Method and apparatus for hydroforming multiple components with reduced press loading

Information

  • Patent Grant
  • 6386009
  • Patent Number
    6,386,009
  • Date Filed
    Tuesday, November 21, 2000
    23 years ago
  • Date Issued
    Tuesday, May 14, 2002
    22 years ago
Abstract
Apparatus and method for hydroforming multiple components simultaneously with a smaller capacity press than would be possible using conventional hydroforming methods and apparatus. Die pairs are positioned with multiple die cavities in series so that the separating force transmitted to a press holding the dies equals the force developed in a single die cavity, even though multiple components are being formed in the die cavities.
Description




TECHNICAL FIELD




This invention relates to hydroforming methods and apparatus.




BACKGROUND OF THE INVENTION




It is known in the art relating to hydroforming to provide a die set with upper and lower dies forming multiple die cavities in which hydroforming of multiple components is performed simultaneously. The hydroforming process involves applying internal hydraulic pressures in the die cavities, often on the order of 10,000 psi (69×10


6


Pa). The press in which the die set is mounted must apply sufficient force to maintain the dies closed against the internal forces developed in the totality of all the die cavities which are, in effect, mounted in parallel within the press. For larger components, this results in a requirement for very high press loadings, calling for a very large and expensive press.




SUMMARY OF THE INVENTION




The present invention provides a method and apparatus for hydroforming multiple components in a press containing dies having multiple die cavities arranged to limit the press loading to essentially that required to hydroform a single component in a single die cavity. This is accomplished by aligning the multiple die cavities in series in the press so that the separating forces of only the die members at the ends of the series act against the press with a force equal to only the separating force of a single die cavity. The forces of the intermediate dies are internally balanced by the forces acting in the adjacent die cavities and so do not add any additional force to that of the single cavity acting on the press.




The apparatus accordingly includes: a plurality of mating hydroforming die pairs engagable to form a plurality of aligned and spaced hydroforming die cavities having parting lines of the die pairs extending generally laterally to the direction of alignment of the die pairs; a press operative to load the engaged die pairs in the direction of alignment; and means for simultaneously hydroforming components in the die cavities while the dies are loaded.




The method involves: arranging in essentially linear alignment die pairs forming a plurality of separate die cavities, with the die pairs positioned such that internal separating loads in the die pairs act in alignment with the die cavities; and loading the die pairs in a press in the direction of alignment of the die cavities while simultaneously hydroforming components in each of the die cavities.




These and other features and advantages of the invention will be more fully understood from the following description of certain specific embodiments of the invention taken together with the accompanying drawings.











BRIEF DESCRIPTION OF THE DRAWINGS




In the drawings:





FIGS. 1-4

are schematic cross-sectional views illustrating steps in a conventional tubular hydroforming process for a single component;





FIG. 5

is a schematic cross-sectional view of conventional apparatus for simultaneous tubular hydroforming of a plurality of components;





FIGS. 6 and 7

are schematic cross-sectional views of apparatus in accordance with the invention illustrating the method of operation of the apparatus.











DESCRIPTION OF THE PREFERRED EMBODIMENT




Referring now to the drawings in detail, numeral


10


generally indicates a forming station for tubular hydroforming of a single tubular component, in this case a copper plumbing tee, not shown. Station


10


includes an upper die


12


and a lower die


14


forming a die pair


12


,


14


mounted in a press, not shown. The dies are movable together to define a die cavity


16


in which a tubular workpiece


18


is positioned for hydroforming. The die cavity


16


has a generally cylindrical portion


20


open at its ends, and a lateral bore with a control piston


22


extending from the center of the cavity


16


through the upper die


12


. Cylindrical end seals


24


,


26


are provided to close open ends of the cavity


16


. External pistons


28


,


30


are provided to activate the end seals.




In operation of the forming station


10


, a tubular workpiece


18


is placed in the lower die


14


portion of the die cavity


16


when the upper die


12


is raised for loading of the workpiece as shown in FIG.


