The present disclosure relates generally to true random number generators, and more specifically to random number generator technologies utilizing the spontaneous Nickel isotope decay, as well as apparatus, systems, and methods regarding same.
As opposed to pseudo-random number generators based on numerical algorithms, there are true random number generator (TRNG) devices that depend on natural random processes: multiple bipolar switches, thermal noise, light scattering by dichroic mirrors, chaotic systems, and decay of radioactive nuclei. Some of these TRNGs are listed in the provisional applications to which the present application claims priority, and those references are incorporated herein by reference as if fully set forth herein.
The decay of radioactive nuclei type is considered to be the most independent from environmental influences like temperature, pressure, or acceleration. However, typical nuclear-based TRNGs require large size detectors to enable the registration of particles emitted as a result of radioactive decays. Also, many nuclei used in such devices are highly radioactive and poisonous, hence dangerous to humans if a device is broken.
In previous disclosures by the present inventors, a TRNG is disclosed. For example, U.S. Pat. No. 10,901,695 entitled “Apparatus, systems, and methods for beta decay based true random number generator”, an array of detectors was employed and a method of adjusting counts by changing the read-out time was described. The contents of that patent are incorporated herein by reference. The source of entropy in the '695 patent was a thin layer of Nickel-63 attached to the inner surface of the metallic cover of the package of the integrated circuit (IC). Likewise, in U.S. Pat. No. 11,281,432 entitled “Method and apparatus for true random number generator based on nuclear radiation”, an array of detectors was employed to detect electrons (i.e., entropy) from the radiation source. Further, the '432 patent disclosed a method of adjusting the counting rates of these detectors based on the varying diameter of their surface. The disclosed method is very effective in compensating for the limited (finite area) of the radiation source. However, designing and manufacturing such a detector array is complicated because typical electrical parameters of a single diode vary considerably with the area. The contents of both the '695 and '432 patents are incorporated herein by reference.
A solution might be to create a source of electrons that produces a very uniform flux through a given surface. The problem is well known in classical optics: using a single point source and a paraboloidal mirror one can produce the required uniform flux, an example of which is a typical automobile front headlight. Unfortunately, creating a point source of electrons or a mirror that reflects these electrons is not an easy task, especially if such a device should be mounted inside an integrated chip. The most obvious solution, i.e., placing the radiation source just over the detectors, could be not a practical one because of the sensitivity of the surface for any contaminants as well as for the mechanical separation needed if the radiation source is deposited on the enclosure to allow for temperature expansion. If there is a gap between detectors and the source, then outer pixels will not receive the same electron flux as those inside the matrix.
Therefore, a cost-effective method for making a radiation source in a TRNG with a more uniform flux would be advantageous. Such a TRNG can then be used in compact personal devices.
In a first embodiment, a true random number generator is presented that includes a CMOS matrix detector with a top surface. A shell is positioned over the top surface, and the shell includes a radiation source and a luminophore or scintillator constructed to emit photons towards the top surface when the luminophore or scintillator is struck by electrons from the radioactive decay of the source of the radiation. The CMOS detector matrix is constructed to detect the photons emitted from the luminophore or scintillator and to produce a signal for the detected photons. The signal is communicated to a processor that produces true random numbers based on the signal from the detected photons. The shell may also include a material such as metal to block the emission of radioactive decay from escaping the TRNG. The shell may include three layers; the first layer comprises the luminophore or scintillator, the second layer comprises the radiation source, and the third layer comprises the material to block the emission of radioactive decay from the radiation source. The first layer is positioned closest to the top surface 16, and the third layer is positioned farthest from the top surface 16. The luminophore or scintillator may be comprised of NaI(TI), and the shell may be a half-dome.
In a second embodiment, a true random number generator (TRNG) is presented that includes a CMOS matrix detector with a top surface. A half-dome shell is positioned over the top surface, and the shell includes a first layer comprising a radiation source and a second layer comprising a material (such as metal) to block the emission of radioactive decay. The first layer is positioned closest to the top surface, and the second layer is positioned farthest from the top surface. The CMOS matrix detector is constructed to detect electrons emitted from the decay of the radioactive source and to produce a signal for the detected photons. The signal is communicated to a processor that produces true random numbers based on the signal from the detected photons.
