the art to best utilize the invention and various embodiments with various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the claims appended hereto and their equivalents.
This application claims the benefit of U.S. Provisional Application No. 61/509,500, Attorney Docket Number OCL-4, entitled “Method and Apparatus for Hemometry,” filed Jul. 19, 2011, and is a continuation-in-part of the co-pending U.S. Non-Provisional application Ser. No. 12/875,983, Attorney Docket Number OCL-2, entitled “Method and Apparatus for Total Hemoglobin Measurement,” filed Sep. 3, 2010, which is a continuation-in-part of the co-pending U.S. Non-provisional application Ser. No. 11/381,443, Attorney Docket Number 054846/362290 entitled “Method and Apparatus for Lymph Node Mapping,” filed May 3, 2006, all of which are hereby incorporated by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
61509500 | Jul 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12875983 | Sep 2010 | US |
Child | 13550276 | US | |
Parent | 11381443 | May 2006 | US |
Child | 12875983 | US |