The present patent application claims priority under 35 U.S.C. §119 upon Japanese patent applications, No. JP2006-039822 filed on Feb. 16, 2006; No. JP2006-076463 filed on Mar. 20, 2006; and No. JP2006-250306 filed on Sep. 15, 2006 in the Japan Patent Office, the entire contents of each of which are incorporated by referrence herein.
Image forming apparatuses include copiers, printers, facsimiles, multi-function devices thereof, etc. Some image forming apparatuses form a color image on a recording member according to an electrophotographic method. Such an image forming apparatus employing an electrophotographic method includes an image carrier, a charger, an optical writing unit, a developer, and a cleaner.
The image carrier is configured to be a drum shaped or belt shaped photoconductor. On starting an image forming operation, the photoconductor is rotated, and a surface of the photoconductor is charged with the charger. Then, the optical writing unit emits light to form an electrostatic latent image on the surface of the photoconductor. The electrostatic latent image is visualized with toner in the developer.
Further, the resultant toner image is directly transferred onto a recording medium, such as a paper sheet, an OHP film, etc. Alternatively, the resultant toner image is indirectly transferred onto the recording medium via an intermediate transfer belt. Thus, a desired color image is formed on the recording medium.
Such an image forming apparatus may include a process cartridge that is integrally formed with the photoconductor and at least one unit from among the developer, the cleaner, the charger, etc. The process cartridge is configured to be detachably mounted on the main body of the image forming apparatus in order to downsize the image forming apparatus and obtain a high operability in maintenance operation thereof.
In the process cartridge, the developer, the cleaner, or the charger may be configured as a sub unit thereof. In this case, the sub unit is detachably mounted on the process cartridge at a position proximate the photoconductor. Then, the process cartridge including the sub unit is installed in the main body of the image forming apparatus. Thus, a drive force of a driving device provided in the main body of the image forming apparatus is transmitted so as to drive the process cartridge.
Specifically, when the process cartridge is mounted on the main body of the image forming apparatus, a drive shaft of the driving device is connected to a driven shaft of a rotational member in the sub unit, such as a developing roller in the developer unit, a cleaning member in the cleaner unit, or a charging roller in the charger unit. Thus, the image carrier becomes rotatable in conjunction with the developing roller, the cleaning member, or the charging roller.
However, in the main body of the image forming apparatus or the process cartridge, accumulation of dimensional tolerances may cause a positional variation of the drive shaft or the driven shaft. Thus, a relative displacement in axial center may be caused between the drive shaft and the driven shaft.
Further, the relative displacement in axial center between the drive shaft and the driven shaft may cause a variation in rotational torque, thereby resulting in an uneven rotation. Thus, image degradation, such as uneven density or banding, may be caused.
Some image forming apparatuses are configured to have a clearance between the drive shaft provided in the main body of the image forming apparatus and the driven shaft provided in the process cartridge in order to suppress the relative displacement in axial center between the drive shaft and the driven shaft. In such image forming apparatuses, the driven shaft may be configured as a primary guide member to guide the process cartridge into the main body of the image forming apparatus at the installation thereof.
However, for such image forming apparatuses, an effective suppression is still demanded with respect to the relative displacement in axial center between the drive shaft and the driven shaft.
At least one embodiment of the present specification provides a support device for use in an image forming apparatus. Such a support device includes a process cartridge detachably mounted onto an apparatus main body. The process cartridge includes the following, an image carrier rotatably supported on a support shaft, at least one sub unit disposed proximate to the image carrier and including a rotational member, the rotational member having a driven shaft via which rotation thereof is induced, and a cartridge-side fitting portion. The apparatus main body includes the following, an apparatus-main-body-side fitting portion to cooperate with the cartridge-side fitting portion, and a driving device having a drive shaft to rotate the driven shaft of the rotational member. Wherein the support shaft of the image carrier and the cartridge-side fitting portion locate the process cartridge on the apparatus main body so as to be detachably mounted thereon. And wherein, in the driving device, the drive shaft is supported for radial adjustment at one support point along an axial direction thereof.
Additional features and advantages of the present invention will be more fully apparent from the following detailed description of example embodiments, the accompanying drawings and the associated claims.
A more complete appreciation of the disclosure and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:
It will be understood that if an element or layer is referred to as being “on”, “against”, “connected to” or “coupled to” another element or layer, then it can be directly on, against, connected or coupled to the other element or layer, or intervening elements or layers may be present. In contrast, if an element is referred to as being “directly on”, “directly connected to” or “directly coupled to” another element or layer, then there are no intervening elements or layers present. Like numbers referred to like elements throughout. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
Spatially relative terms, such as “beneath”, “below”, “lower”, “above”, “upper” and the like may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, term such as “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors herein interpreted accordingly.
Although the terms first, second, etc. may be used herein to describe various elements, components, regions, layers and/or sections, it should be understood that these elements, components, regions, layer and/or sections should not be limited by these terms. These terms are used only to distinguish one element, component, region, layer or section from another region, layer or section. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the present invention.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the present invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “includes” and/or “including”, when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
In describing example embodiments illustrated in the drawings, specific terminology is employed for the sake of clarity. However, the disclosure of this patent specification is not intended to be limited to the specific terminology so selected and it is to be understood that each specific element includes all technical equivalents that operate in a similar manner.
Referring now to the drawings, wherein like reference numerals designate identical or corresponding parts throughout the several views, example embodiments of the present patent invention are described.
As illustrated in
The intermediate transfer belt 12 is provided in about the middle of the main body 10 (hereinafter, “apparatus main body 10”) of the image forming apparatus 100. The intermediate transfer belt 12 is formed in an endless belt shape, and is looped over the support rollers 11a, 11b, and 11c.
The imaging stations 13y, 13c, 13m, and 13k are arranged along a stretching portion of the intermediate transfer belt 12 between the support rollers 11a and 11b. Each of the imaging stations 13y, 13c, 13m, and 13k forms a specific color images of yellow, cyan, magenta, and black, respectively, on a recording medium.
As illustrated in
The photoconductors 14y, 14c, 14m, and 14k are rotatably provided in the imaging stations 13y, 13c, 13m, and 13k, respectively. In
Each of the photoconductors 14y, 14c, 14m, and 14k is surrounded in turn by the charger unit, the corresponding one of the developer units 15y, 15c, 15m, and 15k, the primary transfer unit, and the primary cleaner unit along a rotation direction thereof. Incidentally, the photoconductors 14y, 14c, 14m, and 14k are in contact with the primary transfer unit via the intermediate transfer belt 12.
In addition, an optical writing unit is provided at the vicinity of the imaging stations 13y, 13c, 13m, and 13k. The optical writing unit emits light to form a latent image on each surface of the photoconductors 14y, 14c, 14m, and 14k.
The support roller 11c is provided so as to be opposed to the secondary transfer roller 16 via the intermediate transfer belt 12. Thus, a secondary transfer position is formed between the support roller 11c and the secondary transfer roller 16. Further, a secondary cleaner unit (not illustrated) is provided on the downstream side of the secondary transfer position relative to the moving direction of the intermediate transfer belt 12, as indicated by an arrow, A, in
The recording medium cassette 17 is formed in two-tiered structure at the lower part of the apparatus main body 10. The output tray 18 is detachably mounted to the apparatus main body 10.
The recording medium conveyance path 20 is provided from the recording medium cassette 17 to the output tray 18 via the secondary transfer position. The registration roller 21 and the fuser 22 are disposed along the recording medium conveyance path 20.