In either embodiment, the TRNG may have a radioactive source of Nickel-63, and the detector may be comprised of an array of detectors. Either embodiment may be integrated into a self-contained microchip.
Additional aspects, alternatives, and variations as would be apparent to persons of skill in the art are also disclosed herein and are specifically contemplated as included as part of the invention. The invention is set forth only in the claims as allowed by the patent office in this or related applications, and the following summary descriptions of certain examples are not in any way to limit, define or otherwise establish the scope of legal protection.
The invention can be better understood with reference to the following figures. The components within the figures are not necessarily to scale, emphasis instead being placed on clearly illustrating example aspects of the invention. In the figures, like reference numerals designate corresponding parts throughout the different views and/or embodiments. Furthermore, various features of different disclosed embodiments can be combined to form additional embodiments, which are part of this disclosure. It will be understood that certain components and details may not appear in the figures to assist in more clearly describing the invention.
Reference is made herein to some specific examples of the present invention, including any best modes contemplated by the inventor for carrying out the invention. Examples of these specific embodiments are illustrated in the accompanying figures. While the invention is described in conjunction with these specific embodiments, it will be understood that it is not intended to limit the invention to the described or illustrated embodiments. On the contrary, it is intended to cover alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims.
In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. Particular example embodiments of the present invention may be implemented without some or all of these specific details. In other instances, process operations well known to persons of skill in the art have not been described in detail in order not to obscure unnecessarily the present invention. Various techniques and mechanisms of the present invention will sometimes be described in singular form for clarity. However, it should be noted that some embodiments include multiple iterations of a technique or multiple mechanisms unless noted otherwise. Similarly, various steps of the methods shown and described herein are not necessarily performed in the order indicated, or performed at all in certain embodiments. Accordingly, some implementations of the methods discussed herein may include more or fewer steps than those shown or described. Further, the techniques and mechanisms of the present invention will sometimes describe a connection, relationship, or communication between two or more entities. It should be noted that a connection or relationship between entities does not necessarily mean a direct, unimpeded connection, as a variety of other entities or processes may reside or occur between any two entities. Consequently, an indicated connection does not necessarily mean a direct, unimpeded connection unless otherwise noted.
The following list of example features corresponds to the attached figures and is provided for ease of reference, where like reference numerals designate corresponding features throughout the specification and figures:
This is related to our previously published US patents and applications listed above, in which we described the general idea of using pure beta minus (electron emission) nuclear decay as a medium or source of entropy for generating true random numbers by detecting emitted electrons on-chip through an electronic sensor or array of sensors. In this application, we present an approach to manufacturing the radiation source to be used in the previously disclosed TRNGs, as a thin layer without handling concerns. The radioactive source may be electro-deposited; 63Ni is available in a solution as Nickel chloride.
Here we propose a design of a radiation source on some surface placed above the array of the same detectors.
z={right arrow over (r2−(x−r)2)}+h (1)
where r is the radius of the sphere, h is the distance between the center of the sphere and the detectors' surface (h=0 if the half-sphere sits on the surface as shown in
z=h (2)
Using the same simulations, data was obtained for an area of the source equal to the area of detectors. This structure is shown in
Assuming h>0, one can test the situation when the sphere is lifted slightly above the detector's surface. This structure is shown in
It is worth noting that to get accurate, smooth solutions to the problem (as shown in
Detecting electrons is slightly more complicated than detecting photons (different interactions with solid matter) so we propose another modification of the radiation source used in the described detector's matrix-based random number generator. If the thin layer of the electron radiation source (in our case Nickel-63 source is thin because the self-absorption of electrons makes the thicker layer redundant) is covered with a thin layer of a luminophore or other scintillation chemical (like widely used NaI(TI) coating), it can produce many thousands of photons in a visible light spectrum per single electron captured.
