Method and apparatus for high brightness wide color gamut display

Information

  • Patent Grant
  • 7471822
  • Patent Number
    7,471,822
  • Date Filed
    Thursday, July 24, 2003
    21 years ago
  • Date Issued
    Tuesday, December 30, 2008
    16 years ago
  • CPC
  • US Classifications
    Field of Search
    • US
    • 382 162000
    • 382 167000
    • 382 191000
    • 382 168000
    • 345 088000
    • 345 694000
    • 345 589000
    • 345 590000
    • 345 593000
    • 345 597000
    • 345 032000
    • 345 084000
    • 348 743000
    • 348 744000
    • 348 0E9027
    • 353 084000
    • 353 031000
    • 359 497000
    • 359 618000
    • 358 500000
    • 358 001900
    • 358 512000
  • International Classifications
    • G06K9/00
    • Term Extension
      602
Abstract
A device to produce a color image, the device including a color filtering arrangement to sequentially produce at least four colors by transmission through respective color filters, each color filter having a spectral range of transmission, wherein the spectral range of at least one of the color filters includes substantially the entire spectral range of at least one additional color filter. A method of producing a color image, the method including sequentially transmitting light of at least four colors through at least four color filters respectively, each color filter having a spectral range of transmission, wherein the spectral range of at least one of the color filters includes substantially the entire spectral range of at least one additional color filter.
Description
FIELD OF THE INVENTION

The invention relates generally to color display devices and methods of displaying color images and, more particularly, to high brightness and/or wide color gamut displays.


BACKGROUND

Various types of color display technologies are known in the art. For example, there are CRT display systems, LCD systems, and projection display systems. In front projection displays, the projected images are viewed from a reflective viewing screen. In rear projection displays, the projected images are viewed through a transmissive viewing screen.


To produce color images, existing display devices use three primary colors, typically, red green and blue, collectively referred to as RGB. In sequential projection display systems, the three primary color components of an image are modulated and displayed sequentially, typically using a single Spatial Light Modulator (SLM) panel. In simultaneous projection display systems, the three primary color components of the image are modulated and displayed simultaneously using one or more SLM panels.


An important consideration in designing projection display devices is the display brightness. Thus, efforts are continually made to increase the optical efficiency of existing designs and, thereby, to increase the luminous output that can be obtained from a given light source.


Unfortunately, the light sources commonly used in existing display devices, for example, the UHP™ lamps available from Philips Lighting, a division of Royal Philips Electronics, Eindhoven, Netherlands, produce non-uniform light spectra wherein, typically, the intensity of the red wavelength range is significantly lower than the intensity of other spectral ranges. Thus, in existing RGB systems, typically, higher brightness may be achieved only by significantly reducing the color saturation of the red wavelength ranges. Further, in projection display systems for home theater applications, wherein highly saturated colors are typically required, filters with narrower spectral transmission ranges are typically used, causing an additional reduction in image brightness.


The quality of color image reproduction can be significantly improved by expanding the color gamut of the display system. This can be achieved by using more than three primary colors to reproduce the image. Display systems using more than three primary colors are described in International Application PCT/IL01/00527, entitled “Device, System and Method For Electronic True Color Display”, filed Jun. 7, 2001, and published Dec. 13, 2001 as WO 01/95544, assigned to the assignee of the present application, the entire disclosure of which is incorporated herein by reference.


A six-primary display using superimposed images produced by two projection display devices, wherein each projection display device uses three different primary colors, is described in Masahiro Yamaguchi, Taishi Teraji, Kenro Ohsawa, Toshio Uchiyama, Hideto Motomura Yuri Murakami, and Nagaaki Ohyama, “Color image reproduction based on the multispectral and multiprimary imaging: Experimental evaluation”, Device Independent Color, Color Hardcopy and Applications VII, Proc. SPIE, Vol. 4663, pp. 15-26 (2002). In the dual-projection display system described in this reference, the wavelength ranges selected for the six primary color filters are essentially uniformly distributed across the visible spectra of 400-700 nm, with no spectral overlap between the primaries. In this way, a wide gamut may be achieved; however, the combined brightness of the two projection devices is dramatically reduced. In fact, the combined brightness produced by this dual-projection device is lower than the brightness produced by a corresponding single RGB projection device. Dividing the visible spectrum into six (rather than three) ranges does not increase the over-all image brightness because the six primaries cover narrower sub-ranges of the same visible spectrum. An additional reduction of intensity is caused by inherent optical losses in the division of the spectrum into narrower ranges.


SUMMARY OF EMBODIMENTS OF THE INVENTION

An embodiment of the present invention provides a multi-primary color display device, e.g., a color projection display device, which produces images having a wide color gamut at brightness levels significantly higher than those of prior art devices. Further, for a given light source, the brightness level produced by embodiments of the device of the present invention is at least equal, and in some cases higher, than the brightness level of a conventional RGB projection display device using the same light source.


