This application is based upon and claims the benefit of priority from Japanese Patent Application No. 2008-222296 filed Aug. 29, 2008, the entire contents of which are incorporated herein by reference.
1. Field
One embodiment of the present invention relates to shading correction of the ambient light quantity of a lens, generated in an imaging apparatus using an imaging element such as a triple-CCD imaging apparatus.
2. Description of the Related Art
In an imaging apparatus for imaging an object by means of a lens, it has been known that light quantity around a lens is decreased with respect to image light entering at the center of a lens.
Thus, in an imaging apparatus, light quantity decreased in a marginal area is usually corrected as shading correction of ambient light quantity.
Japanese Patent Application Publication (KOKAI) No. 2005-277618 discloses shading correction, in which a function of sum of a square of horizontal distance and vertical distance from the center of an image to each pixel is obtained by calculation, and is corrected for each color.
Japanese Patent Application Publication (KOKAI) No. 2004-165958 discloses correction of limb darkening by computing a function of sum of a square of horizontal distance X and vertical distance Y from the center of an image to each pixel.
Neither of the above patent applications mentions correction of a decrease in a signal level different for R, G and B, by using a triple-CCD imaging apparatus.
Both of the correction methods disclosed in the above patent applications needs large memory capacity for storing image data.
A general architecture that implements the various feature of the invention will now be described with reference to the drawings. The drawings and the associated descriptions are provided to illustrate embodiments of the invention and not to limit the scope of the invention.
Various embodiments according to the invention will be described hereinafter with reference to the accompanying drawings. In general, according to one embodiment of the invention, an imaging apparatus comprising: a CCD sensor which converts input image light to an image signal; and a shading correction module which corrects the influence of ambient light quantity shading to input image light, for an image signal output from the CCD sensor whose distance from the center of a screen is farther than a predetermined distance, according to a circle with an equal distance from the center of a screen.
Embodiments of this invention will be described in detail with reference to the drawings. The various modules of the systems described herein can be implemented as software applications, hardware and/or software modules, or components on one or more computers, such as servers. While the various modules are illustrated separately, they may share some or all of the same underlying logic or code.
An imaging apparatus 1 shown in
The input image signal from the CCD sensor 7 (R, G, B) is decreased in a noise component through a preprocessor 9 (R, G, B), amplified to a predetermined gain, exposed to analog-to-digital conversion, and applied to a digital signal processor (DSP module) 11. The preprocessor 9 includes a correlated double sampling circuit module (CDS module) to eliminate a noise component from the input image signal from each CCD sensor, a gain control amplifier (GCA module) to give predetermined gain to the output of the CDS circuit module, and an analog-to-digital converter module to digitize an analog input image signal.
The digital signal processor (DSP module) 11 includes a white pixel correction module 11a which corrects a white pixel that is extremely increased when the sensitivity of the CCD sensor 7 (R, G, B) is increased or the storing time is prolonged, a shading correction module 11b which corrects the difference between the light quantities of image light passing through the center of the lens 3 and image light entering a peripheral area of the lens 3, among the image light whose white pixel is corrected by the white pixel correction module 11a, and a gamma (γ) correction module 11c which corrects the contrast of an input image signal.
It is to be noted that a single pulse is provided when a length of an information mark that should be recorded is the shortest unit 2T (T corresponds to one cycle of a basic clock frequency and 2T corresponds to a channel bit length in which two “1s” continue). Further, for example, a long pit like 11T is formed by applying a plurality of pulses. In order to form a smaller pit to realize a high capacity, a laser beam whose wavelength is shortened as much as possible must be combined with an objective lens having a high NA, but using a heat-sensitive resist film enables thermal formation of a small pit beyond an optical limit, especially a limit dependent on the wavelength of a laser beam.
The image signal corrected by the DSP module 11 is sent to a display unit (a monitor unit) or an image data storage unit (a large capacity storage module), through an image output circuit module (a camera link driver) 13, though they are not described in detail.
Among the input image light entering the prism 5, an image component of a blue channel to be received by the channel B, or the CCD 7B, for example, is reflected by a first wavelength selection film 5B, then reflected by a light incident plane 51, and is guided to a not-described light-receiving surface of the CCD 7B. Among the input image light applied to the prism 5, an image component of a red channel to be received by the channel R, or the CCD 7R, for example, passes through a first wavelength selection film 5B, reflects on a second wavelength selection film 5R, reflects again on the backside of the first wavelength selection film 5B, and is guided to a not-described light-receiving surface of the CCD 7R. Among the input image light applied to the prism 5, an image component of a green channel to be received by the channel G, or the CCD 7G, for example, passes through a first wavelength selection film 5B and a second wavelength selection film 5R, and is guided to a not-described light-receiving surface of the CCD 7G.
By using the prism 5 shown in
Namely, in this embodiment, unevenness in color can be prevented by correcting the components R and B, with the component G fixed.