1


. The dies are closed and pistons


28


,


30


force the seals


24


,


26


against the open ends of the workpiece


18


as shown in FIG.


2


. The workpiece is filled with hydroforming fluid, usually water mixed with a suitable amount of corrosion resisting oil, which may be fed to the workpiece through the hollow seal


26


.




As is shown in

FIG. 3

, the pistons


28


,


30


then move in further to force the seals


24


,


26


against the ends of the workpiece and to force the workpiece ends axially inward and increase the hydraulic pressure in the workpiece to a sufficient value, such as 10,000 psi, for hydroforming the workpiece. The hydroforming action shortens the length of the workpiece and redistributes the compressed metal to form a lateral leg with a closed end on the workpiece


16


, extending up into the lateral bore against piston


22


.




The fluid pressure is released, the dies


12


,


14


are then opened and a hydroformed component


32


is ejected from the upper die as shown in FIG.


4


. The component


32


is further processed, by cutting off the closed end of the lateral leg after the hydroforming process, to obtain the finished plumbing tee, not shown. A new workpiece


18


, is then inserted into the lower die


14


and the process is repeated.




In

FIG. 5

, a conventional apparatus for forming multiple workpieces is shown schematically as a press


34


including a frame having an upper member


36


and a lower platen


38


fixed to the frame. The press is provided with actuating means of any suitable type, shown in the illustrated embodiment as three hydraulic cylinders


39


fixed to the upper member


36


and movably carrying an upper platen


40


. An upper die


42


is mounted on the upper platen and mates with a lower die


44


mounted on the lower platen


38


. The die pair


42


,


44


, when closed, together define three side by side die cavities


46


in which three tubular workpieces


48


may be simultaneously hydroformed into individual components, not shown in the manner previously described in connection with

FIGS. 1-4

.




It is noted that the die cavities


46


are arranged in parallel, i.e. laterally to the direction of motion of the press


34


and to the application of force on the dies by the press. Also, the parting lines


50


of the die cavities extend parallel to the direction of alignment of the die cavities. Thus, the hydraulic forming pressures developed in the die cavities result in separating forces in the cavities that are added together and act against the force of the press


34


. The size and load capacity of the press required for hydroforming multiple components with this conventional apparatus is, thus, a multiple of the number of hydroforming cavities formed in parallel within the die pair


42


,


44


. This limits the number of multiple components which may be simultaneously formed in a particular press using this method and apparatus, or requires a substantially larger press to form more components.




Referring now to

FIGS. 6 and 7

, an improved apparatus


52


made in accordance with the invention is shown. Apparatus


52


preferably includes a horizontal press


54


having a generally horizontal slide or table


56


(although a vertical or otherwise oriented press could be made applicable if desired). A stationery abutment or fixed platen


58


is located at one end of the table


56


. At the other end, a horizontally movable slider or movable platen


60


is connected with a fixed frame or abutment


62


by one or more actuating members such as hydraulic cylinders


64


. Suitable pneumatic, electric or mechanical or other forms of hydraulic actuating devices could be substituted if desired.




Between the platens


58


,


60


, there are aligned a plurality of die pairs made up of alternating pairs of mating dies


66


,


68


. When closed, the die pairs define a plurality of aligned and longitudinally spaced hydroforming die cavities


70


,


72


,


74


in which hydroformed components may be formed in the manner previously described in connection with

FIGS. 1-4

. The die cavities are aligned longitudinally in series between the fixed and movable platens


58


,


60


of the press


54


. Also, the die pairs


66


,


68


have parting lines


76


that extend laterally (vertically) to the (horizontal) direction of alignment of the die pairs. As a result, the longitudinally aligned die cavities


70


,


72


,


74


develop, from the hydraulic pressures therein, separating forces which act essentially normal to the parting lines


76


and, therefore, in alignment with the horizontal line of action of the press


54


. The result is that the separating forces of only the outer portions of the end die cavities


70


,


74


act against the press


54


. The separating forces acting on the inner portions of cavities


70


,


74


are opposed and balanced by the separating forces acting within the center cavity


72


. Therefore, only the effective forces of one die cavity are applied against the hydraulic cylinders of the press


54


and these forces are not increased by having additional die cavities in series within the press.




