The present disclosure relates generally to identifying mobile devices in a similar sound environment. More specifically, the present disclosure relates to identifying mobile devices in a similar sound environment based on input sounds of the mobile devices.
Modern mobile communication systems provide a variety of services to mobile device users. Such systems often provide advertising and social network services based on location information of the mobile device users. Location information of a user's mobile device may allow a service provider to infer a user's environment and offer more targeted advertising and social network services to the user. In addition, location information of mobile devices in nearby locations or similar types of locations may allow the service provider to provide information on users located in similar environments.
One of the conventional methods determines the locations of mobile devices by using GPS (Global Positioning System). Unfortunately, GPS is often unavailable in many locations where mobile devices are used. For example, when the mobile devices are located in buildings or indoor situations, location information through GPS may not be available. In addition, GPS may not accurately distinguish between users in different vertical locations such as a user on one floor and another user on another floor.
Another conventional method determines locations of mobile devices by sensing ambient sounds of the mobile devices. Unfortunately, such a method may not be accurate in determining the locations or types of locations of the mobile devices due to artifacts. For example, when a user touches, taps, or even softly rubs his or her mobile device, the mobile device typically captures an artifact sound signal associated with such an activity. In addition, when a mobile device is in a pocket or bag of the user, the microphone of the mobile device may capture artifact noises.
Such artifacts are generally unique to an individual mobile device and are not detected by other mobile devices. As a result, the artifacts may prevent accurate identification of mobile devices in a similar sound environment and degrade the accuracy in determining the location information of the mobile devices.
The present disclosure provides methods and apparatuses for identifying mobile devices in a similar sound environment. The mobile devices are identified based on sound signatures extracted from input sounds of the mobile devices and degrees of reliability for ensuring that the respective input sounds are normal sounds, and not artifacts.
According to one aspect of the present disclosure, a method for identifying mobile devices in a similar sound environment is disclosed. The method includes receiving, in a mobile device, an input sound. The mobile device extracts a sound signature from the input sound and determines a reliability value of the input sound based on at least one predetermined sound model. The sound signature and the reliability value are transmitted from the mobile device to a server. The mobile device receives, from the server, information on at least one mobile device in a sound environment similar to the mobile device. This disclosure also describes an apparatus, a combination of means, and a computer-readable medium relating to this method.
According to another aspect of the present disclosure, a mobile device including a sound sensor, a sound signature extracting unit, and a reliability determining unit is provided. The sound sensor is configured to receive an input sound and the sound signature extracting unit is adapted to extract a sound signature from the input sound. A reliability value of the input sound is determined by the reliability determining unit based on at least one predetermined sound model. The sound signature and the reliability value are transmitted to a server by a transmitting unit of the mobile device. A receiving unit of the mobile device receives, from the server, information on at least one mobile device in a sound environment similar to the mobile device.
According to yet another aspect of the present disclosure, a method for identifying a plurality of mobile devices in a similar sound environment is disclosed. The method includes receiving, from each of at least two mobile devices, a sound signature and a reliability value of an input sound. A similarity value for a pair of the at least two mobile devices is determined based on the sound signatures and the reliability values from the pair of the at least two mobile devices. The method identifies, among the at least two mobile devices, the plurality of mobile devices in the similar sound environment based on the similarity value. This disclosure also describes an apparatus, a combination of means, and a computer-readable medium relating to this method.
According to yet another aspect of the present disclosure, a server for identifying a plurality of mobile devices in a similar sound environment is provided. The server includes a receiving unit configured to receive, from each of at least two mobile devices, a sound signature and a reliability value of an input sound. A similarity determining unit of the server is adapted to determine a similarity value for a pair of the at least two mobile devices based on the sound signatures and the reliability values from the pair of the at least two mobile devices so that, among the at least two mobile devices, the plurality of mobile devices in the similar sound environment are identified based on the similarity value.