As seen from
In
As shown in
In an imaging apparatus using a lens causing ambient light quantity shading shown in
In the ambient light quantity shading correction circuit module 11b shown in
Here, in the output screen shown in
As for the central part of a screen or nearby areas which comes in the circle with a radius a or smaller, the necessity of shading correction is considered to be low, and correction is omitted to decrease the memory capacity (to decrease the scale).
Next, a light quantity unrelated area (an area unnecessary to correct light quantity) subtract a2 from L2 (having L2−a2) on the X-axis, that is, an attenuation direction waveform is created for the signal R (the output of CCD 7R) and signal B (the output of the CCD 7B), by using trigonometric functions. At this time, an amplification waveform (a waveform in an amplifying direction), which is amplified equivalently to the value of attenuation output from an attenuation waveform (a waveform in an attenuation direction), is also created by calculation ([6-3] in
Then, a “Gain Value” that is a correction value parameter is multiplied by a “Gain” calculation module ([6-5] in
The value obtained here is used as a “Position” parameter, and area correction is made for left and right screens ([6-7] in
More specifically, the distance L2 from the address (H0, V0) of the center of the screen is obtained from information about input addresses H and V in
Next, “out of a circle with a radius a” is defined as a maximum correction area, and “out of a circle with a radius b” is defined as a minimum correction area, taking the central part of a screen as the center.
Namely, as described above, the necessity of shading correction is considered low for the central part of a screen that is within a circle with a radius a, and shading correction is omitted. At the same time, a light quantity unrelated area (an area unnecessary to correct light quantity) with subtract a2 from L2 (having L2−a2) on the X-axis, that is, an attenuation direction waveform is created for the signal R (the output of CCD 7R) and signal B (the output of the CCD 7B), by using trigonometric functions.
The (L2−a2) is expressed as follows by using the “Size (0-63)” that is a parameter to control a correction area, according to the ROM table indicated by [6-3] in
[“L2−a2” after the correction]=(L2−a2)−(b2−a2)×(64−Size)/64.
As for the [“L2−a2” after the correction<0], all are clipped to [0] by the clipping module [6-2], and are input to the ROM table indicated by [6-3] in the same drawing.
The ROM table corresponds to an area (a shaded area in
A maximum correction rate (a maximum value of correction magnification in
The correction values (attenuation waveform and amplification waveform) are multiplied and added in the “Gain (0-63)” calculated by gain calculate module [6-5] in
The output value is multiplied by the above-described “Position (−32 to 31) or any one in the range of ±32”, as a parameter to adjust a correction area in left and right screens.
The “Position (−32 to 31)” is substantially equivalent to simultaneous correction of “Gain (0 to 63)” and “Size (0 to 63), independent of the left and right screens, and can be regarded as a parameter to correct deviation of the lens optical axis in the horizontal direction at the central part of a screen.
The correction value calculated as described above is used as a correction value for ambient light quantity shading.
In actual processing, a black level value corresponding to “Black”, which it is usually unnecessary to correct, is subtracted for the signals R and B, the difference is multiplied by the correction value for ambient light quantity shading obtained in the above-described process, and the black level value is added to the product, thereby providing final corrected signals R and B.
As described above, an ambient light quantity shading correction system having a parameter correction area and a correction value can be obtained (The above description means a procedure of designing the ambient light quantity shading correction module 11b).
In the above description, the parameters defined as “Size (0-63), “Gain (0-63)”, “Position (−32-31), and maximum correction rate ±80% are just examples, and may be changed to other appropriate values.
As explained herein, by using one of the embodiments of the invention, when the influence of ambient light quantity shading is corrected, exact correction (regional correction) is possible regardless of shading levels. Overcorrection can also be prevented. Namely, in this shading correction method, an ambient light quantity shading image area is considered to be a circle specific to a lens, correction is made based on the distance from a center image (the center of an image) (i.e., a circle), and shading correction is possible without causing differences in color components (unevenness in color). Particularly, in an area where the distance from the center of a screen is farther than a certain distance, when the decrease levels of R, G and B are not even, unevenness in color at the four corners with respect to the center of a screen can be prevented. Overcorrection can also be prevented. Further, the memory capacity to store a correction value can be decreased.
Besides, as it is unnecessary to store a light quantity distribution around a lens, an interchangeable C-mount lens can be used, and the memory capacity to store a correction value can be decreased. Namely, it is unnecessary to adjust a correction value each time a lens is changed, and it is unnecessary to store a correction value for each lens.
Further, in this method, a correction area can be adjusted by controlling the size of a circle from the central part of a screen, and overcorrection can be prevented in an area where correction is unnecessary 1% in case of 2× recording, and it was 6.2% in case of 3× recording.
Therefore, in an imaging apparatus using a triple-CCD imaging apparatus, it is possible to realize an imaging apparatus and an imaging method with ease and low cost, which can easily correct the influence of different decrease levels of signal for each color component as the quantity of ambient light is decreased.
While certain embodiments of the inventions have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions. Indeed, the novel methods and systems described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the methods and systems described herein may be made without departing from the spirit of the inventions. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the inventions.
Number | Date | Country | Kind |
---|---|---|---|
2008-222296 | Aug 2008 | JP | national |