Efficient AC/DC rectification of low voltages is important for the realization of fully-functional vibrational energy harvesting systems. Microwatt to milliwatt motional/vibrational energy harvesting systems can utilize low-power power management circuits. Vibrational energy harvesters can utilize ac/dc converter circuits that can operate at low input power and low voltage with acceptable efficiency (>80%). Attention has been given to circuits for piezoelectric harvesters [Ottman, G. K., Hofmann, H. F., Bhatt, A. C. and Lesieutre, G. A., 2002, Adaptive piezoelectric energy harvesting circuit for wireless remote power supply, IEEE Trans. Power Electronics, 17, 669-76; Guan, M. J. and Liao, W. H., 2007, On the efficiencies of piezoelectric energy harvesting circuits towards storage device voltages, Smart Mater. Struct., 16, 498-505; Lefeuvre, E., Audigier, D., Richard, C., Guyomar, D. K. 2007, Buck-Boost converter for sensorless power optimization of piezoelectric energy harvester, IEEE Trans. Power Electronics, 22, 2018-25], whose output voltage level is generally higher (typically >1 V) than similarly sized magnetic harvesters (typically <1 V). Accordingly, there is a lack of suitable low-voltage rectification solutions for magnetically based vibrational energy harvesting systems [Mitcheson, P. D., Yeatman, E. M., Rao, G. K., Holmes, A. S., and Green, T. C. 2008, Energy harvesting from human and machine motion for wireless electronic devices, Proceedings of the IEEE, 96, 1457-86].
Passive junction-based semiconductor diode bridges are generally not suitable for input voltage levels under 0.5 V, due to the forward-bias voltage drop associated with the diodes. Active MOS-based synchronized rectification is possible, where the rectification is implemented by controlling the conduction of MOSFET with a clock signal that is in phase with the input signal [Ghovanloo, M. and Najafi, K. 2004, Fully integrated wideband high-current rectifiers for inductively powered devices, IEEE J. Solid-State Circuits, 39, 1976-84]. Active MOS-based synchronized rectification typically utilizes a drive voltage (control signal) that is higher than the threshold voltage of the MOSFET (typically ˜0.4 V). In order to make available this drive voltage, complicated driving circuitry is commonly utilized.
Alternatively, in an attempt to avoid the inherent forward-bias voltage drop of semiconductor diodes, active diodes have been used in wireless power transmission [Lam, Y-H, Ki, W-H and Tsui, C-Y, 2006, Integrated low-loss CMOS active rectifier for wirelessly powered devices, IEEE Trans. Circuits Systems-II: Express Briefs, 53, 1378-82] and medical areas [Lehmann, T. and Moghe, Y., 2005, On-chip active power rectifiers for biomedical applications, IEEE Intl. Symp. Circuits Sys, ISCAS, 2005, 732-5]. Active diode can refer to a comparator-controlled switch that replaces junction-based diode. Recently, a combination of a synchronized rectifier and an active diode for energy harvester application has been investigated [Peters, C., Spreemann, D., Ortmanns, M. and Manoli, Y. 2008, A CMOS integrated voltage and power efficient AC/DC converter for energy harvesting applications, J. Micromech. Microeng., 18, 104005-13]. However, this approach can suffer from the same voltage threshold limit of other self-driven synchronized rectifiers, and the minimum rectifiable input voltage was reported in the Peters et al. reference to be only 1.25 V.
Accordingly, there is a need in the art for a method and apparatus for high efficiency AC/DC conversion of low voltage inputs.
Embodiments of the subject invention relate to a method and apparatus for providing a low-power AC/DC converter designed to operate with very low input voltage amplitudes. Specific embodiments can operate with input voltages less than or equal to 1 V, less than or equal to 200 mV, and as low as 20 mV, respectively. Embodiments of the subject low-power AC/DC converter can be utilized in magnetic induction energy harvester systems. With reference to a specific embodiment, a maximum efficiency of 92% was achieved for a 1 V input, and efficiencies exceeding 70% were achieved for a 200 mV input.
In the circuit implementation shown in
Embodiments of the subject invention relate to a method and apparatus for providing a low-power AC/DC converter designed to operate with very low input voltage amplitudes. Specific embodiments can operate with input voltages less than or equal to 1 V, less than or equal to 200 mV, and as low as 20 mV, respectively. Embodiments of the subject low-power AC/DC converter can be utilized in magnetic induction energy harvester systems. With reference to a specific embodiment, a maximum efficiency of 92% was achieved for a 1 V input, and efficiencies exceeding 70% were achieved for a 200 mV input.
In the circuit implementation shown in
To test the circuit, a 20 Hz sinusoidal input ranging from 0.02-1 Vpk was used. The waveform was generated from an Agilent 33120A function generator, whose output impedance is 50Ω. This waveform can mimic the output characteristics of a typical low-frequency magnetic induction energy harvester.