Various embodiments are now described with reference to the drawings, wherein like reference numerals are used to refer to like elements throughout. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of one or more embodiments. It may be evident, however, that such embodiment(s) may be practiced without these specific details. In other instances, well-known structures and devices are shown in block diagram form in order to facilitate describing one or more embodiments.
In the illustrated embodiment, each of the mobile devices 160, 170, 180, and 190 captures an input sound from its surroundings. If the input sounds captured by mobile devices 160, 170, 180, and 190 are similar to each other, the mobile devices may be described as being in a similar sound environment. Each mobile device extracts a sound signature from the input sound and determines a reliability value of the input sound based on one or more predetermined sound models. Each mobile device then transmits the sound signature and the reliability value of the input sound to the server 150. The server 150 identifies mobile devices in a similar sound environment based on the sound signatures and reliability values, and transmits the identification information to the mobile devices 160, 170, 180, and 190.
The mobile devices 160, 170, 180, and 190 are presented only by way of example, and thus the number of mobile device(s) located in each location or the number of location(s) may vary for different configurations. In addition, the mobile devices 160, 170, 180, and 190 may be any suitable device such as a cellular phone, smartphone, laptop computer, or tablet personal computer equipped with sound capturing capability, e.g., a microphone, and communication capability through a data and/or communication network.
The sound sensor 210 (e.g., a microphone) is configured to sense and capture sound input to the mobile device 160 and to generate signals in an analog or digital format corresponding to the sensed sound. The sound signature extraction unit 220 extracts a sound characteristic of the input sound from the generated signals, which may be referred to as a “sound signature” in the present disclosure. The sound signature may include any type of sound characteristic that is used for determining whether the mobile device 160 is in a similar sound environment to other mobile devices. Such sound signature may be extracted using any suitable sound analysis techniques including, but not limited to, MFCC (mel-frequency cepstral coefficients), LPC (linear predictive coding), and/or LSP (line spectral pair) techniques, which will be described in more detail below. The reliability determining unit 230 determines a reliability value (e.g., a degree of reliability) of the sensed sound with reference to predetermined acoustic models. The packet processing unit 260 constructs a packet including the sound signature and the reliability value. The transmitting unit 240 transmits the packet to the server 150 to identify one or more mobile devices in a similar sound environment.
The server 150 is configured to send information on one or more mobile devices in a similar sound environment in the form of a packet. The receiving unit 250 receives from the server 150 the packet and forwards it to the packet processing unit 260, which processes the received packet to obtain the information on one or more mobile devices. The display unit 280 displays the information for providing services to a user of the mobile device 160. The storage unit 270 is configured to store information processed, transmitted, and/or received during the operation of the mobile device 160.
The sound sensor 210 may include, e.g., one or more microphones or any other type of sound sensors used to capture, measure, and/or record any aspect of normal sounds or artifacts. For example, the sound sensor 210 generates sound signals in response to artifacts such as clicking, tapping, or rubbing of the mobile device 160, vibrations of the mobile device 160, user's breathing, or the like, which are typically received by the sound sensor 210 as sound. Such “artifact sounds” are generally local to the mobile device 160 and are not detected by other mobile devices. On the other hand, “normal sounds” indicate sounds that are not local to the mobile device 160 and may be detectable by other mobile devices if located nearby. Such normal sounds may include environmental or ambient sounds such as television sounds, music sounds, public announcement sounds, traffic sounds, etc., as well as voices of a user.
Some embodiments of the present disclosure may take advantage of sound sensors built into the mobile device 160 such as a microphone used for a telephone call or video recording. In this case, the sound sensor 210 may be implemented without requiring any modification of the mobile device 160. Also, the sound sensor 210 may employ additional software and/or hardware to perform its functions in the mobile device 160.
For sound processing, the sound signature extraction unit 220 may use any suitable signal processing scheme, including speech compression, enhancement, recognition, and synthesis methods to extract sound signatures of input sounds. For example, such signal processing scheme may employ MFCC, LPC, and/or LSP techniques, which are well-known methods for speech recognition or speech codec.