Embodiments of the present invention increase the efficiency of display devices by utilizing a relatively large portion of the polychromatic light generated by a light source, compared to conventional devices, while maintaining a relatively wide color gamut of the displayed images. According to embodiments of the invention, n primaries, wherein n is greater than three, may be selected and used to utilize some or all of the conventionally unused part of the white light generated by the light source, in order to provide increased brightness and/or a wider color gamut.


According to some of these embodiments, an increase in illumination efficiency may be achieved by using partially overlapping primary color spectra, wherein at least two of the primary color spectra overlap significantly. A specifically designed color filtering arrangement, e.g. including sets of filters or other filtering elements, may be used to convert white light into the desired, significantly overlapping spectra. The significantly overlapping primary color spectra may allow a larger percentage of the white light generated by the light source to be utilized by the display device. For example, when the device of the invention is operated in “full illumination” mode, i.e., when all the primary colors are at their maximum levels, the wide color gamut device of the invention may produce a white light output at levels comparable to, or even higher than, those of produced by a corresponding RGB projection device having a much narrower color gamut.


Further, specific designs of the filtering elements and overlap ranges of the wide gamut display of the invention may compensate for non-uniformities and other deficiencies of the light spectra generated by the white light source. In embodiments of the invention, the transmission curves of the filtering elements may be designed specifically to maximize the display brightness for a given color gamut, whereby substantially all colors within the desired color gamut may be reproduced at optimal efficiency.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be understood and appreciated more fully from the following detailed description of embodiments of the invention, taken in conjunction with the accompanying drawings of which:



FIG. 1A is a schematic illustration of the spectral output of a high-pressure mercury lamp in accordance with exemplary embodiments of the invention;



FIG. 1B is a schematic illustration of the spectral output of a Xenon light source in accordance with further exemplary embodiments of the invention;



FIG. 2 is a schematic illustration of an optical configuration for a device, in accordance with exemplary embodiments of the invention;



FIGS. 3A and 3B are schematic illustrations of primary color wavelength spectra for a six-primary color display using the configuration of FIG. 2, in accordance with exemplary embodiments of the invention;



FIG. 4 is a schematic illustration of the color gamut resulting from the primary color spectra of FIGS. 3A and 3B;



FIG. 5 is a schematic illustration of primary color wavelength spectra for a five-primary color display in accordance with one exemplary embodiment of the invention;



FIG. 6 is a schematic illustration of the color gamut resulting from the primary color spectra of FIG. 5;



FIG. 7 is a schematic illustration of primary color wavelength spectra for a five-primary color display in accordance with another exemplary embodiment of the invention;



FIG. 8 is a schematic illustration of the color gamut resulting from the primary color spectra of FIG. 7;



FIG. 9 is a schematic illustration of primary color wavelength spectra for a four-primary color display in accordance with one exemplary embodiment of the invention;



FIG. 10 is a schematic illustration of the color gamut resulting from the primary color spectra of FIG. 9;



FIG. 11 is a schematic illustration of primary color wavelength spectra for a four-primary color display in accordance with another exemplary embodiment of the invention;



FIG. 12 is a schematic illustration of the color gamut resulting from the primary color spectra of FIG. 11; and



FIG. 13 is a schematic illustration of a color switching mechanism according to some exemplary embodiments of the invention.





It will be appreciated that for simplicity and clarity of illustration, elements shown in the figures have not necessarily been drawn accurately or to scale. For example, the dimensions of some of the elements may be exaggerated relative to other elements for clarity or several physical components included in one element. Further, where considered appropriate, reference numerals may be repeated among the figures to indicate corresponding or analogous elements. It will be appreciated that these figures present examples of embodiments of the present invention and are not intended to limit the scope of the invention.


DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION

In the following description, various aspects of the present invention will be described. For purposes of explanation, specific configurations and details are set forth in order to provide a thorough understanding of the present invention. However, it will be apparent to one skilled in the art that the present invention may be practiced without the specific details presented herein. Furthermore, some features of the invention relying on principles and implementations known in the art may be omitted or simplified to avoid obscuring the present invention.


The following description of exemplary embodiments of the invention is based on a projection display system using a high-pressure mercury lamp, e.g., the UHP™ 100 Watt lamp, available from Philips Lighting, a division of Royal Philips Electronics, Eindhoven, Netherlands, or any other suitable white light source having a similar spectral range. FIG. 1A schematically illustrates the spectral output of the high-pressure mercury UHP™ 100 Watt lamp. It will be appreciated that all other types of high-pressure mercury lamps, such as the VIP lamp available from Osram, Berlin, Germany, have similar spectra and similar designs, so the following examples apply to all such lamps.