On starting an image forming operation, first, appropriate one of the imaging stations 13y, 13c, 13m, and 13k is selected in accordance with the image. For example, when the imaging station 13y is selected, the photoconductor 14y is rotationally driven, while the surface of the photoconductor 14y is uniformly charged with the charger unit. Then, the optical writing unit emits light to form an electrostatic latent image on the surface of the photoconductor 14y.
Further, the developer unit 15y visualizes the electrostatic latent image with a color toner to form a single-color toner image on the surface of the photoconductor. The single-color toner image formed on the surface of the photoconductor is transferred onto the intermediate transfer belt 12 with the primary transfer unit.
Then, when the single-color toner image is formed in only one of the imaging stations 13y, 13c, 13m, and 13k, the single-color toner image is formed on the intermediate transfer belt 12 through the primary transfer process.
Alternatively, when the single-color toner images are formed in a plurality of ones from among the imaging stations 13y, 13c, 13m, and 13k, the single-color toner images are superimposingly transferred onto the intermediate transfer belt 12. Thus, a composite color toner image is formed on the intermediate transfer belt 12 through the primary transfer process.
Meanwhile, a recording medium is picked up from the recording medium cassette 17 and is sent into the recording-medium conveyance path 20. Further, the recording medium is conveyed with the registration roller 20 to the secondary transfer position just when the toner image on the intermediate transfer belt 12 is conveyed to the secondary transfer position.
At the secondary transfer position, the toner image on the intermediate transfer belt 12 is transferred onto the recording medium with the secondary transfer roller 16. Then, the recording medium having the toner image is conveyed to the fuser 22.
The toner image is fixed on the recording medium with the fuser 22, and the recording medium is output to the output tray 18.
Excess toner remaining on the photoconductors 14y, 14c, 14m, and 14k after the primary transfer process is cleaned with the corresponding primary cleaner units. Further, excess toner remaining on the secondary transfer roller 16 after the secondary transfer process is cleaned with the secondary cleaner unit.
In addition, according to the present example embodiment, in each of the imaging stations 13y, 13c, 13m, and 13k, the corresponding photoconductor 14 and the corresponding developer unit 15 are integrally assembled as a process cartridge 24 in order to downsize the apparatus main body 10 and increase operability in the maintenance operation thereof.
In each of the process cartridges 24, the corresponding developer unit 15 is positioned proximate the corresponding photoconductor 14. Each of the process cartridge 24 is also configured to be detachably mountable to the apparatus main body 10.
In addition, the developer units 15y, 15c, 15m, and 15k each includes a developing roller 25 to supply toner to the photoconductors 14y, 14c, 14m, and 14k, respectively. Each of the developer units 15y, 15c, 15m, and 15k is configured as a sub-unit of the corresponding process cartridge 24 so as to be detachably mountable thereto.
Next, referring to
Each of the process cartridges 24 includes a faceplate 28 and a drum shaft 26. The faceplate 28 rotatably supports a developing roller shaft 27 of the developing roller 25, which is provided at the developer 15. The faceplate 28 also serves to hold a substantially constant developing gap between the photoconductor 14 and the developing roller 25. On the other hand, the drum shaft 26 serves as a support shaft of each of the photoconductors 14y, 14c, 14m, and 14k.
According to the present example embodiment, a cartridge-side coupling 30 serving as a driven joint is fixedly provided to one end of the developing roller shaft 27.
The faceplate 28 includes a unit-side primary guide hole 33 and a unit-side secondary guide oblong hole 34. The unit-side primary guide hole 33 holds the developing roller shaft 27. The unit-side secondary guide oblong hole 34 is disposed at a distance away from the unit-side primary guide hole 33.
Then, a secondary guide pin 36 projecting from a side surface of a developer case 35 is inserted into the unit-side secondary guide oblong hole 34. Thus, the developing unit 15 is positioned as the sub-unit of the process cartridge 24 at a position proximate the photoconductor 14.
As illustrated in
As illustrated in
The main-body sideplate 41 is disposed in the apparatus main body 10 so as to support various members and units. The main-body sideplate 41 has a drive-shaft support hole 41a.
The holding plate 42 is fixed with a screw to the main-body sideplate 41. The holding plate 42 is formed in a bracket shape so as to serve a cover part of the driving device 40.
The flexible holder 43 is disposed in the holding plate 42 so as to flexibly hold the drive shaft 44. The drive shaft 44 is rotatably supported by the flexible holder 43 and the bearing 46 with one end portion thereof projecting from the bearing 46 to the exterior of the driving device 40. The supplemental support member 45 supporting the bearing 46 is fixed with a screw to the holding plate 42.
The drive shaft pulley 47 is fixed to the drive shaft 44 at a point between the flexible holder 43 and the bearing 46. The coil spring 48 is coiled around the end portion of the drive shaft 44 projecting from the bearing 46 to the exterior of the driving device 40.
The main-body-side coupling 49 serving as a drive joint is disposed at the end portion of the drive shaft 44 projecting from the side of the bearing 46 to the exterior of the driving device 40. Thus, the main-body-side coupling 49 is configured so as to be movable along the axial direction of the drive shaft 44 by the action of the drive shaft pulley 47 and the coil spring 48. The main-body-side coupling 49 is retained with a fixing member, such as a pin, which is provided on the drive shaft 44.
Further, the main-body-side coupling 49 is inserted into the drive shaft support hole 41a so that the drive shaft 44 is passed through the drive shaft support hole 41a. Thus, as illustrated in
Thus, the drive shaft 44 is disposed so as to pass through the main-body sideplate 41 of the apparatus main body 10. A point at which the drive shaft 44 is passes through the main-body sideplate 41 of the apparatus main body 10 is also a support point at which the drive shaft 44 is supported by the bearing 46.
On the other hand, for the driving device 40, before installation of the process cartridge 24 into the apparatus main body 10, the drive shaft 44 is positioned with respect to the radial direction by the bearing 46 disposed at the support point along the axial direction of the drive shaft 44.
Next, referring to
Thus, for each of the configurations illustrated in
The drive shaft pulley 47 is fixed to the drive shaft 44 and is looped over by a timing belt 55. The timing belt 55 is looped over the drive shaft pulley 47 and a drive transmission pulley 56. The drive transmission pulley 56 has a drive transmission gear 57 on an identical shaft. The drive transmission gear 57 is engaged with a drive motor gear 58 of a drive motor (not illustrated in
For the driving device 40, the drive motor 60, which is not illustrated in
On the other hand, for the process cartridge 24, a drum shaft hole 66 is formed in a flange 65 at one end of the photoconductor 14. On an outer surface of the flange 65, a concave gear 67 having a cone-shaped pitch surface is disposed so as to center around the drum shaft hole 66. A flange 68 at the opposite end of the photoconductor 14 has a drum shaft hole 69 at a position opposed to the drum shaft hole 66.
Further, the flange 65 has one faceplate 28 thereon. An engagement frame 70 is mounted on the outer surface of the faceplate 28. On the other hand, the flange 68 also has another faceplate 28 thereon. A bearing 71 is fitted into the another faceplate 28.
When the process cartridge 24 is installed to the apparatus main body 10, the drum shaft 26 of the driving device 40 is inserted into the drum shaft hole 66 of the process cartridge 24. Further, the tip of the drum shaft 26 is inserted into the central hole of the bearing 71.