In one embodiment, a sound signature may include multiple components, which are represented as a vector having n-dimensional values. Under the MFCC method, for example, a sound signature may include 13 dimensions with each dimension represented as a 16 bit value. In this case, the sound signature is 26 bytes long. In another embodiment, the sound signature may be binarized so that each dimension is represented as a 1 bit binary value. In such a case, the binarized sound signature may be 13 bits long.
A sound signature may be extracted from an input sound under the MFCC method as follows. A windowing function, e.g., hamming window, is applied to a frame of an input sound in the time domain (e.g., raw sound signal). Thereafter, the sound signal is Fourier transformed to the frequency domain, and a power is calculated for each band in the spectrum of the transformed signal in the frequency domain. A logarithm operation and a discrete cosine transform (DCT) operation are performed on each calculated power to obtain DCT coefficients. A mean value over a period of a predetermined time is subtracted from each DCT coefficient. Then, a binarization operation is performed on each subtracted DCT coefficient so that, if a subtracted DCT coefficient is positive, a binary value “1” is outputted; otherwise, a binary value “0” is outputted.
The receiving unit 330 is configured to receive, from each of the mobile devices 160, 170, 180, and 190, a packet containing a sound signature of an input sound and a reliability value of the input sound. The packet processing unit 340 receives the packets and extracts the sound signatures and reliability values. Based on the reliability values from the mobile devices 160, 170, 180, and 190, the similarity determining unit 310 determines similarity values between the sound signatures and identifies mobile devices in a similar sound environment based on the similarity values. The packet processing unit 340 constructs a packet containing information on the mobile devices in the similar sound environment. The transmitting unit 320 transmits the constructed packet to the mobile devices 160, 170, 180, and 190. The server 150 uses the information database 350 to store information processed, transmitted, and/or received during the above operations.
At 430, the reliability determining unit 230 determines a reliability value of the input sound based on a normal sound model and one or more sensor artifact models. A sensor artifact model refers to an acoustic model indicative of an artifact local to a mobile device. The reliability value indicates a confidence level of the input sound in classifying the sound as belonging to the normal sound class. As a part of the process of determining the reliability value, the reliability determining unit 230 extracts a sound characteristic from the input sound, which may be referred to as a “sound feature” in the present disclosure. Compared with the sound signature, the sound feature contains any type of sound characteristic or information that is used for analyzing and classifying the input sound into predetermined sound classes such as a normal sound class and one or more artifact classes. Acoustic models of the predetermined sound classes, i.e., the normal sound model and one or more sensor artifact models, are also generated and stored in advance. The operation of extracting the sound signature, at 420, may be performed prior, subsequent, or parallel to the operation of determining the reliability value, at 430.
In one embodiment, the sound feature can be extracted by any suitable sound analysis techniques including, but not limited to, MFCC, LPC, and/or LSP techniques, similar to the extraction of the sound signature. In an alternative embodiment, the sound feature may include information on the count of clipped samples in the input sound, which is captured during a specific time period. The sound samples in the input sound, such as sensor artifacts captured while the mobile device 160 is clicked, tapped, or rubbed, are more frequently clipped than sound samples of normal sounds. Accordingly, the input sound may be classified as belonging to the sensor artifact class if the count of clipped samples therein exceeds a predetermined threshold value, and otherwise classified as belonging to the normal sound class. In another embodiment, the distribution of frequency components in the input sound may be used for classifying the input sound as belonging to the sensor artifact class or the normal sound class. For example, the count or amplitude of frequency components of 50 Hz or less may be greater for sensor artifact sounds than normal sounds. Accordingly, the sound feature may include information on the count or amplitude of frequency components of the input sound falling within a specific frequency range.