The examples herein are described in the context of high-pressure mercury type lamps because such lamps are most commonly used in projection display devices. However, some aspects of the embodiments described herein, e.g., the use of significantly overlapping primary color spectral ranges, may be applied in designing color filtering arrangements for other devices using other types of light sources. For example, aspects of the invention may be applied to devices using Xenon (Xe) type light sources, as are known in the art, having a spectral output as illustrated schematically in FIG. 1B. It will be appreciated by persons skilled in the art that the output spectra of the Xe type lamp of FIG. 1B is much smoother, and thus less difficult to accommodate, for the purpose of designing partially-overlapping spectra in accordance with embodiments of the invention, than the relatively “peaky” output spectra of the mercury type lamp of FIG. 1A.


For simplicity, the following description ignores possible non-uniformities in the spectral transmission properties of the optical elements used by the device of the invention. It will be appreciated, however, that such non-uniformities are not significant.


By appropriately selecting a desired set of partially overlapping primary colors, and by appropriately designing a color filtering arrangement to produce such primary colors, the method and device of the following exemplary embodiments of the invention may be implemented in conjunction with any color display system known in the art. In some embodiments of the invention, the display system may use more than three, partially overlapping primary colors. Display systems using more than three primary colors are described in International Application PCT/IL01/00527, entitled “Device, System and Method For Electronic True Color Display”, filed Jun. 7, 2001, published Dec. 13, 2001 as WO 01/95544, and in International Application PCT/IL01/01179, entitled “Spectrally Matched Print Proofer”, filed Dec. 18, 2001, published Jun. 27, 2002 as WO 02/50763, assigned to the assignee of the present application, the entire disclosure of both of which is incorporated herein by reference.


EXAMPLE 1
Six Primaries, Six-Panel Wide Gamut Display

The following example illustrates selection of primary color wavelength ranges for a wide gamut display using six Spatial Light Modulator (SLM) panels, wherein each panel produces one primary color. This configuration may allow full coverage of the typical color gamut of a projection film, e.g., a motion picture positive film, enabling a projection display to produce virtually all the colors that can be produced by projection film, as described below. FIG. 2 schematically illustrates an optical configuration of a device in accordance with this embodiment of the invention. The exemplary configuration of FIG. 2 is particularly adapted for devices using reflective-LCD type SLM panels.


According to embodiments of the invention, light from an illumination unit 201, which may include any suitable white light source known in the art, as described above, may be imaged onto LCD panels 206, 207, 208, 209, 210 and 211, via a relay lens 202, a reflection-transmission element, e.g., a polarizing beam splitter (PBS) 203, and a color separation arrangement, e.g., “X” color-separator cubes 204 and 205. Each of LCD panels 206, 207, 208, 209, 210 and 211 may include an array of pixels, as is known in the art, which may be selectively activated to produce a reflective pattern corresponding to one of a plurality of primary color images. In the example described herein, each LCD panel may be separately activated by a control unit (not shown in the drawings) to produce a reflective pattern corresponding to one of six independent primary color images, in accordance with an input signal representing a six-primary-color image. Such an input signal may be generated using any of the methods described in the above-referenced International Patent Applications, e.g., by converting a three-primary-color image signal into a six-primary-color image signal. As described below, each reflective pattern may modulate a corresponding primary color light beam to produce a corresponding primary color image component.


PBS 203 may split the white light from unit 201 into a reflected “s”-polarized component and a transmitted “p”-polarized component, as is known in the art. The “s”-polarized component may be separated by “X” color separation cube 204 into light beams of three different wavelength ranges, which correspond to three of the six primaries used in this embodiment of the invention. The operation of “X”-cubes as multiple filtering elements for color separation is well known in the art and commercially available. An example of such commercially available component is the Optec™ Standard Cubic Dichroic (X-Cube) Beam-splitter available from Richter Enterprises, Texas, United States.


It may be appreciated by those skilled in the art that any other suitable color filtering arrangement may be used, for example, to implement a desired number of primary colors. For example, the color filtering arrangement may include one “X” color separation cube and a dichroic mirror, as are known in the art, to separate the polarized components into five primary color light beams.


Each pixel of LCD panels 206, 207 and 208, when activated to an “on” state, may convert the “s”-polarized light into corresponding “p”-polarized light, as is known in the art, and may reflect the converted light back via “X” color separation cube 204. The three primary color light beams exiting “X”-cube 204, which beams are modulated in accordance with three, respective, primary color image components, may be transmitted through PBS 203 towards projection lens 212. Analogously, the transmitted “p”-polarized light may be separated by “X” color separation cube 205 into three different color light beams, corresponding to the remaining three primary colors. Each pixel of LCD panels 209, 210 and 211, when activated to an “on” state, may convert the “p”-polarized light into corresponding “s”-polarized light, as is known in the art, and may reflect the converted light back via “X” color separation cube 205. The three color light beams exiting “X”-cube 205, which beams are modulated in accordance with three, respective, primary color image components, may be deflected by PBS 203 towards projection lens 212. The projection lens may project all six modulated colored light beams, i.e., all six primary color image components, onto a viewing screen (not shown in the drawings).