As illustrated in
At this time, the process cartridge 24 is installed to the apparatus main body 10 while using the drum shaft 26 as a primary guide and the cartridge-side secondary guide pin 38 as a secondary guide. Further, the convex gear 63 of
As illustrated in
Then, the drive force of the driving motor 60 is transmitted to the drum shaft 26, whereby the drum shaft 26 is rotated via the engagement between the convex gear 63 and the concave gear 67. Thus, the photoconductor 14 is rotated with the rotation of the drum shaft 26. In addition, the drive force of the drive shaft 44 of the driving device 40 is transmitted so as to rotationally drive the developing roller 25.
Next, referring to
On the other hand, the cartridge-side coupling 30 has a tubular fitting concave portion 75 and two engagement concave portions 76. The two engagement concave portions 76 are disposed at opposite positions to each other on an outer circumferential surface of the tubular fitting concave portion 75.
When the process cartridge 24 is installed to the apparatus main body 10, the tubular fitting convex portion 73 is inserted into and fitted with the tubular fitting concave portion 75. Thus, the drive shaft 44 is connected to the developing roller shaft 27 so that a positional displacement of the drive shaft 44 may be suppressed with respect to the radial direction.
Furthermore, the two engagement convex portions 74 are inserted into and are engaged with the two engagement concave portions 76. Thus, the drive shaft 44 is connected to the developing roller shaft 27 so as to be capable of transmitting the rotation of the drive shaft 44 to the developing roller shaft 27.
The cartridge-side coupling 30 has a cylindrical fitting concave portion 75 and two engagement convex portions 77. The two engagement convex portions 77 are disposed at opposite positions to each other in the vicinity of the inlet of the cylindrical fitting concave portion 75.
When the process cartridge 24 is installed to the apparatus main body 10, the cylindrical fitting convex portion 73 is inserted into and is fitted with the cylindrical fitting concave portion 75. Thus, the drive shaft 44 is connected to the developing roller shaft 27 so that a positional displacement of the drive shaft 44 may be suppressed with respect to the radial direction.
Furthermore, the two engagement convex portions 74 are engaged with the two engagement convex portions 77. Thus, the drive shaft 44 is connected to the developing roller shaft 27 so as to be capable of transmitting the rotation of the drive shaft 44 to the developing roller shaft 27.
When the process cartridge 24 is installed to the apparatus main body 10, the cylindrical fitting convex portion 73 is inserted into and fitted with the cylindrical fitting concave portion 75. Thus, the drive shaft 44 is connected to the developing roller shaft 27 so that a positional displacement of the drive shaft 44 may be suppressed with respect to the radial direction.
Furthermore, the truncated conical convex gear 78 is engaged with the truncated conical concave gear 79. Thus, the drive shaft 44 is connected to the developing roller shaft 27 so as to be capable of transmitting the rotation of the drive shaft 44 to the developing roller shaft 27.
In this case, as illustrated in
If the two engagement convex portions 74 of the main-body-side coupling 49 are respectively opposed to the two engagement convex portions 77 of the cartridge-side coupling 30 in installing the process cartridge 24 to the apparatus main body 10, the two engagement convex portions 74 are respectively butted against the two engagement convex portions 77, as illustrated in
With the two engagement convex portions 74 and the two engagement convex portions 77 being butted against each other, the process cartridge 24 is further inserted to the apparatus main body 10. Then, as illustrated in
In addition, the cylindrical fitting convex portion 73 is inserted into and is fitted with the cylindrical fitting concave portion 75. Thus, the drive shaft 44 is connected to the developing roller shaft 27 so that a positional displacement of the drive shaft 44 may be suppressed with respect to the radial direction.
Then, when the drive shaft 44 is rotated, the above butting state of the two engagement convex portions 74 and the two engagement convex portions 77 is dissolved. Further, the two engagement convex portions 74 are engaged with the two engagement convex portions 77. Thus, the drive shaft 44 is connected to the developing roller shaft 27 so as to be capable of transmitting the rotation of the drive shaft 44 to the developing roller shaft 27.
Next, referring to
When the process cartridge 24 is installed to the apparatus main body 10 with the two engagement convex portions 74 being opposed to the two engagement convex portions 77, the two engagement convex portions 74 are butted against the two engagement convex portions 77.
However, when the drive shaft 44 is rotated in the direction indicated by an arrow, B, in
Thus, even if some conflict occur between the main-body-side coupling 49 and the cartridge-side coupling 30 at the installation of the process cartridge 24 into the apparatus main body 10, the main-body-side coupling 49 rotates so as to be relieved from the biasing force of the coil spring 48. Subsequently, the drive shaft 44 is rotated and is then connected to the developing roller shaft 27.
At this time, an operator is not required for a checking operation of the rotational positions of the main-body-side coupling 49 and the cartridge-side coupling 30. Therefore, relatively high operability may be obtained at the installation of the process cartridge 24 into the main-body-side coupling 49.
Incidentally, in the above-described example embodiments, the main-body-side coupling 49 serving as a drive joint is provided on the drive shaft 44 so as to be slidable along the axial direction thereof. The coil spring 48 is provided on the drive shaft 44 so as to serve as a biasing member that biases the main-body-side coupling 49 in one axial direction thereof.
However, the location of the biasing member is not limited to the side of the driving device 40. The cartridge-side coupling 30 serving as a driven joint may be provide on the developing roller shaft 27 so as to be slidable along the axial direction thereof. Simultaneously, the biasing member may be provided on the developing roller shaft 27 so as to bias the cartridge-side coupling 30 in one axial direction thereof.
Alternatively, the drive joint and the driven joint may be slidably mounted onto the driving side and the driven side, respectively. In addition, the drive joint and the driven joint may be biased along one axial direction by using respective biasing members.
In
The flexible holder 43 further includes a bracket 81 that holds the ball bearing 52 of the flexible holder 43 illustrated in
The bracket 81 has screw holes. The screw holes are formed with a sufficient margin so that the bracket 81 may be screwed with the screws 82 even if the bracket 81 is moved. Incidentally, the fixing member to fix the bracket 81 to the holding plate 42 is not limited to such a screw member. The bracket 81 may be fixed to the holding plate 42 in an electromagnetic manner.
In the driving device 40 illustrated in
At the installation of the process cartridge 24 into the main-body-side coupling 49, as illustrated in
Then, the support point of the drive shaft 44 is located away from the connecting point thereof with the developing roller shaft 27 so as to reduce the inclined angle, θ. Thus a rotational variation of the developing roller 25 may be reduced, thereby suppressing deterioration in image quality.
In all of the above-described example embodiments, the process cartridge 24 has the developer unit 15 as the sub unit therein, the developing roller 25 as the driven rotational member, and the developing roller shaft 27 as the driven shaft for use in positioning the driven shaft 44 with respect to the radial direction.
However, the sub unit provided in the process cartridge 24 may be the cleaner unit or the charger unit, and is not limited to the developer unit 15. Specifically, the process cartridge 24 may employ the cleaner unit as the sub unit, and a rotational cleaning member, such as a cleaning blade or a cleaning brush, as the driven rotational member. Further, the process cartridge 24 may employ a rotational center shaft of the rotational cleaning member as the driven shaft for use in positioning the drive shaft 44 with respect to the radial direction thereof.