In one embodiment of the present disclosure, in order to generate the acoustic models, a variety of normal sound and artifact conditions are trained through a modeling method like a GMM (Gaussian Mixture Model) method or HMM (Hidden Markov Model) method. Given the extracted sound feature, the reliability value may be determined based on a probability P of a normal sound that is obtained by the following Equation 1:
where X denotes the sound feature, λs is the normal sound class, and λj is a j-th sound class of the predetermined sound classes including the normal sound class and the sensor artifact classes. The index j ranges from 1 to n, where n indicates the number of the predetermined sound classes.
In one embodiment of the present disclosure, two or more normal sound classes are predetermined and corresponding normal sound models are generated. Given the extracted sound feature, the probability P that the input sound belongs to the normal sound classes may be determined by summing the probabilities of the normal sound classes according to the following Equation 2:
where λi is an i-th sound class of the normal sound classes. The index i ranges from 1 to m, where m indicates the number of the normal sound classes.
Once the probability P has been determined, the reliability value may be represented as the value of the probability P (0≦P≦1). The reliability value may be a value proportional to the value of the probability P, which may be log-scaled to indicate the reliability value. In one embodiment, the reliability may be binarized to have a binary value “1” when the probability P is greater than a predetermined probability threshold. Otherwise, the reliability may be binarized to have a binary value “0.”
At 440, the packet processing unit 260 constructs a packet including the sound signature and the reliability value. If a plurality of input sounds is captured over a period of time, the packet is constructed to include a corresponding number of pairs of sound signatures and reliability values. At 450, the transmitting unit 240 transmits the packet to the server 150 through the network 140. Similar to the mobile device 160, a transmitting unit in each of the other mobile devices 170, 180, and 190 may also transmit a packet containing one or more pairs of sound signatures and reliability values.
When the server 150 sends a packet including information on mobile devices in a similar sound environment, the mobile device 160 receives the packet, at 460, and displays the information for providing services to the user of the mobile device 160, at 470. For example, the services may include providing information relating to other mobile devices in a similar sound environment such as user identification information, allowing communication between such mobile devices, and providing targeted information to the mobile device 160 such as advertising information.
The packet includes N sound signatures and N reliability values corresponding to N input sounds captured over a period of time. Reflecting the number N, the packet includes a SOUND SIGNATURE[i] field and a RELIABILITY[i] field for each pair of the sound signatures and reliability values. Specifically, the SOUND SIGNATURE[i] is 8 bits in length and contains a sound signature of an i-th pair of the sound signatures and reliability values. The RELIABILITY[i] field is 4 bits in length and includes a reliability value of the i-th pair. The number of bits allocated to each data field above may change according to various applications of the present disclosure. Further, the packet may include any fields of suitable sizes such as a header, CRC information, etc. to facilitate communication through the network 140.
In one embodiment, the packet 600 may further include a message field (not shown) for carrying a message from the mobile device 160 to other mobile devices in a similar sound environment. When the server 150 identifies the other mobile devices and transmits the message to the other mobile devices, the other mobile devices may show the message to the users. For example, the message may be a chat message, a targeted advertisement, an introduction profile of the user of the mobile device 160, or the like.
For example, the number of bits allocated to a SOUND SIGNATURE field may be configured to be proportional to the associated reliability value or vice versa. The number of bits may be determined in a stepwise method based on a normalized reliability value ranging from 0 to 1 (inclusive), for example, as follows:
2 bits are allocated when 0≦reliability value<0.1;
4 bits are allocated when 0.1≦reliability value<0.3;
8 bits are allocated when 0.3≦reliability value<0.6; and
16 bits are allocated when 0.6≦reliability value≦1.0.
Allocating sound signature's field sizes allows more efficient use of the packet resources based on the associated reliability values. Thus, the transmission efficiency of the packet can be improved.