It should be noted that the separate wavelength ranges produced by “X”-cube devices are inherently non-overlapping. Therefore, in the example described herein, there is no spectral overlap among the three primary color spectra produced by each “X”-cube, 204 or 205. Therefore, in this configuration, the desired partial overlap between primary color spectra, in accordance with embodiments of the invention, may be achieved by overlaps between the primary color spectra produced the “X”-cube 204 and the primary color spectra produced by “X”-cube 205. It will be appreciated by persons skilled in the art that essentially any desired overlapping can be achieved between primary color spectra produced by two “X”-cubes.



FIGS. 3A and 3B schematically illustrate primary color wavelength spectra for a six-primary color display using the configuration of FIG. 2. FIG. 3A shows the wavelength spectra of a set of three non-overlapping primary colors having spectral ranges of approximately 400-500 nm, approximately 500-550 nm, and approximately 575-750 nm, respectively, which may be produced by one color separation cube, e.g., “X”-cube 204 in FIG. 2. FIG. 3B shows the wavelength spectra of an additional set of three non-overlapping primary colors having spectral ranges of approximately 450-520 nm, approximately 520-620 nm, and approximately 620-750 nm, respectively, which may be produced by another color separation cube, e.g., “X”-cube 205 in FIG. 2. As shown in the drawings, there is significant overlap between the spectra of each of the primary colors in FIG. 3A and at least one of the primary colors in FIG. 3B, and vice versa. For example, the spectrum at the bottom of FIG. 3B partially overlaps, at different ranges, the two bottom spectra in FIG. 3A. It will be appreciated by persons skilled in the art that, despite the significant overlaps between primaries, the six spectral ranges illustrated in FIGS. 3A and 3B represent six distinct primary colors. According to embodiments of the invention, the specific color choices and partial overlap design of the primary color wavelength ranges shown in FIGS. 3A and 3B may result in a significantly wider color gamut and image brightness, compared to prior art color display devices, as described below.



FIG. 4 schematically illustrates the resulting color gamut of the primary color spectra of FIGS. 3A and 3B. As clearly shown in FIG. 4, the color gamut produced by a typical positive motion picture film is completely covered by the gamut of the six primary colors of FIGS. 3A and 3B. As further shown in FIG. 4, the white point coordinates obtained by the sum of all primaries are x=0.313 and y=0.329. The luminance values for the colors obtained by this configuration are in general equal to or higher than the luminance values that can be obtained for the same colors from a typical projection film, e.g. a positive motion picture film. Thus, in general, all the colors that can be reproduced by projection film can be reproduced by devices using the primary color selections of FIGS. 3A and 3B, both in terms of color coordinates and in terms of intensity. It should be appreciated that although the primary color selections of FIGS. 3A and 3B provide desirable results in terms of image color and brightness, there may be other suitable selections of six primary colors, with partial overlap, that provide similar (or even better) results, in accordance with specific implementations.


EXAMPLE 2
Multiple Primaries, Single Panel, Sequential Display

The following example illustrates implementation of the present invention in the context of a six-primary-color sequential display. In a sequential display system, the colors are typically produced by a sequential color switching mechanism, e.g. a color wheel 1304 as shown in FIG. 13 or a color drum, which transmits each color for a preset time period (window) within each field of the video stream. In such a system, the relative intensities of the primary colors may be adjusted by adjusting the relative sizes of a plurality of color filter segments 1306 (FIG. 13) on the color wheel. The single panel configuration, e.g., a panel 1302 (FIG. 13), may be implemented with either LCoS (Liquid Crystal on Silicon) or micro-mirror (DMD™) type panels, which are available, for example, from Texas Instruments, U.S.A., as is known in the art. In this example, the spectra of FIGS. 3A and 3B are produced by six filter segments, wherein each filter segments transmit one of the spectra of FIGS. 3A or 3B. The operation of multi-primary sequential projection color displays is discussed in detail in the above-referenced International Applications.


For a multiple-primary system, there may be numerous combinations of color filters, having varying relative segment sizes, to produce a desired viewed color, e.g., a desired white color temperature. The relative segment sizes of the color filters may affect the over-all brightness of the display, e.g., relative to the utilized portion of the light generated by the light source. The relative segment sizes of the color filters may also effect the relative intensity of each of the primary colors. Thus, the relative segment sizes of the color filters may be selected to provide a desired, e.g., maximal, over-all brightness of the display and/or a desired relative intensity of each of the primary colors, for example, to optimize specific implementations, as described below.