Alternatively, the process cartridge 24 may employ the charger unit as the sub unit, and the charging roller as the driven rotational member. Further, the process cartridge 24 may employ the charging roller shaft as the driven shaft for use in positioning the drive shaft 44 with respect to the radial direction thereof.
In addition, the configuration of the process cartridge 24 is not limited to the configuration where the process cartridge 24 consists of the image carrier and only one unit from among the developer unit, the charger unit, the cleaner unit, and the like. Alternatively, the process cartridge 24 may include the image carrier and a plurality of units from among the developer unit, the charger unit, the cleaner unit, and the like.
In the above-described example embodiments, the main-body-side coupling 49 is provided on the drive shaft 44, while the cartridge-side coupling 30 is provided on the developing roller shaft 27 serving as the driven shaft. Thus, the rotation of the drive shaft 44 is transmitted to the developing roller shaft 27 via the main-body-side coupling 49 and the cartridge-side coupling 30.
However, as illustrated in
The connecting mechanism 90 has a joint mechanism 91 and a declination control mechanism 92. The joint mechanism 91 transmits the rotation of the drive shaft 44 to the developing roller shaft 27. In the joint mechanism 91, the drive shaft 44 and the developing roller shaft 27 are configured to be capable of engaging with and disengaging from each other.
The declination control mechanism 92 controls a declination formed between the drive shaft 44 and the developing roller shaft 27 so as to suppress a rotational variation of the drive shaft 44. Thus, the declination control mechanism 92 transmits the rotation of the drive shaft 44 to the developing roller shaft 27 so that the developing roller shaft 27 may rotate at a substantially similar speed to the drive shaft 44.
The joint mechanism 91 includes a main-body-side coupling 49 and a cartridge-side coupling 30. The main-body-side coupling 49 is fixed to the drive shaft 44 similar to the above-described example embodiments. The cartridge-side coupling 30 is provided on the developing roller shaft 27. Incidentally, the cartridge-side coupling 30 is also configured as a part of the declination control mechanism 92.
Further, the main-body-side coupling 49 has two engagement convex portions 74. On the other hand, the cartridge-side coupling 30 has two engagement convex portions 77 to be engaged with the two engagement convex portions 74.
On the other hand, the declination control mechanism 92 includes the cartridge-side coupling 30, a metal leaf 93, a flange 94, two fastening bolts 95, two fastening bolts 96, four collars 97, and four nuts 98.
The cartridge-side coupling 30 has a round shape, and is configured as a part of the joint mechanism 91. The metal leaf 93 has a square shape. The two fastening bolts 95 are inserted from the side of the cartridge-side coupling 30b through two opposite corners of the metal leaf 93 into the flange 94. On the other hand, the two fastening bolts 96 are inserted from the side of the flange 94 through the other two opposite corners of the metal leaf 93 into the cartridge-side coupling 30b.
The four collars 97 are fitted with the respective tips of the two fastening bolts 95 and the two fastening bolts 96. Further, the four nuts 98 are screwed to the respective tips of the two fastening bolts 95 and the two fastening bolts 96.
The cartridge-side coupling 30 has the engagement convex portions 77, two hexagon sockets 30a, and two hexagon sockets 30b on the outer surface thereof. The engagement convex portions 77 are engaged with the engagement convex portions 74 of the main-body-side coupling 49.
The head of the fastening bolt 95 is fitted into the hexagon socket 30a, while the collar 97 and the nut 98 are fitted into the hexagon socket 30a. In addition, the cartridge-side coupling 30b has an engagement concave portion 75 in the center thereof.
A circular convex portion is provided at each corner of both surfaces of the metal leaf 93. Thereby, each corner of the metal leaf 93 is configured to have an increased thickness. For each of the fastening bolts 95 and the fastening bolts 96, a through hole 93a is formed at the center of the corresponding circular convex portion.
The flange 94 has two through holes 94a, two through holes 94b, and a shaft hole 94c. The through hole 94a is passed through by the tip of the fastening bolt 96. On the other hand, the through hole 94b is passed through by the tip of the fastening bolt 95 from the side of the cartridge-side coupling 30, and is fitted with the collar 97 and the nut 98 from the side of the flange 94.
Then, an end portion of the developing roller shaft 27 is inserted into the shaft hole 94c, and then a screw 99 of
Further, when the process cartridge 24 is inserted into the main-body-side coupling 49, the fitting convex portion 73 is inserted into the fitting concave portion 75. Thereby, a positional displacement of the drive shaft 44 may be suppressed with respect to the radial direction thereof.
Furthermore, the drive shaft 44 is rotated so as to engage the engagement convex portions 74 with the engagement convex portions 77. Thus, the drive shaft 44 is connected to the developing roller shaft 27 so as to be capable of transmitting the rotation of the drive shaft 44 to the developing roller shaft 27.
As described above, in the process cartridge 24 according to the present example embodiment, the connecting mechanism 90 including the cartridge-side coupling 30 is provided at the connecting part 400 between the drive shaft 44 of the driving device 40 and the developing roller shaft 27 of the developing roller 25. The connecting mechanism 90 absorbs a declination that may be formed between the drive shaft 44 and the developing roller shaft 27 by utilizing a flexure of the metal leaf 93. Thus, the connecting mechanism 90 transmits the rotation of the drive shaft 44 to the developing roller shaft 27 so that the developing roller shaft 27 may be rotated at a substantially similar speed to the drive shaft 44.
Therefore, according to the present example embodiment, even when a declination is formed between the drive shaft 44 and the developing roller shaft 27, the declination absorbed by the flexure of the metal leaf 93 provided on the cartridge-side coupling 30. Thus, the developing roller shaft 27 may be rotationally driven at a substantially similar speed to the drive shaft 44. Consequently, a rotational variation of the developing roller 25 may be reduced, and then degradation in image quality, such as banding and uneven density, may effectively be suppressed.
In
At the installation of the process cartridge 24 into the main-body-side coupling 49, the fitting convex portion 73 is inserted into the fitting concave portion 75 so as to suppress a positional displacement of the drive shaft 44 with respect to the radial direction thereof.
Then, the drive shaft 44 is rotated so as to engage the engagement convex portions 74 with the engagement convex portions 77 of the cartridge-side coupling 30. Thus, the drive shaft 44 is connected to the developing roller shaft 27 so as to be capable of transmitting the rotation of the drive shaft 44 to the drive shaft 44.
As described above, the connecting mechanism 90 including the joint mechanism 91 and the declination control mechanism 92 is provided at the connecting part 400 between the drive shaft 44 of the driving device 40 and the developing roller shaft 27 of the developing roller 25.
The declination control mechanism 92 has a helical slit on the surface thereof. The declination control mechanism 92 absorbs a declination formed between the drive shaft 44 and the developing roller shaft 27 by the deformation thereof.
The declination control mechanism 92 also transmits the rotation of the drive shaft 44 to the developing roller shaft 27 so that the developing roller shaft 27 may be rotated at a substantially similar speed to the drive shaft 44.
Therefore, according to the present example embodiment, even when a declination is formed between the drive shaft 44 and the developing roller shaft 27, the declination is absorbed by the deformation of the helical coupling. Thus, the developing roller shaft 27 may be rotationally driven at a substantially similar speed to the drive shaft 44. Consequently, a rotational variation of the developing roller 25 may be reduced, and then degradation in image quality, such as banding and uneven density, may be effectively suppressed.
Next, another example embodiment of the process cartridge support device 300 is described.
