Method and apparatus for improved channel maintenance signaling

Abstract
Various embodiments are described to address the need for channel maintenance/channel quality signaling that can better utilize reverse link capacity and conserve battery life. Generally expressed, a remote unit (101) enters (403) a high-rate-channel-maintenance mode in which it transmits channel maintenance signaling. When a low-rate condition is met (405), the remote unit enters (407) a low-rate-channel-maintenance mode in which it transmits channel maintenance signaling at either a lower rate or a lower transmit power than when in the high-rate-channel-maintenance mode. Then when a high-rate condition is met (409), the remote unit reenters the high-rate-channel-maintenance mode.
Description
FIELD OF THE INVENTION

The present invention relates generally to wireless communication systems and, in particular, to an apparatus and method for improved channel quality reporting.


BACKGROUND OF THE INVENTION

In existing wireless access technologies such as IEEE 802.16, High Speed Downlink Packet Access (HSDPA), and High Rate Packet Data (HRPD), also known as 1xEV-DO or IS-856, the reverse link transmission of channel quality indications, for example, consume a substantial amount of the available reverse link capacity. In addition, the transmission of CQI (Channel Quality Indicator), DRC (Data Rate Control), and an HS-DPCCH (High Speed Downlink Packet Control Channel), in respective 802.16, HRPD, and HSDPA systems reduces remote unit battery life.


Existing technology addresses these issues by using explicit access network (AN) signaling to toggle remote unit CQI/DRC transmissions. Thus, the AN can thereby enable the remote units to stop transmitting channel quality information when the AN does not need the information. For example, a remote unit may be in a CQI/DRC gating mode in which channel quality information is transmitted on the reverse link in periodic bursts. The AN may signal the remote unit to transition to a CQI/DRC DTX (discontinuous transmission) mode in which the transmission of channel quality information is suspended. Then, when the channel quality information is needed again, the AN signals the remote unit to return to CQI/DRC gating mode. However, such AN signaling to control the remote unit transmit mode also creates additional overhead signaling that itself can become burdensome. This signaling can also create delays by requiring the AN to first signal the remote unit to resume CQI/DRC transmission before the AN proceeds to transmit data to the remote unit.


Therefore, a need exists for an improved apparatus and method for channel maintenance/quality signaling that can better utilize reverse link capacity and conserve battery life.




BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a block diagram depiction of a wireless communication system in accordance with multiple embodiments of the present invention.



FIG. 2 is a block diagram depiction of exemplary signaling timelines that compare prior art signaling with signaling in accordance with multiple embodiments of the present invention.



FIGS. 3A-3G, considered together (hereinafter “FIG. 3”), form a series of exemplary signaling timelines that depict channel maintenance signaling in which different conditions are used to enter a low-rate-channel-maintenance mode, in accordance with multiple embodiments of the present invention.



FIG. 4 is a logic flow diagram of functionality performed by a remote unit in accordance with multiple embodiments of the present invention.



FIG. 5 is a logic flow diagram of functionality performed by an access network (AN) in accordance with multiple embodiments of the present invention.




Specific embodiments of the present invention are disclosed below with reference to FIGS. 1-5. Both the description and the illustrations have been drafted with the intent to enhance understanding. For example, the dimensions of some of the figure elements may be exaggerated relative to other elements, and well-known elements that are beneficial or even necessary to a commercially successful implementation may not be depicted so that a less obstructed and a more clear presentation of embodiments may be achieved. Simplicity and clarity in both illustration and description are sought to effectively enable a person of skill in the art to make, use, and best practice the present invention in view of what is already known in the art. One of skill in the art will appreciate that various modifications and changes may be made to the specific embodiments described below without departing from the spirit and scope of the present invention. Thus, the specification and drawings are to be regarded as illustrative and exemplary rather than restrictive or all-encompassing, and all such modifications to the specific embodiments described below are intended to be included within the scope of the present invention.


DETAILED DESCRIPTION OF THE EMBODIMENTS

Various embodiments are described to address the need for channel maintenance/channel quality signaling that can better utilize reverse link capacity and conserve battery life. Generally expressed, a remote unit enters a high-rate-channel-maintenance mode in which it transmits channel maintenance signaling. When a low-rate condition is met, the remote unit enters a low-rate-channel-maintenance mode in which it transmits channel maintenance signaling at either a lower rate or a lower transmit power than when in the high-rate-channel-maintenance mode. Then when a high-rate condition is met, the remote unit reenters the high-rate-channel-maintenance mode.