In order to calculate the reproducible color gamut, the light source spectrum, e.g. as shown in FIG. 1A or FIG. 1B, may be multiplied by a transmission spectrum (not shown) of the optical engine used, e.g., the single panel DMD™ type optical engine. Such multiplication may exclude the influence of the color generating elements, e.g., the color filters. The resulting spectrum may then be multiplied by the transmission spectra of the color filters to provide a set of primary reproducible spectra corresponding to the primary colors, respectively. As is known in the art, CIE 1931 x and y values of the color points corresponding to the primary reproducible spectra may be calculated to determine the reproducible color gamut. The relative segment sizes of the color filters may be selected according to the primary reproducible spectra, so as to provide a maximal over-all brightness, e.g., when all the primary colors are at their maximum levels, and to provide a desired relative intensity for each primary color.


EXAMPLE 3
Five Primaries, Single Panel, Sequential Display

It should be noted that the use of six primary colors is advantageous because six primaries may provide more flexibility in color adjustment compared to systems using less than six primaries. However, according to some embodiments of the invention, there are certain advantages in using less than six primary colors. One such advantage is that more time can be allocated to each primary in a sequential projection system, thereby improving the temporal resolution (bit depth) of the displayed image. According to this embodiment of the invention, five primary colors may be used. For example, the five primaries may include a blue color having a wavelength spectral range from about 400 nm to between 460 nm and 540 nm, a cyan color having a spectral range from between 400 nm and 460 nm to between 500 nm and 560 nm, a green color having a spectral range from between 480 nm and 520 nm to between 540 nm and 580 nm, a yellow color having a spectral range from between 500 nm and 550 nm to 650 nm or more, and a red color having a spectral range from between 580 nm and 620 nm to 700 nm or more.



FIG. 5 schematically illustrates transmission spectra for five filter segments that may be used by a five-primary-color display in accordance with embodiments of the invention. The filter selections of FIG. 5 may enable reproduction of a color gamut that is slightly wider than the standard NTSC color gamut, especially in the yellow-red regions, e.g., the yellow-red colors that can be displayed by this system may be more saturated than those allowed by the standard NTSC gamut, as shown schematically in FIG. 6. In order to balance the white point with all primaries fully transmitted, as described above, the relative segment sizes of the blue, cyan, green, yellow and red primaries in this example are 0.8, 0.8, 0.6, 1.1 and 1.7, respectively. This configuration may allow a brightness gain of about 40 percent over the six-primary color wheel configuration described above with reference to the primary color selections of FIGS. 3A and 3B. Furthermore, the brightness of a display device using the five primary color filter selections of FIG. 5 may produce image brightness about 1.9 times higher than the image brightness of a three-primaries (e.g., RGB) projection display using NTSC primary colors (with relative sizes of 0.5, 1, and 1.6 for the blue, green and red color filter segments, respectively). According to these embodiments, the increase in brightness may be achieved by increasing the amount of overlap between the transmission spectra of the different color filter segments, resulting in a slightly narrower color gamut than the six-primary color gamut shown in FIG. 4.


Another possible application of multiple primaries is for significantly increasing the brightness of a device producing the color gamut of a conventional REC-709 or similar display. FIG. 7 schematically illustrates filter transmission curves according to this embodiment of the invention. The filter segments in this example are used with relative segment sizes of 1, 0.9, 0.4, 1 and 1.7 for the blue, cyan, green, yellow and red primary color filter segments, respectively. The resulting color gamut of this embodiment is illustrated schematically in FIG. 8. It will be appreciated that the color gamut produced in this example is still larger than the REC-709 color gamut, particularly in the yellow and cyan regions. However, the brightness that may be achieved by this display is about 40 percent higher than the brightness of a corresponding display using only the standard REC-709 RGB filters (with relative segment sizes of 0.8, 0.7, 1.5 for the blue, green and red primary color filter segments, respectively).


EXAMPLE 4
Four Primaries, Single Panel, Sequential Display

In some embodiments of the invention, a four primaries display may also provide many advantages for the multi-primary color display. According to these embodiments, improved brightness may be achieved by the addition of a yellow primary color filter segment to the RGB segments. White balance may be achieved by adjusting the relative segment sizes, as described above. For example, the four primary colors may include a blue color having a wavelength spectral range from about 400 nm to between 460 nm and 540 nm, a green color having a spectral range from between 480 nm and 520 nm to between 540 nm and 580 nm, a yellow color having a spectral range from between 500 nm and 550 nm to 650 nm or more, and a red color having a spectral range from between 580 nm and 620 nm to 700 nm or more.



FIG. 9 schematically illustrates transmission curves of four primary color filter segments that may enable the device to produce a gamut comparable to the NTSC standard gamut, as schematically illustrated in FIG. 10, which is similar to the five-primary color gamut shown in FIG. 6. White balance may be achieved, as described above, by using relative segment sizes of 1.2, 0.8, 1 and 1 for the blue, green, yellow and red primary color filter segments, respectively. This configuration may result in an image brightness gain of about 90% over the brightness level of a white-balance-corrected NTSC RGB color gamut (with relative segment sizes of 0.6, 1 and 1.5 for the blue, green and red primaries, respectively), i.e., the brightness gain in this example is similar to the brightness gain of the five-primary color display described above.