A process cartridge 101 illustrated in
The developer unit 103 further includes a developing roller 104 and a unit main body 106.
The developing roller 104 is disposed so as to be opposed to the image carrier 102. The developing roller 104 also has a developing roller shaft 105, and serves as a rotational member. The developing roller shaft 105 may be integrally formed with the developing roller 104 or may be integrally connected to the developing roller 104.
The unit main body 106 positions the developing roller 104 while rotatably supporting the developing roller shaft 105 of the developing roller 104. The unit main body 106 has a developer case 107, a side plate 127, a side plate 128, and a bottom plate 181. The developer case 107 stores a dry developing agent, C.
The developer case 107 has the developing roller 104 therein. The unit main body 106 may be formed of only the developer case 107. Incidentally, the side plate 127 and the side plate 128 are described later, referring to
On starting an image forming operation, the image carrier 102 is rotationally driven in the counterclockwise direction indicated by an arrow, E, in
On the other hand, the developing roller 104 of the developer unit 103 is rotationally driven in a clockwise direction in
Meanwhile, a recording medium, P, is fed from an unillustrated sheet feeding mechanism, and is conveyed to a transfer roller 113 along the direction indicated by an arrow, D. Then, the toner image is transferred with the transfer roller 113 onto the recording medium, P.
Further, the recording medium, P, is conveyed away from the transfer position between the image carrier 102 and the transfer roller 113 to an unillustrated fuser. In the fuser, the toner image is fixed on the recording medium, P, by applying heat and pressure.
The recording medium, P, used herein is a final recording medium, such as a transfer paper sheet or a resin film. Incidentally, as described later, after the toner image formed on the image carrier 102 is temporarily transferred onto an intermediate transfer member configured as another recording medium, the toner image formed on the intermediate transfer member may be transferred onto the recording medium, P, which serves as the final recording medium.
A cleaner unit 109 cleans excess toner remaining on the image carrier 102 after the transfer of the toner image to the recording medium, P. The cleaner unit 109 illustrated in
The above excess toner remaining on the image carrier 102 is cleaned by the cooperative action of the cleaning brush 111 and the cleaning blade 112. Incidentally, according to the present example embodiment, the cleaner-unit main body 110 is configured as a cleaner case.
In
As illustrated in
The apparatus main body 114 includes an apparatus sideplate 118, a holding plate 119, an apparatus sideplate 120, and a faceplate 122. The apparatus sideplate 118 is provided at the rear side of the apparatus main body 114. The holding plate 119 is fixed to the apparatus sideplate 118. The drum shaft 117 is rotatably supported via bearings by the apparatus sideplate 118 and the holding plate 119 fixed to the apparatus sideplate 118.
On the other hand, the apparatus sideplate 120 is provided at the front side of the apparatus main body 114. The apparatus sideplate 120 has an opening 121. The opening 121 is covered with the faceplate 122.
The faceplate 122 rotatably supports a front end portion of the drum shaft 117 via a bearing. The faceplate 122 is detachably fixed to the apparatus sideplate 120 while being precisely positioned at a desired position.
The rear flange 116 has a central hole. The central hole further has a large number of teeth around the circumference thereof. An engagement member 123 having a large number of teeth 124 is fixed to the drum shaft 124 so as to be fitted with the central hole.
When the process cartridge 101 is pushed toward the rear side, R, of the apparatus main body 114 by an un-illustrated spring, the rear flange 116 is pushed toward the engagement member 123. Thus, the teeth of the central hole of the rear flange 116 and the teeth 124 of the engagement member 123 are firmly engaged with each other.
Thus, the image carrier 102 is appropriately positioned relative to the apparatus main body 114, while the image carrier 102 is detachably fixed to the drum shaft 117 via the front flange 115, the rear flange 116, and the engagement member 123. A front door 150 is provided in front of the apparatus sideplate 120 so as to be openable and closable.
The drum shaft 117 has a gear 125 that is fixed to the rear end portion thereof. The gear 125 is also engaged with a drive gear 126 that is rotatably supported by the apparatus side plate 118 and the holding plate 119. When the drive gear 126 is rotationally driven by an unillustrated motor, the rotation of the drive gear 126 is transmitted to the drum shaft 117 via the gear 125. Further, the rotation of the drum shaft 117 is transmitted to the image carrier 102 via the engagement member 123 and the rear flange 116.
Thus, the image carrier 102 is rotationally driven in the counterclockwise direction indicated by the arrow, E, in
As illustrated in
The developing roller shaft 105 of the developing roller 104 is rotatably supported by the side plates 127 and 128 via bearings 160 and 161, respectively. The developing roller shaft 105 is also positioned relative to the unit main body 106 by the side plates 127 and 128 via bearings 160 and 161, respectively.
A roller-side gear 129 is fixedly supported by the rear end portion of the developing roller shaft 105. An idler shaft 130 is fixedly positioned by the side plate 128 as illustrated in
Alternatively, the idler shaft 130 may be rotatably supported by the unit main body 106, and the idler gear 131 may be fixed on the idler shaft 130. In either case, the idler gear 131 is rotatably supported by the unit main body 106 via the idler shaft 130.
As described above, according to the present example embodiment, the sub unit of the process cartridge 101 is configured as the developer unit 103. The sub unit has the roller-side gear 129 that is supported by the developing roller shaft 105 of the developing roller 104. The sub unit also has the idler gear 131 that is rotatably supported by the unit main body 106 via the idler shaft 130.
Further, as illustrated in
Furthermore, as illustrated in
In the present example embodiment in
As described above, in the image forming apparatus 100 of the present example embodiment, the roller-side gear 129 is drivenly connected to the main-body-side gear 133 via the single idler gear 131. On the other hand, a plurality of idler gears may be configured to be rotatably supported by the sub-unit main body. Thereby, the roller-side gear 129 may be drivenly connected to the main-body-side gear 133 via the plurality of idler gears.
Alternatively, the roller-side gear 129 may be drivenly connected to the main-body-side gear 133 directly without any idler gear. In any cases, the roller-side gear 129 is drivenly connected to the main-body-side gear 133 when the process cartridge 101 is mounted on the apparatus main body 114.
As described above, the drive shaft 132 is rotationally driven by the driving motor disposed in the apparatus main body 114. As illustrated in
Further, as illustrated in
On starting an operation of the driving motor 165, a rotation of the driving motor 165 is transmitted to the drive shaft 132 via the drive gear 171, the gear 172, the pulley 166, the timing belt 167, and the pulley 164. Further, the rotation of the drive shaft 132 rotationally driven by the driving motor 165 is transmitted to the developing roller shaft 105 of the developing roller 104 via the main-body-side gear 133, the idler gear 131, and the roller-side gear 129. Subsequently, the developing roller 104 is rotationally driven in the clockwise direction in
Incidentally, in the case where the idler gear 131 is not provided, the main-body-side gear 133 is directly engaged with the roller-side gear 129. Thus, the rotation of the drive shaft 132 is transmitted from the main-body-side gear 133 to the roller-side gear 129.
Further, as illustrated in
Specifically, ring-shaped projections 136 and 137, which are concentric with respect to the drum shaft 117, are projectingly provided at the front flange 115 and the rear flange 116, respectively. The face plates 134 and 135 have holes 140 and 141, respectively. The holes 140 and 141 are detachably fitted with the ring-shaped projections 136 and 137, respectively, via bearings 138 and 139. Further, the developing roller shaft 105 is rotatably fitted with the faceplates 134 and 135 via the bearings 138 and 139, respectively. Thereby, the image carrier 102 and the developing roller 104 are appropriately positioned.