The disclosed embodiments can be more fully understood with reference to FIGS. 1-5. FIG. 1 is a block diagram depiction of a wireless communication system 100 in accordance with multiple embodiments of the present invention. At present, standards bodies such as OMA (Open Mobile Alliance), 3GPP (3rd Generation Partnership Project), 3GPP2 (3rd Generation Partnership Project 2) and IEEE (Institute of Electrical and Electronics Engineers) 802 are developing standards specifications for wireless telecommunications systems. (These groups may be contacted via http://www.openmobilealliance.com, http://www.3gpp.org/, http://www.3gpp2.com/ and http://www.ieee802.org/, respectively.) Communication system 100 represents a system having an access network that may be based on different wireless technologies. For example, the description that follows will assume that AN 121 is IEEE 802.XX-based, employing wireless technologies such as IEEE's 802.11, 802.16, or 802.20. Being 802.XX-based, AN 121 is additionally modified to implement embodiments of the present invention.


However, alternative embodiments of the present invention may be implemented in communication systems that employ other or additional technologies such as, but not limited to, those described in the 3GPP2 specifications (e.g., CDMA 2000 or High Rate Packet Data (HRPD), which is also known as 1xEV-DO), those described in the 3GPP specifications (e.g., GSM, GPRS, EDGE, W-CDMA, UTRAN, FOMA, UMTS, HSDPA, and HSUPA), those described in the IS-95 (CDMA) specification, 1xEV-DV technologies, and integrated dispatch enhanced network technologies.


More specifically, communication system 100 comprises remote unit 101, access network (AN) 121, and packet network 151. Those skilled in the art will recognize that FIG. 1 does not depict all of the network equipment necessary for system 100 to operate but only those system components and logical entities particularly relevant to the description of embodiments herein. For example, ANs are known to comprise one or more devices such as WLAN (wireless local area network) stations (which include access points (APs), AP controllers/switches, and/or WLAN switches), base transceiver stations (BTSs), base site controllers (BSCs) (which include selection and distribution units (SDUs)), packet control functions (PCFs), packet control units (PCUs), and/or radio network controllers (RNCs). However, none of these devices are specifically shown in FIG. 1.


Instead, AN 121 is depicted in FIG. 1 as comprising processing unit 125, network interface 127, and transceiver 123. In general, components such as processing units, network interfaces, and transceivers are well-known. For example, AN processing units are known to comprise basic components such as, but not limited to, microprocessors, microcontrollers, memory devices, application-specific integrated circuits (ASICs), and/or logic circuitry. Such components are typically adapted to implement algorithms and/or protocols that have been expressed using high-level design languages or descriptions, expressed using computer instructions, expressed using messaging flow diagrams, and/or expressed using logic flow diagrams.


Thus, given an algorithm, a logic flow, a messaging/signaling flow, and/or a protocol specification, those skilled in the art are aware of the many design and development techniques available to implement an AN processing unit that performs the given logic. Therefore, AN 121 represents a known AN that has been adapted, in accordance with the description herein, to implement multiple embodiments of the present invention. Furthermore, those skilled in the art will recognize that aspects of the present invention may be implemented in and across various physical components and none are necessarily limited to single platform implementations. For example, the AN aspect of the present invention may be implemented in any of the AN devices listed above or distributed across such components.


AN 121 uses wireless interfaces 111 and 113 for communication with remote unit 101. Since, for the purpose of illustration, AN 121 is IEEE 802.XX-based, wireless interfaces 111 and 113 correspond to a forward link and a reverse link, respectively, each link comprising a group of IEEE 802.XX-based channels suitably modified to implement embodiments of the present invention.


Remote unit platforms are known to refer to a wide variety of consumer electronic platforms such as, but not limited to, mobile stations (MSs), mobile nodes (MNs), access terminals (ATs), terminal equipment, gaming devices, personal computers, and personal digital assistants (PDAs). In particular, remote unit 101 comprises processing unit 102, transceiver 103, a keypad (not shown), a speaker (not shown), a microphone (not shown), and a display (not shown). Processing units, transceivers, keypads, speakers, microphones, and displays as used in remote units are all well-known in the art.


For example, remote unit processing units are known to comprise basic components such as, but not limited to, microprocessors, digital signal processors (DSPs), microcontrollers, memory devices, application-specific integrated circuits (ASICs), and/or logic circuitry. Such remote unit components are typically adapted to implement algorithms and/or protocols that have been expressed using high-level design languages or descriptions, expressed using computer instructions, expressed using messaging/signaling flow diagrams, and/or expressed using logic flow diagrams. Thus, given an algorithm, a logic flow, a messaging/signaling flow, a call flow, and/or a protocol specification, those skilled in the art are aware of the many design and development techniques available to implement user equipment that performs the given logic. Therefore, remote unit 101 represents a known remote unit that has been adapted, in accordance with the description herein, to implement embodiments of the present invention.