In other embodiments of the invention, a four-primary color display may be used to increase the brightness of an REC-709 gamut by adding a yellow primary color filter segment. The filters transmission curves for this alternate embodiment are schematically illustrated in FIG. 11. The spectral ranges of FIG. 11 may be wider than the spectral ranges of FIG. 9 in order to reproduce a wider color gamut. The relative sizes of the color filter segments used in this example are 1.5, 0.7, 1.2 and 0.9 for the blue, green, yellow and red primary color filter segments, respectively. The resulting color gamut of this example is schematically illustrated in FIG. 12. It will be appreciated that this gamut is still larger than the REC-709 color gamut, particularly in the yellow regions, as shown in FIG. 12. The brightness that may be achieved by this display is about 50 percent higher than the brightness of a display using only the REC-709 RGB color filter segments (with relative segment sizes of 0.8, 0.7, 1.5, for the blue, green and red primary color segments, respectively).


While certain features of the invention have been illustrated and described herein, many modifications, substitutions, changes, and equivalents will now occur to those of ordinary skill in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the invention.

Claims
  • 1. A display device to produce a color image, the device comprising a color filtering mechanism to sequentially produce light of at least four non-white colors by transmission through at least four non-white color filters respectively, each color filter having a spectral range of transmission in which substantially all light having a wavelength within said spectral range is transmitted, wherein the spectral range of at least one of said non-white color filters includes substantially the entire spectral range of at least one additional color filter of said color filters.
  • 2. The device of claim 1 wherein said color filtering mechanism comprises a plurality of filter segments on a color wheel.
  • 3. The display device of claim 1 wherein said at least four color filters comprise a blue color filter having a wavelength spectral range from about 400 nm to between 460 nm and 540 nm, a green color filter having a spectral range from between 480 nm and 520 nm to between 540 nm and 580 nm, a yellow color filter having a spectral range from between 500 nm and 550 nm to 650 nm or more, and a red color filter having a spectral range from between 580 nm and 620 nm to 700 nm or more.
  • 4. The display device of claim 1 wherein said at least four color filters comprise at least five color filters.
  • 5. The display device of claim 4 wherein said at least five color filters comprise a blue color filter having a wavelength spectral range from about 400 nm to between 460 nm and 540 nm, a cyan color filter having a spectral range from between 400 nm and 460 nm to between 500 nm and 560 nm, a green color filter having a spectral range from between 480 nm and 520 nm to between 540 nm and 580 nm, a yellow color filter having a spectral range from between 500 nm and 550 nm to 650 nm or more, and a red color filter having a spectral range from between 580 nm and 620 nm to 700 nm or more.
  • 6. The display device of claim 4 wherein said at least five color filters comprise at least six color filters.
  • 7. The display device of claim 6 wherein said at least six color filters have spectral ranges of approximately 400-500 nm, approximately 500-550 nm, approximately 575-750 nm, approximately 450-520 nm, approximately 520-620 nm, and approximately 620-750 nm, respectively.
  • 8. The device of claim 1, further comprising a light source.
  • 9. The device of claim 1, further comprising a spatial light modulator to produce said color image by modulating light filtered by said color filtering mechanism.
  • 10. A device adapted to produce a color image using at least four non-white colors, the device comprising: a reflection-transmission element to reflect an s-polarized component of received light and to transmit a p-polarized component of the received light;a color filtering arrangement to separate said s-polarized and p-polarized components into at least four light beams corresponding to said at least four primary colors; andat least four reflective LCD panels to modulate the polarization of said at least four light beams, respectively, to produce at least four modulated light beams corresponding to said color image,wherein said color filtering arrangement comprises at least one color separation cube able to separate at least one of said s-polarized and p-polarized components into three or more of said at least four light beams.