One possible construction is shown in
The TRNG in
Even if traditional LED light sources can be placed inside a spherical dome, they are still not stable over a long time. On the other hand, beta decays of Nickel-63 have a half-life time of about 100 years, which means that the flux of electrons diminishes only by about 0.7% per year, which is over two orders of magnitude smaller than the flux itself. Also, a fluorophore or scintillator, although subject to radiation damage, will last for more than 10 years of a practical lifetime of the described high throughput random number generator. With about 1022 molecules of luminophore or scintillation chemical per mole in normal conditions, even if each electron will damage one molecule permanently, and with a flux of 108 electrons impinging luminophore or scintillator per second, after 10 years of irradiations (about 3·108 seconds) there will be still orders of magnitude more fresh molecules that will be able to emit photons.
Most commercial CMOS matrices have a ratio of edges of about 9 to 16 (the HD video format) which means that a spherical dome will leave enough space on the sides of such a CMOS to be used for accompanying ICs, presumably manufactured on the very same piece of silicon so the whole unit will be self-contained random number generator system-on-chip.
Let us do some estimates of the amounts of radiational source needed. Assuming matrix pixels size of 5 microns by 5 microns and the source placed just on the matrix (no gap), one obtains about 140 electrons hitting each pixel per second assuming 15 mCi surface activity. This means that one can read out such a matrix at least 100 times per second knowing that on average each pixel will be hit at least once. If the matrix can be only read less frequently, then the radiational source can be thinner, thus producing fewer electrons per second which can be advantageous because of the cost of Nickel-63. The same applies to larger pixels, for example, 10 microns by 10 microns pixels will be hit by at least 550 electrons per second, etc. Since the area of the half-sphere as described above is about 2 times larger than the area covered by the matric comparable with the area of the sphere cross-section, the source can be even thinner.
Provided in the Appendix are calculations for the performance of the TRNG based on a new Canon SPAD sensor, see https://global.canon/en/news/2021/20211215.html. It is found that the Canon SPAD sensor can produce 0.27 GB/sec/cm2. Thus, to obtain 2 GB/sec, a 10 cm2 matrix is necessary (about 3.15 cm×3.15 cm or about 1.5 in.×1.5 in. area). With a PCB having an area of 150 cm2, one can achieve up to 30 GB/sec provided that one can get consistent throughput throughout the interface of PCB like PCI Express. Practically, it may be more effective to network several smaller PCBs if such a high throughput is necessary.
Any of the suitable technologies, materials, and designs set forth and incorporated herein may be used to implement various example aspects of the invention, as would be apparent to one of skill in the art.
Although exemplary embodiments and applications of the invention have been described herein including as described above and shown in the included example Figures, there is no intention that the invention is limited to these exemplary embodiments and applications or to how the exemplary embodiments and applications operate or are described herein. Indeed, many variations and modifications to the exemplary embodiments are possible, as would be apparent to a person of ordinary skill in the art. The invention may include any device, structure, method, or functionality, as long as the resulting device, system, or method falls within the scope of one of the claims that are allowed by the patent office based on this or any related patent application.
63Ni activity =
For more info on Canon SPAD sensors see https://global.canon/en/news/2021/20211215.html.