To test the low input voltage capability, the input voltage amplitude was gradually decreased, until the ripple exceeded 10%. To successfully rectify very low input voltages, the filter resistor should be large in order to maintain a detectable voltage for the comparator input. This comes at the expense of increased ripple. For R=100Ω and C=47 μF, an input voltage amplitude of only 20 mV was rectified, with a 10% ripple, as shown in
where vin and iin are instantaneous input voltage and current, vsupply and isupply are the instantaneous supply voltage and current to the comparators, and T is the duration of measurement, which is greater than 10 cycles.
The comparator supply voltages and currents are mostly dc. Therefore the power contribution of the power supply is approximately Vsupply*Isupply. These were measured and supplied using two Keithley 2400 Sourcemeters. The input voltage is directly measured by an oscilloscope (Tektronix TDS5104B), whereas a 0.1Ω current-sensing resistor was connected in series at the input in order to measure the input current. The voltage across the current-sensing resistor was amplified by a low noise amplifier (SRS SR560). The efficiency and output power vs. load resistance curves for different input voltages are plotted in
While efficiency is important, the total output power may be more relevant for an energy harvesting system.
A magnetic energy harvester was connected to the embodiment of the converter shown in
Embodiments of the subject invention, as shown in
The comparator circuit can be powered by an external power source, by the energy storage element, by the input voltage, and/or the output of the comparator. When powered by the input voltage or the output of the comparator, the comparator circuit can be considered self-powered, as there are no external power connections.
The circuit shown in
A shunt capacitor can be connected across the output terminals of the input voltage, such as from an energy harvester, to avoid resonant behavior. A linear or switching regulator can be connected to the output of the rectifier to regulate the voltage as shown in
The rectifier can be extended to a boost converter by adding an NMOS and a PMOS across the output terminals of the input voltage source, such as a magnetic energy harvester, as shown in
Since the input voltage from an energy harvesting system can be small, for example as low as 20 mV (or lower), an energy harvesting system utilizing a bridge voltage doubler circuit, as shown in
The behavior of an ideal diode, or junction-based diode, can be described as an intelligently controlled switch, whose on/off state is determined by comparing the voltage across the terminals. When the anode voltage is higher than cathode, the switch turns on; otherwise it turns off. Active diode refers to a circuit implementation using active components to approximate the ideal behavior of an ideal diode. With respect to a specific active diode, the switch can be implemented by a MOSFET, whose source and drain terminals are connected to the input of a comparator, and the output of the comparator is connected to the gate terminal of the MOSFET.
Embodiments of the subject invention relate to energy harvesting systems incorporating active diodes. The use of active components (e.g., a comparator and a transistor such as a MOSFET) can introduce extra power consumption. However, by using state-of-the-art low-power integrated circuits, this power consumption can be much smaller than the power consumed in a typical junction-based diode. For example, the nanopower comparator MAX9119 by Maxim (used in the circuit shown in
Comparing this to a typical Schottky diode with forward voltage of 0.3 V, the equivalent power is dissipated with a current flow of only 2 μA. Also, the forward-bias resistance of a Schottky diode is usually larger than the conducting resistance of a MOSFET that can be used with embodiments of the subject invention.
The bridge voltage doubler is a conventional circuit topology that was commonly used in cathode ray tube televisions to generate high dc voltages. The circuit functions as two peak detectors, capturing the positive and negative peaks of the input voltage waveform. The load is connected across the positive and negative outputs of the peak detectors, where the load voltage is twice the input ac voltage.
The operating state of a MOSFET is controlled by the differential voltage between the gate and source terminals. MOSFET types and comparator output ranges can be selected to enhance the performance of various embodiments of the invention. To reduce, or avoid, charge leakage through the body diode, the MOSFET can be connected in a way such that the body diode is oriented as shown in
The comparator output voltage swing is determined in part by the supply voltages. For the MAX9119, the positive output is equal to the positive supply voltage minus 0.3 V, and the negative output voltage is the negative supply voltage plus 0.3 V (see Table 2). From Table 1, the supply voltage requirement is lowest when PMOS is used for positive side and NMOS is used for negative side. In the circuit shown in
All patents, patent applications, provisional applications, and publications referred to or cited herein are incorporated by reference in their entirety, including all figures and tables, to the extent they are not inconsistent with the explicit teachings of this specification.
It should be understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within, the spirit and purview of this application.
The present application is a continuation of U.S. patent application Ser. No. 12/950,564, filed Nov. 19, 2010, which claims the benefit of U.S. Provisional Patent Application Ser. No. 61/262,803, filed Nov. 19, 2009, both of which are hereby incorporated by reference herein in their entirety, including any figures, tables, or drawings.
Number | Date | Country | |
---|---|---|---|
61262803 | Nov 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12950564 | Nov 2010 | US |
Child | 14293727 | US |