  • 11. The device of claim 10 wherein each of said primary colors has a spectral range, and wherein the spectral ranges of at least two of said colors overlap.
  • 12. The device of claim 10 comprising a projection lens, wherein said reflection-transmission element further reflects s-polarized components of said modulated light beams and transmits p-polarized components of said modulated light beams onto said projection lens.
  • 13. The device of claim 10 wherein said deflection-transmission element comprises a polarizing beam splitter.
  • 14. The device of claim 11 wherein said at least four colors comprise a blue color having a wavelength spectral range from about 400 nm to between 460 nm and 540 nm, a green color having a spectral range from between 480 nm and 520 nm to between 540 nm and 580 nm, a yellow color having a spectral range from between 500 nm and 550 nm to 650 nm or more, and a red color having a spectral range from between 580 nm and 620 nm to 700 nm or more.
  • 15. The device of claim 11 wherein said at least four colors comprise at least five colors.
  • 16. The device of claim 15 wherein said at least five colors comprise a blue color having a wavelength spectral range from about 400 nm to between 460 nm and 540 nm, a cyan color having a spectral range from between 400 nm and 460 nm to between 500 nm and 560 nm, a green color having a spectral range from between 480 nm and 520 nm to between 540 nm and 580 nm, a yellow color having a spectral range from between 500 nm and 550 nm to 650 nm or more, and a red color having a spectral range from between 580 nm and 620 nm to 700 nm or more.
  • 17. The device of claim 15, wherein said at least five colors comprise at least six colors.
  • 18. The device of claim 17, wherein said at least six colors have spectral ranges of approximately 400-500 nm, approximately 500-550 nm, approximately 575-750 nm, approximately 450-520 nm, approximately 520-620 nm, and approximately 620-750 nm, respectively.
  • 19. The device of claim 10, wherein said at least one color separation cube comprises a first color separation cube able to separate said s-polarized component into three light beams, and a second color separation cube able to separate the p-polarized component into three light beams.
  • 20. A method of producing a color image, the method comprising sequentially transmitting light of at least four non-white colors corresponding to said color image through at least four non-white color filters respectively, each color filter having a spectral range of transmission in which substantially all light having a wavelength within said spectral range is transmitted, wherein the spectral range of at least one of said color filters includes substantially the entire spectral range of at least one additional color filter of said color filters.
  • 21. The method of claim 20 wherein sequentially transmitting light of said colors comprises sequentially filtering light of an illumination unit.
  • 22. The method of claim 20 wherein said at least four color filters comprise a blue color filter having a wavelength spectral range from about 400 nm to between 460 nm and 540 nm, a green color filter having a spectral range from between 480 nm and 520 nm to between 540 nm and 580 nm, a yellow color filter having a spectral range from between 500 nm and 550 nm to 650 nm or more, and a red color filter having a spectral range from between 580 nm and 620 nm to 700 nm or more.
  • 23. The method of claim 20 wherein said at least four color filters comprise at least five color filters.
  • 24. The method of claim 23 wherein said at least five color filters comprise a blue color filter having a wavelength spectra range from about 400 nm to between 460 nm and 540 nm, a cyan color filter having a spectral range from between 400 nm and 460 nm to between 500 nm and 560 nm, a green color filter having a spectral range from between 480 nm and 520 nm to between 540 nm and 580 nm, a yellow color filter having a spectral range from between 500 nm and 550 nm to 650 nm or more, and a red color filter having a spectral range from between 580 nm and 620 nm to 700 nm or more.
  • 25. The method of claim 23 wherein said at least five color filters comprise at least six color filters.
  • 26. The method of claim 25 wherein said at least six color filters have spectral ranges of approximately 400-500 nm, approximately 500-550 nm, approximately 575-750 nm, approximately 450-520 nm, approximately 520-620 nm, and approximately 620-750 nm, respectively.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a National Phase Application of PCT International Application No. PCT/IL03/00610, International Filing Date Jul. 24, 2003, claiming priority of U.S. Provisional Patent Application, 60/397,781, filed Jul. 24, 2002.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/IL03/00610 7/24/2003 WO 00 4/5/2004