Thus, the image carrier 102 and the sub unit configured as the developer unit 103 are integrally mounted to the apparatus main body 114. Alternatively, the image carrier 102 may be rotatably supported by the unit main body 106 of the sub unit. Thereby, the image carrier 102 and the sub unit may be integrally mounted to the apparatus main body 114.
Furthermore, the faceplate 135, which is disposed at the exterior of the rear end of the unit main body 106, has a secondary guide hole 142 formed in an oblong shape. The secondary guide hole 142 is fitted with one end of a secondary guide pin 143 that is fixed to the unit main body 106.
Similarly, as illustrated in
Thus, the end portions of the secondary guide pin 143 are fitted with the secondary guide holes 142 and 153, which are formed with the faceplates 134 and 135. Thereby, the unit main body 106 is held so as not to be rotated around the central axial line of the developing roller 104.
Thus, the image carrier 102 and the developing roller 104 are connected while maintaining appropriate positions to each other to integrally form the process cartridge 101. Further, an appropriate distance is maintained between the central axial lines of the image carrier 102 and the developing roller 104.
As illustrated in
Furthermore, according to the present example embodiment, the process cartridge 101 has a screw 144 and a screw 154. The screws 144 and 154 are inserted into the secondary guide holes 153 and 142, respectively, which are formed through the faceplates 134 and 135. The screws 144 and 154 are also screwed to female screws that are formed in both ends of the secondary guide pin 143. Thereby, the secondary guide pin 143 is fixed to the faceplates 134 and 135.
Thus, the unit main body 106 is fixedly connected to each of the faceplates 134 and 135, whereby a declination of the idler shaft 130 due to flexure of the unit main body 106 may be effectively suppressed. Further, a variation in the axial distance is suppressed between the idler gear 131 and each of the roller-side gear 129 and the main-body-side gear 133 engaged therewith. Therefore, unevenness in engagement between the gears may be effectively suppressed. Consequently, relatively high image quality may be obtained in the toner image formed on the image carrier 102.
Moreover, according to the present example embodiment, the process cartridge 101 employs a single pin as the secondary guide pin 143 that is fitted into each of the secondary guide holes 153 and 142. The secondary guide pin 143 is disposed so as to extend in parallel with the developing roller shaft 105 of the developing roller 104.
Thus, the front end portion of the secondary guide pin 143 is coaxially provided with the rear end portion thereof. Therefore, a variation due to the declination of the unit main body 106 may be effectively suppressed with respect to the axial distance between the idler gear 131 and the main-body-side gear 133. Consequently, relatively high image quality may be obtained in the toner image formed on the image carrier 102.
As described above, the front flange 115 and the rear flange 116, which are fixed to the image carrier 112, are fitted with the drum shaft 117. The drum shaft 117 is supportedly positioned by the apparatus main body 114. Thus, the image carrier 102 is appropriately positioned relative to the apparatus main body 114.
In addition, as illustrated in
Similarly, a secondary guide pin 146 on the faceplate 135 is disposed on the faceplate 134 in a projecting manner, and a positioning hole 156 is formed through the faceplate 122.
Then, the secondary guide pin 145 is fitted into the positioning hole 155, while the secondary guide pin 146 is fitted into the positioning hole 156. Thereby, the process cartridge 101 may be held so as not to be rotated around the central axial line of the image carrier 102. In addition, the process cartridge 101 is appropriately positioned relative to the apparatus main body 114.
On detaching the process cartridge 101 from the apparatus main body 114, a front door 150 illustrated in
At this time, with the drum shaft 117 remaining in the apparatus main body 114, the idler gear 131 of the process cartridge 101 is detached from the main-body-side gear 133 that is supported by the apparatus main body 114. Then, the process cartridge 101 is pulled out to the exterior of the apparatus main body 114. Further, the faceplates 134 and 135 are detached from the image carrier 102 and the developer unit 103. Finally, the image carrier 102 and the developer unit 103 are separated from each other.
By performing the above-described detaching operation in the opposite order, the process cartridge 101 may be installed while being appropriately positioned at the desired position in the apparatus main body 114. Incidentally, an un-illustrated guide groove is formed on the process cartridge 101, while an un-illustrated guide rail is fixed on the apparatus main body 114. When the process cartridge 101 is pulled out to the front side, Fr, or is pushed toward the rear side, R, the guide groove is fitted with and is slid along the guide rail.
Furthermore, in the process cartridge 101 according to the present example embodiment, as illustrated in
Thus, during the rotation of the main-body-side gear 133, the idler shaft 130 is held by the faceplate 135 so that an external force transmitted from the main-body-side gear 133 to the idler gear 131 is absorbed by the faceplate 135. In addition, the idler shaft 130 is held by the faceplate 135 so as not to be bent by an external force.
Therefore, this configuration may effectively suppress a vibration of the idler shaft 130 due to the external force transmitted from the main-body-side gear 133 to the idler gear 131. This configuration may also effectively suppress unwanted banding in the toner image formed on the image carrier 102.
Alternatively, in the case where a plurality of idler gears engaged with each other are rotatably supported by the unit main body 106 via a plurality of idler shafts, the plurality of idler gears may also be supported by the faceplate. Thereby, an external force applied to each of the plurality of idler gears may be absorbed by the faceplate. Thus, high image quality may be obtained in the toner image formed on the image carrier 102.
Moreover, in the process cartridge 101 of the present example embodiment, as illustrated in
In
Incidentally, in the above-described image forming apparatus 100, the developing roller shaft 105 of the roller-side gear 129 and the idler shaft 130 of the idler gear 131 are supported by the unit main body 106 of the developer unit 103. On the other hand, the main-body-side gear 133 is supported by the drive shaft 132, which further supported by the apparatus main body 114.
Therefore, when only the above-described configuration is employed in the image forming apparatus 100, a variation due to accumulation of dimensional tolerances may occur with respect to a distance between the centers of the gears engaged with each other.
Specifically, when the idler gear 131 is provided as illustrated in
Thus, when a significant deviation from an appropriate value occurs with respect to the distance L1 or L2, the rotation may be unevenly transmitted, causing a vibration in the image carrier 102. Thus, image quality may be degraded in the toner image formed on the image carrier 102.
Accordingly, in the image forming apparatus 100 of the present example embodiment, as illustrated in
On the other hand, the idler shaft 130 and the developing roller shaft 105 are positioned relative to the unit main body 106 as described above. Further, even when a plurality of idler gears is provided, each idler shaft for the plurality of idler gears is appropriately positioned relative to the unit main body 106.
Thus, the drive shaft 132 supporting the main-body-side gear 133, the idler shaft 130 supporting the idler gear 131, and the developing roller shaft 105 supporting the roller-side gear 129 are commonly positioned relative to the unit main body 106. Therefore, a variation due to accumulation of dimensional tolerances may be suppressed with respect to the distance, L1, between the centers of the idler gear 131 and the main-body-side gear 133. Consequently, a relatively high dimensional accuracy may be obtained with respect to the distance, L1.
Similarly, when the idler gear 131 is employed, a relatively high dimensional accuracy may be obtained with respect to the distance, L2, between the centers of the roller-side gear 129 and the main-body-side gear 133, which are directly engaged with each other. Therefore, uneven transmission of the rotation between the gears may be effectively suppressed, and the vibration of the image carrier 102 may be reduced. Consequently, increased image quality may be obtained in the toner image formed on the image carrier 102.