At 830, the similarity determining unit 310 identifies, for each mobile device, mobile devices in a sound environment similar to the mobile device, based on the determined similarity values. With reference to
At 840, the packet processing unit 340 constructs a packet with an appropriate header for each mobile device. The packet includes information on mobile devices in a sound environment similar to the destination mobile device. The information may include identifications of the mobile devices and/or their users. At 850, the packet is transmitted by the transmitting unit 320 to each destination mobile device determined to have one or more mobile devices in a similar sound environment. In
When determining a similarity value between sound signatures from a pair of mobile devices, at 820, the sound signatures may be weighted with corresponding reliability values. Typically, sound signatures extracted from artifacts will have low reliability values. In this weighting scheme, as the reliability values decrease, the contribution of the associated sound signatures to the similarity value is reduced. By weighting the contributions to account for reliability values for artifacts, the similarity value between sound signatures can be determined more accurately and reliably.
In some embodiments of the weighting scheme, the similarity value for a pair of mobile devices may be determined based on a sum of weighted Euclidean distances between pairs of vectors respectively indicating sound signatures from the mobile devices. In one embodiment, the sum of weighted Euclidean distances may be calculated by using pairs of sound signatures weighted with a smaller one of corresponding reliability values, according to following Equation 3:
where
ra[i] indicates an i-th reliability value from a first mobile device,
rb[i] indicates an i-th reliability value from a second mobile device,
a[i, j] indicates a j-th dimension value of an i-th sound signature from the first mobile device, and
b[i, j] indicates a j-th dimension value of an i-th sound signature from the second mobile device.
In the numerator of Equation 3, the smaller one of ra[i] and rb[i] serves as a weighting factor for the i-th sound signatures from the pair of mobile devices. That is, the smaller reliability value between ra[i] and rb[i] is used as a weighting factor for the Euclidean distance between the vectors respectively indicating the i-th sound signatures.
Once the sum of weighted Euclidean distances is calculated, the similarity value for the pair of mobile devices can be determined to be inversely proportional to the sum. In this case, when the sum of weighted Euclidean distances is smaller, the similarity value is determined to be larger. For example, the similarity value may be determined to be a reciprocal of the sum of weighted Euclidean distances or a value obtained by modifying the sum by a monotonic decreasing function or the like.
In another embodiment of the present disclosure, the sum of weighted Euclidean distances may be calculated by using sound signatures weighted with both of the corresponding reliability values, according to following Equation 4:
The terms in Equation 4 are the same as those in Equation 3 above. In the numerator of Equation 4, both ra[i] and rb[i] serve as weighting factors for the i-th sound signatures from the pair of mobile devices.
In yet another embodiment, the similarity value for a pair of mobile devices is determined based on the smaller of two sums of weighted Euclidean distances: a first sum of weighted Euclidean distances calculated by using sound signatures weighted with reliability values from a first mobile device and a second sum of weighted Euclidean distances calculated by using sound signatures weighted with reliability values from a second mobile device. The first and second sums of weighted Euclidean distances are calculated according to following Equations 5 and 6, respectively:
The terms in Equations 5 and 6 are the same as those in Equation 3 above. In the numerator of Equation 5, the reliability value ra[i] from the first mobile device serves as a weighting factor for the i-th sound signatures from the pair of mobile devices. Similarly, in the numerator of Equation 6, the reliability value rb[i] from the second mobile device is used as a weighting factor for the i-th sound signatures from the pair of mobile devices.
Reflecting the number N, the packet further includes a USER ID[i] field, SIMILARITY[i] field, and MESSAGE[i] field for the N mobile devices. Specifically, the USER ID[i] field is 64 bits in length and includes user identification information (e.g., user name, user ID) of an i-th mobile device among the N mobile devices. The SIMILARITY[i] field is 32 bits in length and indicates a similarity value between sound signatures from the i-th mobile device and the destination mobile device. The MESSAGE[i] field is 128 bits in length and contains a message received from the i-th mobile device. The number of bits allocated to each type of data field above may change according to various applications of the present disclosure. Further, the packet may include any fields of suitable sizes such as a header, CRC information, etc. to facilitate communication through the network 140. In the above packet represented by the table 900, the SIMILARITY fields and/or the MESSAGE fields may be optional.