Publishing Document Publishing Date Country Kind
WO2004/010407 1/29/2004 WO A
US Referenced Citations (110)
Number Name Date Kind
2412098 Schantz Dec 1946 A
3699244 Cohen et al. Oct 1972 A
4390893 Russell et al. Jun 1983 A
4751535 Myers Jun 1988 A
4800375 Silverstein et al. Jan 1989 A
4843381 Baron Jun 1989 A
4843573 Taylor et al. Jun 1989 A
4892391 Stewart et al. Jan 1990 A
4952972 Someya Aug 1990 A
4985853 Taylor et al. Jan 1991 A
4994901 Parulski et al. Feb 1991 A
5042921 Sato et al. Aug 1991 A
5087610 Hed Feb 1992 A
5166755 Gat Nov 1992 A
5184114 Brown Feb 1993 A
5188452 Ryan Feb 1993 A
5191450 Yajima et al. Mar 1993 A
5214418 Fukumura et al. May 1993 A
5233183 Field Aug 1993 A
5233385 Sampsell Aug 1993 A
5243414 Dalrymple et al. Sep 1993 A
5365283 Doherty et al. Nov 1994 A
5416890 Beretta May 1995 A
5447811 Buhr et al. Sep 1995 A
5455600 Friedman et al. Oct 1995 A
5528317 Gove et al. Jun 1996 A
5563621 Silsby Oct 1996 A
5588050 Kagawa et al. Dec 1996 A
5592188 Doherty et al. Jan 1997 A
5614925 Braudaway et al. Mar 1997 A
5625424 Conner et al. Apr 1997 A
5631734 Stern et al. May 1997 A
5642176 Abukawa et al. Jun 1997 A
5650832 Poradish et al. Jul 1997 A
5650942 Granger Jul 1997 A
5657036 Markandey et al. Aug 1997 A
5668572 Meyer et al. Sep 1997 A
5724062 Hunter Mar 1998 A
5736754 Shi et al. Apr 1998 A
5740334 Lin et al. Apr 1998 A
5751385 Heinze May 1998 A
5812303 Hewlett et al. Sep 1998 A
5835099 Marimont Nov 1998 A
5841494 Hall Nov 1998 A
5844540 Terasaki Dec 1998 A
5844699 Usami et al. Dec 1998 A
5863125 Doany Jan 1999 A
5870530 Balasubramanian Feb 1999 A
5872898 Mahy Feb 1999 A
5892891 Dalal et al. Apr 1999 A
5909227 Silverbrook Jun 1999 A
5982347 Shigeta et al. Nov 1999 A
5982541 Li et al. Nov 1999 A
5999153 Lind et al. Dec 1999 A
5999278 Suzuki et al. Dec 1999 A
6018237 Havel Jan 2000 A
6058207 Tuijn et al. May 2000 A
6069601 Lind et al. May 2000 A
6072464 Ozeki Jun 2000 A
6097367 Kuriwaki et al. Aug 2000 A
6144420 Jung Nov 2000 A
6147720 Guerinot et al. Nov 2000 A
6191826 Murakami et al. Feb 2001 B1
6198512 Harris Mar 2001 B1
6220710 Raj et al. Apr 2001 B1
6231190 Dewald May 2001 B1
6236390 Hitchcock May 2001 B1
6236406 Li May 2001 B1
6239783 Hill et al. May 2001 B1
6246396 Gibson et al. Jun 2001 B1
6256073 Pettitt Jul 2001 B1
6259430 Riddle et al. Jul 2001 B1
6262710 Smith Jul 2001 B1
6262744 Carrein Jul 2001 B1
6280034 Brennesholtz Aug 2001 B1
6304237 Karakawa Oct 2001 B1
6310591 Morgan et al. Oct 2001 B1
6324006 Morgan Nov 2001 B1
6366291 Taniguchi et al. Apr 2002 B1
6380961 Van Der Loop et al. Apr 2002 B1
6388648 Clifton et al. May 2002 B1
6407766 Ramanujan et al. Jun 2002 B1
6456301 Huang Sep 2002 B1
6459425 Holub et al. Oct 2002 B1
6467910 Sato Oct 2002 B1
6477270 Wu Nov 2002 B1
6538742 Ohsawa Mar 2003 B1
6549213 Sadka Apr 2003 B1
6567134 Morgan May 2003 B1
6570584 Cok et al. May 2003 B1
6580482 Hiji et al. Jun 2003 B1
6594387 Pettitt et al. Jul 2003 B1
6633302 Ohsawa et al. Oct 2003 B1
6674489 Kagawa et al. Jan 2004 B1
6750992 Holub Jun 2004 B1
6865292 Kagawa et al. Mar 2005 B1
6870523 Ben-David et al. Mar 2005 B1
6912017 Minami et al. Jun 2005 B1
6972736 Wada et al. Dec 2005 B1
7113152 Ben-David et al. Sep 2006 B2
7129955 Motomura Oct 2006 B2
20020005829 Ouchi Jan 2002 A1
20020109821 Huibers et al. Aug 2002 A1
20020122019 Baba et al. Sep 2002 A1
20020149546 Ben Chorin et al. Oct 2002 A1
20020163526 Haseltine et al. Nov 2002 A1
20020167528 Edje Nov 2002 A1
20020186229 Brown et al. Dec 2002 A1
20030085906 Elliott et al. May 2003 A1
20070001994 Roth Jan 2007 A1
Foreign Referenced Citations (30)
Number Date Country
0 367 848 May 1990 EP
0547603 Jun 1993 EP
0 653 879 May 1995 EP
59-159131 Sep 1984 JP
60 263122 Dec 1985 JP
62-222774 Sep 1987 JP
06-261332 Sep 1994 JP
07-043858 Feb 1995 JP
8-86994 Apr 1996 JP
08-248410 Sep 1996 JP
09 251160 Sep 1997 JP
10 307205 Nov 1998 JP
11-264953 Sep 1999 JP
2000253263 Sep 2000 JP
2000338950 Dec 2000 JP
2002149148 May 2002 JP
2002-191055 Sep 2002 JP
WO 9510160 Apr 1995 WO
WO 9724871 Jul 1997 WO
WO 9735424 Sep 1997 WO
WO 9742770 Nov 1997 WO
WO 0195544 Dec 2001 WO
WO 0211112 Feb 2002 WO
WO 0250763 Jun 2002 WO
WO 02091299 Nov 2002 WO
WO 02091348 Nov 2002 WO
WO 02091349 Nov 2002 WO
WO 02099557 Dec 2002 WO
WO 02101644 Dec 2002 WO
WO 03058587 Jul 2003 WO
Related Publications (1)
Number Date Country
20040246389 A1 Dec 2004 US
Provisional Applications (1)
Number Date Country
60397781 Jul 2002 US