Incidentally, as illustrated in
In this configuration, when the process cartridge 101 is not mounted on the apparatus main body 114, the drive shaft 132 may be inclined from a desired position as illustrated in
However, in the above configuration, when the process cartridge 101 is mounted on the apparatus main body 114, the drive shaft 132 is positioned by being fitted with the guide hole 168 of the unit main body 106 via the bearing 169. Therefore, the drive shaft 132 is supportedly positioned at the three support points.
In this case, all of the three bearings 163, 182, and 168 are difficult to be aligned with respect to the central axial lines. Therefore, a bending may occur in the drive shaft 132 supported by the three bearings 163, 182, and 168. Further, the bending may cause a rotational variation of the drive shaft 132, whereby uneven toner density may be caused in the toner image formed on the image carrier 102.
Accordingly, in the image forming apparatus 100 of the present example embodiment, as illustrated in
Thus, one support point of the drive shaft 132 is positioned relative to the apparatus main body 114, while another support point of the drive shaft 132 is positioned relative to the process cartridge 101.
As described above, when the drive shaft 132 is supported at the two support points, the bending of the drive shaft 132 may be appropriately reduced. Consequently, the rotational variation of the drive shaft 132 may be effectively suppressed, whereby a relatively high-quality toner image may be formed on the image carrier 102. In addition, even if some eccentricity is observed between the bearings 163 and 169 that are provided at the two support points, the bending of the drive shaft 132 may be effectively suppressed.
However, in the configuration where the drive shaft 132 is supported at the two support points, when the process cartridge 101 is not mounted on the apparatus main body 114, the drive shaft 132 is supported at only one support point via the bearing 163 relative to the apparatus main body 114. Consequently, the drive shaft 132 may be significantly inclined from the desired position illustrated in
Furthermore, when the process cartridge 101 is pushed toward the rear side as indicated by an arrow, H, in
Accordingly, as described above with referring to
Therefore, at the installation of the process cartridge 101 to the apparatus main body 114, the drive shaft 132 is securely fitted into the guide hole 168. However, as described above, this configuration may cause a bending in the drive shaft 132, thereby resulting in a rotational variation thereof.
Accordingly, in the image forming apparatus 100 of the present example embodiment, one point of the drive shaft 132 is rotatably supported relative to the apparatus main body 114. Further, when the process cartridge 101 is mounted on the apparatus main body 114, another point of the drive shaft 132 is rotatably fitted with the guide hole 168 formed in the unit main body 106 of the sub unit. Thereby, the drive shaft 132 is appropriately positioned.
Furthermore, the apparatus main body 114 may include a flexible holder 183 to hold the drive shaft 132 so as not to be inclined from the desired position beyond a certain extent.
According to the present example embodiment, as illustrated in
As described above, before the process cartridge 101 is installed to the apparatus main body 114, the drive shaft 132 may be inclined by the weight thereof from the desired position as illustrated in
As described above, the flexible holder 183 allows the drive shaft 132 to be inclined to some degree from the desired position. However, the flexible holder 183 holds the drive shaft 132 so as not to be inclined beyond a certain angle from the desired position.
Further, the flexible holder 183 includes the elastic member 187 to be elastically deformed by an external force applied from the drive shaft 132 and to hold the drive shaft 132 by the elasticity thereof, when the drive shaft 132 is inclined beyond a certain angle from the desired position.
When the drive shaft 132 is radially displaced, the elastic member 187 holds the drive shaft 132 by the elasticity thereof. Thus, a certain extent of radial displacement of the drive shaft 132 is tolerable, while a large amount of the radial displacement of the drive shaft 132 is effectively suppressed.
As described above, when the process cartridge 101 is not mounted on the apparatus main body 114, the drive shaft 132 is suppressed to be considerably inclined from the desired position by the flexible holder 183. Therefore, when the process cartridge 101 is pushed toward the rear side, R, of the apparatus main body 114 as indicated by the arrow, G, in
Further, after the process cartridge 101 is installed to the apparatus main body 114 and further the drive shaft 132 is fitted into the guide hole 168 in the process cartridge 101, the flexible holder 183 holds the drive shaft 132 so as to be tolerable to a certain extent of radial displacement of the drive shaft 132. Therefore, unlike the case where the drive shaft 132 is supportedly positioned at the three points via the bearings, a bending of the drive shaft 132 due to a large external force may be effectively suppressed. Consequently, a rotational variation of the drive shaft 132 may be suppressed.
In addition, the flexible holder 183 also includes the elastic member 187. When an image forming operation is executed with the process cartridge 101 mounted on the apparatus main body 114, a vibration of the developing unit 103 is transmitted to the drive shaft 132. The vibration is absorbed with the elastic member 187. Thereby, the transmission of the vibration to the apparatus main body 114 may be suppressed. Thus, degradation of the image quality due to the vibration of the developer unit 103 may be effectively suppressed with respect to a toner image formed on the image carrier 102.
Incidentally, the flexible holder 183 may have the configuration illustrated in
Alternatively, the flexible holder 183 may be configured as illustrated in
The drive shaft 132 is fitted into the hole 189. Thus, when the process cartridge 101 is not mounted on the apparatus main body 114, the drive shaft 132 is allowed to be inclined to a certain extent from a desired position, while being held so as not to be inclined beyond the certain extent.
This configuration enables the drive shaft 132 to be securely fitted into the guide hole 168 of the process cartridge 101 when the process cartridge 101 is installed to the apparatus main body 114. In addition, after the process cartridge 101 is installed to the apparatus main body 114, the drive shaft 132 is fitted into the hole 189 having a slightly larger diameter than the drive shaft 132. Therefore, a bending of the drive shaft 132 due to an external force may be effectively suppressed.
Furthermore, in any of the above-described configurations of the flexible holder 183, the drive shaft 132 may be fixed with a fixing mechanism so as not to be inclined after the process cartridge 101 is installed to the apparatus main body 114. For example, first, when the process cartridge 101 is installed to the apparatus main body 114, the drive shaft 132 is fitted into the guide hole 168 of the process cartridge 101. Then, the drive shaft 132 is positioned by the unit main body 106 of the process cartridge 101 and the apparatus sideplate 118 of the apparatus main body 114. Further, the drive shaft 132 is fixed by using the fixing mechanism 80 as illustrated in
Subsequently, as illustrated in
In this case, as illustrated in
When the process cartridge 101 is detached from the apparatus main body 114 for replacement, the screw 194 is loosened prior to an installation of another process cartridge 101 so that the drive shaft 132 is allowed to be slightly inclined. Then, another process cartridge 101 is installed to the apparatus main body 114. Further, the screw 194 is fastened again so as to suppress an inclination of the drive shaft 132 together with the bracket 190.
As described above, the fixing mechanism is provided to suppress the inclination of the drive shaft 132 after the process cartridge 101 is installed to the apparatus main body 114. Therefore, even when a vibration occurs in the developer unit 103 during an image forming operation, a vibration of the drive shaft 132 is effectively suppressed. Consequently, degradation in image quality due to the vibration of the drive shaft 132 may be suppressed with respect to the toner image formed on the image carrier 102.
Alternatively, instead of fixing the bracket 190 to the support bracket 176 by the screw 194, the support bracket 176 may contain a magnetic material, and in addition un-illustrated magnets may be fixed to both arms of the bracket 190. Consequently, the attaching and detaching operations of the bracket 190 may be simplified.