In the exemplary embodiment of the invention shown in

FIGS. 6 and 7

, the die pairs


66


,


68


may be made up of individual end dies


66


and


68


and integrally combined intermediate dies


66


,


68


. However, the intermediate dies could be made as individual die members fixed together or otherwise arranged to open and close the die cavities


70


,


72


,


74


as needed. Note also that the dies


66


,


68


, as well as the movable platen


60


, move on wheels


78


or rollers on the horizontal table


56


. However, these members could alternatively slide on ways or ride on tracks or move on any other suitable form of horizontal transfer means.




In operation, the die pairs are first opened as shown in

FIG. 6

so that tubular workpieces


80


may be inserted into the open die cavities


70


,


72


,


74


. The dies are then closed by advancing the cylinders


64


to close the die cavities and allow hydroforming of the workpieces


80


in the manner described in

FIGS. 1-4

. Suitable linkage or other means may be utilized in opening the dies to return the movable die pairs


66


,


68


to their original positions shown in

FIG. 6

so that the hydroformed parts can be removed and replaced by new workpieces to be formed.




The apparatus and method of the invention make possible the hydroforming of multiple components simultaneously with a smaller capacity press than would be possible using conventional hydroforming methods and apparatus. While the detailed description refers in particular to hydroforming of tubular workpieces, the invention may also be applied to hydroforming of sheets or other forms of workpieces.




While the invention has been described by reference to certain preferred embodiments, it should be understood that numerous changes could be made within the spirit and scope of the inventive concepts described. Accordingly, it is intended that the invention not be limited to the disclosed embodiments, but that it have the full scope permitted by the language of the following claims.



Claims
  • 1. A hydroforming apparatus for simultaneously forming multiple, discrete workpieces, the apparatus comprising:a plurality of mating hydroforming die pairs engagable to form a plurality of distinct and separated hydroforming die cavities arranged along an alignment axis and having parting lines of the die pairs spaced and extending generally parallel to each other, wherein the parting lines are generally perpendicular to the alignment as of the die pairs; a press operative to load the engaged die pairs in the direction of the alignment axis; and means for simultaneously hydroforming a discrete workpiece in each die cavity while the dies are loaded, whereby the separating forces on dies at the ends of the aligned die pairs act on the press while the forces on intermediate dies between the end dies are balanced by equal and opposite forces acting in adjacent die cavities.
  • 2. The apparatus as in claim 1 wherein the alignment axis of the die cavities and the press are horizontal and the die pairs are horizontally movable into closed and open positions.
  • 3. A method of hydroforming a plurality of components in separate die cavities held closed by a press while limiting the hydroforming load on the press to essentially the load developed in one of the die cavities, the method comprising:arranging die pairs forming the separate die cavities in essentially linear alignment in the direction of loading in a press with the die pairs positioned such that internal separating loads on the die pairs act in alignment with the die cavities; loading the die pairs with the press in the direction of alignment of the die cavities and simultaneously hydroforming the components in each of the aligned die cavities; whereby the separating forces on dies at the ends of the aligned die pairs act on the press while the forces on intermediate dies between the end dies are balanced by equal and opposite forces acting in adjacent die cavities.
US Referenced Citations (6)
Number Name Date Kind
1844098 Lytle Feb 1932 A
2222762 Debor et al. Nov 1940 A
2331015 Dawes et al. Oct 1943 A
2869177 Jurgeleit Jan 1959 A
6006568 Bihrer Dec 1999 A
6170309 Marando Jan 2001 B1