The mobile device 1000 is capable of providing bidirectional communication via a receive path and a transmit path. On the receive path, signals transmitted by base stations are received by an antenna 1012 and are provided to a receiver (RCVR) 1014. The receiver 1014 conditions and digitizes the received signal and provides the conditioned and digitized signal to a digital section 1020 for further processing. On the transmit path, a transmitter (TMTR) 1016 receives data to be transmitted from a digital section 1020, processes and conditions the data, and generates a modulated signal, which is transmitted via the antenna 1012 to the base stations. The receiver 1014 and the transmitter 1016 may be part of a transceiver that may support CDMA, GSM, W-CDMA, LTE, LTE Advanced, etc.
The digital section 1020 includes various processing, interface, and memory units such as a modem processor 1022, a reduced instruction set computer/digital signal processor (RISC/DSP) 1024, a controller/processor 1026, an internal memory 1028, a generalized audio encoder 1032, a generalized audio decoder 1034, a graphics/display processor 1036, and an external bus interface (EBI) 1038. The modem processor 1022 may process data transmission and reception, e.g., encoding, modulation, demodulation, and decoding. The RISC/DSP 1024 may perform general and specialized processing for the mobile device 1000. The controller/processor 1026 may control the operation of various processing and interface units within the digital section 1020. The internal memory 1028 may store data and/or instructions for various units within the digital section 1020.
The generalized audio encoder 1032 may perform encoding for input signals from an audio source 1042, a microphone 1043, etc. The generalized audio decoder 1034 may decode coded audio data and may provide output signals to a speaker/headset 1044. It should be noted that the generalized audio encoder 1032 and the generalized audio decoder 1034 are not necessarily required for interface with the audio source, the microphone 1043 and the speaker/headset 1044, and thus may be omitted in the mobile device 1000. The graphics/display processor 1036 may process graphics, videos, images, and texts, which may be presented to a display unit 1046. The EBI 1038 may facilitate transfer of data between the digital section 1020 and a main memory 1048.
The digital section 1020 may be implemented with one or more processors, DSPs, microprocessors, RISCs, etc. The digital section 1020 may also be fabricated on one or more application specific integrated circuits (ASICs) and/or some other type of integrated circuits (ICs).
In general, any device described herein may represent various types of devices, such as a wireless phone, a cellular phone, a laptop computer, a wireless multimedia device, a wireless communication personal computer (PC) card, a PDA, an external or internal modem, a device that communicates through a wireless channel, etc. A device may have various names, such as access terminal (AT), access unit, subscriber unit, mobile station, mobile device, mobile unit, mobile phone, mobile, remote station, remote terminal, remote unit, user device, user equipment, handheld device, etc. Any device described herein may have a memory for storing instructions and data, as well as hardware, software, firmware, or combinations thereof.
The techniques described herein may be implemented by various means. For example, these techniques may be implemented in hardware, firmware, software, or a combination thereof. Those of ordinary skill in the art would further appreciate that the various illustrative logical blocks, modules, circuits, and algorithm steps described in connection with the disclosure herein may be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, the various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present disclosure.
For a hardware implementation, the processing units used to perform the techniques may be implemented within one or more ASICs, DSPs, digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), processors, controllers, micro-controllers, microprocessors, electronic devices, other electronic units designed to perform the functions described herein, a computer, or a combination thereof.
Thus, the various illustrative logical blocks, modules, and circuits described in connection with the disclosures herein may be implemented or performed with a general-purpose processor, a DSP, an ASIC, a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
For firmware and/or software implementations, the techniques may be embodied as instructions stored on a computer-readable medium, such as random access memory (RAM), read-only memory (ROM), non-volatile random access memory (NVRAM), programmable read-only memory (PROM), electrically erasable PROM (EEPROM), FLASH memory, compact disc (CD), magnetic or optical data storage device, etc. The instructions may be executable by one or more processors and may cause the processor(s) to perform certain aspects of the functionality described herein.
If implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A storage media may be any available media that can be accessed by a computer. By way of example, and not as a limitation, such computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, a server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, the fiber optic cable, the twisted pair, the DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium. Disk and disc, as used herein, includes CD, laser disc, optical disc, digital versatile disc (DVD), floppy disk and blu-ray disc, where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.
A software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art. An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium. Alternatively, the storage medium may be integral to the processor. The processor and the storage medium may reside in an ASIC. The ASIC may reside in a user terminal. Alternatively, the processor and the storage medium may reside as discrete components in a user terminal.
The previous description of the disclosure is provided to enable any person skilled in the art to make or use the disclosure. Various modifications to the disclosure will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other variations without departing from the spirit or scope of the disclosure. Thus, the disclosure is not intended to be limited to the examples described herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
Although exemplary implementations may refer to utilizing aspects of the presently disclosed subject matter in the context of one or more stand-alone computer systems, the subject matter is not so limited, but rather may be implemented in connection with any computing environment, such as a network or distributed computing environment. Still further, aspects of the presently disclosed subject matter may be implemented in or across a plurality of processing chips or devices, and storage may similarly be effected across a plurality of devices. Such devices may include PCs, network servers, and handheld devices.
Although the subject matter has been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.
This application is based upon and claims the benefit of priority from U.S. Provisional Patent Application No. 61/449,451, filed on Mar. 4, 2011, the entire contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5918223 | Blum et al. | Jun 1999 | A |
6127975 | Maloney | Oct 2000 | A |
6912178 | Chu et al. | Jun 2005 | B2 |
7171329 | Rodman et al. | Jan 2007 | B2 |
7305078 | Kardos | Dec 2007 | B2 |
7617287 | Vella et al. | Nov 2009 | B2 |
7675414 | Ray | Mar 2010 | B2 |
7746226 | Cohen et al. | Jun 2010 | B2 |
20010022558 | Karr, Jr. et al. | Sep 2001 | A1 |
20040259536 | Keskar et al. | Dec 2004 | A1 |
20050076081 | Rui et al. | Apr 2005 | A1 |
20050091275 | Burges et al. | Apr 2005 | A1 |
20060046707 | Malamud et al. | Mar 2006 | A1 |
20060063539 | Beyer, Jr. et al. | Mar 2006 | A1 |
20070037583 | Kim et al. | Feb 2007 | A1 |
20070130580 | Covell et al. | Jun 2007 | A1 |
20070172047 | Coughlan et al. | Jul 2007 | A1 |
20070206759 | Boyanovsky | Sep 2007 | A1 |
20080059177 | Poirier et al. | Mar 2008 | A1 |
20080147461 | Lee et al. | Jun 2008 | A1 |
20080160976 | Virolainen et al. | Jul 2008 | A1 |
20080160977 | Ahmaniemi et al. | Jul 2008 | A1 |
20080187143 | Mak-Fan | Aug 2008 | A1 |
20080232568 | Diethorn | Sep 2008 | A1 |
20080253547 | Berndt et al. | Oct 2008 | A1 |
20090086949 | Caspi et al. | Apr 2009 | A1 |