Incidentally, in manufacturing the image forming apparatus, the bracket 176 may be fixed to the apparatus sideplate 118 in the following manner.
As illustrated in
On the other hand, the guide hole 175 is formed through the apparatus sideplate 118 of the apparatus main body 114. The guide hole 175 is also formed so as to have a larger diameter than any of the outer diameters of the drive shaft 132, the bearing 169, and the compression coil spring 177.
On installation, the driving device 195 is approached to the apparatus sideplate 118 of the apparatus main body 114 as indicated by an arrow, H, in
Subsequently, the support bracket 176 is fixed to the apparatus sideplate 118 with an unillustrated screw. Thus, the drive shaft 132 is appropriately positioned relative to the apparatus sideplate 118, and the support bracket 176 is fixed to the apparatus sideplate 118.
During the above-described installing operation, the drive shaft 132 is held so as not to be significantly inclined from the desired position thereof. Therefore, the drive shaft 132 may be securely fitted into the guide hole 175.
Moreover, as illustrated in
The supplemental support member 196 has a base end 197 that is fitted with the support bracket 176 by a fixing member, such as an un-illustrated screw. At this time, a portion of the bearing 163 is fitted into a hole 198 that is formed through the supplemental support member 196.
The driving device 195 configured as above is mounted to the apparatus sideplate 118 in the above-described manner. Thus, the support bracket 176 may be firmly fixed to the apparatus sideplate 118 as illustrated in
As described above, when the driving device 195 is configured to be mounted to the apparatus sideplate 118, the drive shaft 132 is held relative to the support bracket 176 via the bearing 163 and the supplemental support member 196 during the installation. Therefore, an inclination of the drive shaft 132 may be securely suppressed. Consequently, the drive shaft 132 may be further securely inserted into the guide hole 175.
Further, when the supplemental support member 196 is mounted on the apparatus sideplate 118, the bearing 163 is fitted with the guide hole 175 of the apparatus sideplate 118 as illustrated in
On the installing operation, even when the hole 198 formed through the supplemental support member 196 does not completely match with the guide hole 175, the supplemental support member 196 containing deformable soft material is deformed, whereby the bearing 163 may be securely fitted with the guide hole 175.
In addition, when the process cartridge 101 (not illustrated in
Incidentally, according to the present example embodiment, the image forming apparatus 100 includes the flexible holder 183 as described above. However, as described above, the drive shaft 132 may be slightly inclined from a desired position.
Such a slight inclination of the drive shaft 132 may cause interference between the main-body-side gear 133 and the idler gear 131. Therefore, the drive shaft 132 may not be appropriately fitted into the guide hole 168 of the process cartridge 101. Accordingly, the image forming apparatus of the present example embodiment is also configured as below.
As described above, the main-body-side gear 133 is supported by the drive shaft 132 so as to be movable along the axial line direction thereof. In addition, as illustrated in
As illustrated in
Subsequently, as illustrated in
Furthermore, the main-body-side gear 133 is pushed back by the action of the compression coil spring 177. Then, the main-body-side gear 133 is moved back toward the front side, Fr, and is stopped with the stopper 178. Thus, the drive shaft 132 is securely fitted with the guide hole 168.
Alternatively, the main-body-side gear 133 may be fixedly supported relative to the drive shaft 132. In this case, as illustrated in
Thus, as illustrated in
As described above, according to any of the configurations illustrated in
As described above with referring to
For example, when the process cartridge 101 is not mounted on the apparatus main body 114, the drive shaft 132 may be slightly inclined to such a direction as indicated by an arrow, I or J in
In the example embodiments illustrated in
Further, the drive shaft 132 is fitted with the guide hole 168 via the bearing 169 mounted thereon. Therefore, when the drive shaft 132 is rotated to transmit the drive force, a sliding resistance may be effectively reduced between the drive shaft 132 and the guide hole 168, thereby increasing a transmission efficiency of the driving force.
In the above example embodiments, the process cartridge 101 includes the image carrier 102 and the developer unit 103. Alternatively, the process cartridge 101 may further include another unit. For example, when the cleaning unit 109 illustrated in
The process cartridge 101 illustrated in
The configuration of the process cartridge 101 is not limited to the configurations as described above. For example, the process cartridge 101 may be configured to have the cleaning brush 111 illustrated in
Incidentally, some conventional image forming apparatuses include a plurality of process cartridges. In each of the plurality of process cartridges, a toner image having a specific color is formed on an image carrier. The toner image may be directly transferred on a final recording medium. Alternatively, the toner image may be indirectly transferred on a final recording medium via an endless belt or a drum serving as an intermediate transfer member. The above described example embodiments in the present specification are applicable to such image forming apparatuses including a plurality of process cartridges.
The image forming apparatus 100 illustrated in
The image forming apparatus 100 of
The image forming apparatus 100 illustrated in
On the other hand, the image forming apparatus 100 illustrated in
The image forming apparatus 100 illustrated in
In the image forming apparatus 100 illustrated in
The present invention may be conveniently implemented using a conventional general purpose digital computer programmed according to the teachings of the present specification, as will be apparent to those skilled in the computer art. Appropriate software coding can readily be prepared by skilled programmers based on the teachings of the present disclosure, as will be apparent to those skilled in the software art. The present invention may also be implemented by the preparation of application specific integrated circuits or by interconnecting an appropriate network of conventional component circuits, as will be readily apparent to those skilled in the art.
Numerous additional modifications and variations are possible in light of the above teachings. It is therefore to be understood that within the scope of the appended claims, the disclosure of this patent specification may be practiced otherwise than as specifically described herein.
Number | Date | Country | Kind |
---|---|---|---|
2006-039822 | Feb 2006 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
3941433 | Dolling et al. | Mar 1976 | A |
6093005 | Nakamura | Jul 2000 | A |
20010021320 | Murayama et al. | Sep 2001 | A1 |
20020025191 | Kitayama | Feb 2002 | A1 |
20030049049 | Hoshi et al. | Mar 2003 | A1 |
20040086300 | Kawai et al. | May 2004 | A1 |
20040176172 | Berg | Sep 2004 | A1 |
20050111882 | Sudo et al. | May 2005 | A1 |
20050169670 | Noh | Aug 2005 | A1 |
20060051131 | Takigawa | Mar 2006 | A1 |
20080138113 | Murrell et al. | Jun 2008 | A1 |
Number | Date | Country |
---|---|---|
1113344 | Jul 2001 | EP |
1178370 | Feb 2002 | EP |
1635230 | Mar 2006 | EP |
05-341589 | Dec 1993 | JP |
HO6-33154 | Apr 1994 | JP |
08-006459 | Jan 1996 | JP |
10-020744 | Jan 1998 | JP |
2001-249604 | Sep 2001 | JP |
2003-005475 | Jan 2003 | JP |
2003-345221 | Dec 2003 | JP |
2004-001447 | Jan 2004 | JP |
2004-045603 | Feb 2004 | JP |
2005-017758 | Jan 2005 | JP |
2005-076777 | Mar 2005 | JP |
2005-195813 | Jul 2005 | JP |
2005-315352 | Nov 2005 | JP |
2006-078804 | Mar 2006 | JP |
Number | Date | Country | |
---|---|---|---|
20070189805 A1 | Aug 2007 | US |