This application claims priority to U.S. Provisional Application Ser. 63/344,496 titled “Method and Apparatus for Highly Effective On-Chip Quantum Random Number Generator” filed on May 20, 2022; to U.S. Provisional Application Ser. 63/279,587 titled “Method for Cost-Effective Nickel-63 Radiation Source for True Random Number Generators” filed on Nov. 15, 2021; to U.S. Provisional Application Ser. 63/277,759 titled “Method for Cost-Effective Nickel-63 Radiation Source for True Random Number Generators” filed on Nov. 10, 2021; to U.S. Provisional Application Ser. 63/224,811 titled “Method And Apparatus For Highly Effective Beta Decay Based On-Chip True Random Number Generator” filed on Jul. 22, 2021; to U.S. Provisional Application Ser. 63/234,820 titled “Method And Apparatus For Highly Effective Beta Decay Based On-Chip True Random Number Generator” filed on Aug. 19, 2021; to U.S. Provisional Application Ser. 63/235,031 titled “Method And Apparatus For Highly Effective Beta Decay Based On-Chip True Random Number Generator” filed on Aug. 19, 2021; and to U.S. Provisional Application Ser. 63/270,912 titled “Method And Apparatus For True Random Number Generator Based On Nuclear Radiation” filed on Oct. 22, 2021, all of which are incorporated herein by reference in their entireties. This application is also related to U.S. application Ser. No. 17/687,630 titled “Method for Making Cost-Effective Nickel-63 Radiation Source for True Random Number Generators” filed on Mar. 5, 2022; to U.S. application Ser. No. 17/513,661 titled “Method And Apparatus For Highly Effective Beta Decay Based On-Chip True Random Number Generator” filed on Oct. 28, 2021; to U.S. application Ser. No. 17/409,971 titled “Method And Apparatus For Highly Effective On-Chip True Random Number Generator Utilizing Beta Decay” filed on Aug. 24, 2021; to U.S. Provisional Application Ser. 62/984,528 titled “Method And Apparatus For Tritium-Based True Random Number Generator” filed on Mar. 3, 2020; to U.S. Provisional Application Ser. 63/062,672 titled “Method And Apparatus For Beta Decay Based True Random Generator” filed on Aug. 7, 2020; to U.S. Provisional Application Ser. 62/655,172 titled “Apparatus, Systems, And Methods Comprising Tritium Random Number Generator” filed on Apr. 9, 2018; to U.S. Provisional Application Ser. 62/803,476 titled “Apparatus, Systems, And Methods Comprising Tritium Random Number Generator” filed on Feb. 9, 2019, now U.S. Pat. No. 10,430,161; to U.S. application Ser. No. 16/273,365 titled “Apparatus, Systems, And Methods Comprising Tritium Random Number Generator” filed on Feb. 12, 2019; to U.S. application Ser. No. 16/990,087 titled “Apparatus, Systems, And Methods For Beta Decay Based True Random Number Generator” filed on Aug. 11, 2020, now U.S. Pat. No. 10,901,695; to U.S. application Ser. No. 17/126,265 titled “Method and Apparatus for Tritium-based True Random Number Generator” filed on Dec. 18, 2020, now U.S. Pat. No. 11,048,478; to U.S. application Ser. No. 17/062,307 titled “Apparatus, Systems, And Methods For Beta Decay Based True Random Number Generator” filed on Oct. 2, 2020, now U.S. Pat. No. 11,036,473; to PCT Application SN PCT/US19/17748 titled “Apparatus, Systems, And Methods Comprising Tritium Random Number Generator” filed on Feb. 13, 2019; to PCT Application SN PCT/US20/65962 titled “Apparatus, Systems, And Methods For Beta Decay Based True Random Number Generator” filed on Dec. 18, 2020; and to PCT Application SNPCT/US20/65976 titled “Apparatus, Systems, And Methods For Beta Decay Based True Random Number Generator” filed on Dec. 18, 2020. Each of the patent applications, issued patents, and other references discussed and/or cited herein, are incorporated by reference as if fully set forth herein.
Number | Name | Date | Kind |
---|---|---|---|
3445591 | Koehler | May 1969 | A |
3546356 | Graybill | Dec 1970 | A |
3790768 | Chevalier | Feb 1974 | A |
4527798 | Siekierski | Jul 1985 | A |
4855690 | Dias | Aug 1989 | A |