20090112589 | Hiselius et al. | Apr 2009 | A1 |
20090157613 | Strohmenger et al. | Jun 2009 | A1 |
20090176505 | Van Deventer et al. | Jul 2009 | A1 |
20100040217 | Aberg et al. | Feb 2010 | A1 |
20100112991 | Hannaby | May 2010 | A1 |
20100120465 | Chung | May 2010 | A1 |
20100205174 | Jiang et al. | Aug 2010 | A1 |
20100216490 | Linden | Aug 2010 | A1 |
20100316232 | Acero et al. | Dec 2010 | A1 |
20100332668 | Shah et al. | Dec 2010 | A1 |
20110294515 | Chen et al. | Dec 2011 | A1 |
20120083286 | Kim et al. | Apr 2012 | A1 |
20120131186 | Klos et al. | May 2012 | A1 |
20120142324 | Kim et al. | Jun 2012 | A1 |
20120142378 | Kim et al. | Jun 2012 | A1 |
Number | Date | Country |
---|---|---|
1573725 | Feb 2005 | CN |
101874397 | Oct 2010 | CN |
1531478 | May 2005 | EP |
2317729 | May 2011 | EP |
2445436 | Jul 2008 | GB |
H10126755 | May 1998 | JP |
H10257204 | Sep 1998 | JP |
2001016214 | Jan 2001 | JP |
2002027529 | Jan 2002 | JP |
2003067316 | Mar 2003 | JP |
2003259409 | Sep 2003 | JP |
2004286681 | Oct 2004 | JP |
2005070921 | Mar 2005 | JP |
2005173569 | Jun 2005 | JP |
2006208482 | Aug 2006 | JP |
2006229356 | Aug 2006 | JP |
2007060254 | Mar 2007 | JP |
2009239431 | Oct 2009 | JP |
2010154261 | Jul 2010 | JP |
WO0248837 | Jun 2002 | WO |
2009042105 | Apr 2009 | WO |
2010134817 | Nov 2010 | WO |
WO2010125488 | Nov 2010 | WO |
Entry |
---|
Azizyan, et al., “SurroundSense: Localizing Mobile Phones Using Ambient Light, Sound, Color, and Motion”, Duke University, 15 pages, printed Feb. 8, 2012. |
Azizyan, Martin, et al., “SurroundSense: Mobile Phone Localization via Ambience Fingerprinting”, MobiCom'09, Sep. 20-25, 2009, Beijing, China, 12 pages. |
Hong Lu et al., “SoundSense: Scalable Sound Sensing for People-Centric Applications on Mobile Phones”, MobiSys'09, Jun. 22-25, 2009, Kraków, Poland, pp. 165-178. |
Janson, et al., “Self-localization application for iPhone using only ambient sound signals”, Dept. Of Comput. Sci., Univ. of Freiburg, Freiburg, Germany. This paper appears in: Indoor Positioning and Indoor Navigation (IPIN), 2010 International Conference on Sep. 15-17, 2010, Zurich, 2pages. |
Martin Wirz, et al., “A wearable, ambient sound-based approach for infrastructureless fuzzy proximity estimation”, in Proceedings of the 14th IEEE International Symposium on Wearable Computers (ISWC 2010). IEEE Computer Society, Oct. 2010. |
International Preliminary Report on Patentability for International Application No. PCT/US2012/025464 mailed Jun. 12, 2013, 34 pp. |
Azizyan et al., “SurroundSense: Mobile Phone Localization Using Ambient Sound and Light”, ACM Sigmobile Mobile Computing and Communications Review, Jan. 1, 2009, pp. 69-72, vol. 13, No. 1. |
International Search Report and Written Opinion—PCT/US2012/025464—ISA/EPO—May 24, 2012 (110916WO). |
Jain et al., “Data Clustering: A Review ”, ACM Computing Surveys, Sep. 1999, pp. 264-323, vol. 31, No. 3. |
Written Opinion of the International Preliminary Examining Authority for International application No. PCT/US2012/025464 mailed Feb. 22, 2013; 5 pages. |
Sakurauchi Y., et al., “An Information Exchange Platform by Utilizing the Overlay Location Network Based on User Similarity Considering on Place and Time,” Journal of the Information Processing Society of Japan, vol. 50, No. 12 [CD-ROM], Dec. 15, 2009, 16 Pages. |
Number | Date | Country | |
---|---|---|---|
20120224707 A1 | Sep 2012 | US |
Number | Date | Country | |
---|---|---|---|
61449451 | Mar 2011 | US |