4905176 | Schulz | Feb 1990 | A |
5570307 | Takahshi | Oct 1996 | A |
5627894 | Albert | May 1997 | A |
5732138 | Noll | Mar 1998 | A |
5987483 | Edelkind | Nov 1999 | A |
6249009 | Kim | Jun 2001 | B1 |
8001054 | Peart | Aug 2001 | B1 |
6346700 | Cunningham | Feb 2002 | B1 |
6415309 | Shilton | Jul 2002 | B1 |
6430170 | Saints | Aug 2002 | B1 |
6539410 | Klass | Mar 2003 | B1 |
6542014 | Saito | Apr 2003 | B1 |
6687721 | Wells | Feb 2004 | B1 |
6697829 | Shilton | Feb 2004 | B1 |
6745217 | Figotin | Jun 2004 | B2 |
7031991 | Hars | Apr 2006 | B2 |
7124157 | Ikake | Oct 2006 | B2 |
7476370 | Mitsugashira | Jan 2009 | B2 |
8001168 | Tsuyuzaki | Aug 2011 | B2 |
8037117 | Saito | Oct 2011 | B2 |
9335972 | Yang | May 2016 | B2 |
10430161 | Tatarkiewicz | Oct 2019 | B1 |
11036473 | Tatarkiewicz | Jun 2021 | B1 |
20040035201 | Vincze | Feb 2004 | A1 |
20060010183 | Rabin | Jan 2006 | A1 |
20090165086 | Trichina | Jun 2009 | A1 |
20120030268 | Liu | Feb 2012 | A1 |
20150064047 | Elwha | Mar 2015 | A1 |
20180217817 | Gorfinkle | Aug 2018 | A1 |
20190258458 | Walmsley | Aug 2019 | A1 |
20190310830 | Tatarkiewicz | Oct 2019 | A1 |
20190347076 | Park | Nov 2019 | A1 |
20200065068 | Hekmatshoartabari | Feb 2020 | A1 |
20200092328 | Kim | Mar 2020 | A1 |
20200210147 | Lee | Jul 2020 | A1 |
Number | Date | Country |
---|---|---|
WO-02091147 | Nov 2002 | WO |
2014080272 | May 2014 | WO |
2014080272 | May 2014 | WO |
WO-2020036259 | Feb 2020 | WO |
Entry |
---|
B. {hacek over (S)}korić 2015 Lecture notes 2IMS10 Technical University Eindhoven (Holland) Physical aspects of digital security. |
D.F. Williams et al. 1993 Oak Ridge National Laboratory TM-12399 Recovery and Purification of Nickel-63 from HFIR-irradiated Targets. |
J. von Neumann 1951 Res. Nat. Bur. Stand Appl Math Series 3, 36-38 Various techniques used in connection with random digits. |
M.J. Berger and S.M. Seltzer 1982 National Bureau of Standards NBSIR 82-2550 Stopping Powers and Ranges of Electrons and Positrons. |
M.-M. Bé et al. 2008 Bureau International des Poids et Mesures, Sevres (France) BIPM-5 vol 1-4 Table of Radionuclides. |
Patuleanu et al. 2017 Proc. Romanian Acad. series A, vol. 18, 389-402 True random number sequences from gamma-decay using four extraction methods. |
Jones on “True random number generators for a more secure IoT”, Mar. 2016. Retrieved on [Oct. 29, 2020]. Retrieved from the Internet <https:l/www.techdesignforums.com/practice/technique/true-random-number-generators-for-more-secure-systems/> (Year: 2016). |
S. Burri, D. Stucki, Y. Maruyama, C. Bruschini, E. Charbon and F. Regazzoni, “SPADs for quantum random numbers generators and U beyond,” 2014 19th Asia and South Pacific Design Automation Conference (AS P-DAC), Singapore, 2014, pp. 788-794, doi: 10.11 09/ASPDAC.2014.6742986. (Year: 2014). |
Duggirala R., Lal A., Radhakrishnan S. (2010) Radioisotope Decay Rate Based Counting Clock. In: Radioisotope Thin-Film Powered Microsystems. MEMS Reference Shelf, vol. 6. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6763-3_7 (Year: 2010). |
Collantes et al. “Quantum Random Number Generators”, 2016 Retrieved from the Internet <https://arxiv.org/pdf/1604.03304.pdf> (Year: 2016). |
Rohe, “RANDy—A True-Random Generator Based On Radioactive Decay”, 2003. Retrieved from the Internet <https://citeseerx.ist.psu.edu/viewdoc/download?doi=1 0.1.1.11 0.9725&rep=rep1 &type=pdf> (Year: 2003). |
International Search Report and Written Opinion for PCT/US2019/017748 dated Dec. 30, 2019 (6 pages). |
International Search Report in PCT/US2020/065962 dated Apr. 22, 2020 (6 pages). |
International Search report for PCT/EP2022/070435 dated Nov. 17, 2022 (11 pages). |
Number | Date | Country | |
---|---|---|---|
20230021552 A1 | Jan 2023 | US |
Number | Date | Country | |
---|---|---|---|
63279587 | Nov 2021 | US | |
63277759 | Nov 2021 | US | |
63270912 | Oct 2021 | US | |
63234820 | Aug 2021 | US | |
63235031 | Aug 2021 | US | |
63224811 | Jul 2021 | US |