A discussion of certain embodiments in greater detail follows first with reference to FIG. 2. FIG. 2 is a block diagram depiction of exemplary signaling timelines that compare prior art signaling with signaling in accordance with multiple embodiments of the present invention. Prior art techniques for providing channel quality feedback, such as CQI or DRC (data rate control) signaling, via the reverse link are not optimized for uplink-transfer-only situations. Such uplink-only transmission intervals often occur when providing services such as PTT (push-to-talk)/dispatch half duplex calling, for example. A PTT application on a remote unit is aware that it is very unlikely to receive any packets on the forward link for a sustained interval while it is the PTT speaker. In this case, the remote unit would prefer to use channel quality feedback DTX (discontinuous transmission) mode in order to conserve battery life and reduce reverse link interference.


However, it is possible that an unexpected packet will arrive at the infrastructure for transmission to the remote unit via the forward link during this PTT speaker interval. In order to address this possibility, the remote unit and infrastructure should agree upon and use a policy whereby the remote unit will periodically switch to a channel quality feedback gating mode, in which CQI/DRC gated transmission occurs, for a fixed interval of time. In between these intervals the remote unit will use the channel quality feedback DTX mode. If any unexpected packets show up during this substantially uplink-transfer-only interval then the infrastructure can queue the packets until the target remote unit's next agreed-upon channel quality feedback gating mode interval. This operation is depicted in signaling timeline 200. In addition, if the remote unit does begin receiving packets, the remote unit can then be instructed to resume its more continuous gated CQI/DRC transmission.


In addition, prior art techniques for channel quality feedback gating are also not optimized for remote units that are receiving a streaming service. During such streaming services, the infrastructure will occasionally receive a packet destined for the remote unit. Current, standardized channel quality feedback policies require an explicit message when switching between channel quality feedback gating and channel quality feedback DTX modes. An inordinate number of prior art messages would thus be required to toggle the channel quality feedback gating mode before and after each streamed packet. Therefore, the system is unable to fully exploit all the intervals in which the remote unit could otherwise use channel quality feedback DTX mode.


To address this problem, certain embodiments of the present invention provide a single message instructing the remote unit to periodically switch to channel quality feedback gating mode for a predefined interval and to use channel quality feedback DTX mode in between these predefined intervals. In addition, the gated transmission interval can be defined as ending after the remote unit fails to receive any forward traffic channel packets for a given period of time. In this way, the channel quality feedback gating mode can extend longer as needed but without requiring a specific message to change the channel quality feedback mode for each packet. Some of these embodiments are depicted in signaling timeline 250.


More generally, many embodiments of the present invention may be considered with reference to FIGS. 3 and 4. FIG. 4 is a logic flow diagram of functionality performed by a remote unit in accordance with multiple embodiments of the present invention. Logic flow 400 begins (401) when the remote unit enters (403) a high-rate-channel-maintenance mode in which the remote unit transmits channel maintenance signaling. The channel maintenance signaling referred to may include one or more types of signaling such as channel quality indication (CQI) signaling, power control signaling, reverse dedicated pilot signaling, forward dedicated pilot signaling, and ACK/NACK signaling.


The remote unit remains in the high-rate-channel-maintenance mode until a low-rate condition is satisfied (405). The remote unit then enters (407) a low-rate-channel-maintenance mode in which the remote unit transmits the channel maintenance signaling at either a lower rate or a lower transmit power as compared to its channel maintenance signaling when in the high-rate-channel-maintenance mode. For example, if the channel maintenance signaling includes power control, then the remote unit may send the power control bits at a lower rate while in the low-rate-channel-maintenance mode than when it was previously in the high-rate-channel-maintenance mode. Likewise, for the case where the channel maintenance signaling includes channel quality indication signaling (such as DRC), the remote unit may send the channel quality indications at a lower rate than when the remote unit was in the high-rate-channel-maintenance mode.


The transmission of channel maintenance signaling at a lower rate may even include suspending the channel maintenance signaling altogether. In one example, both the channel quality indication signaling and the reverse dedicated pilot may be suspended in the low-rate-channel-maintenance mode. In another example, when the remote unit enters the low-rate-channel-maintenance mode, transmission of the reverse dedicated pilot is unchanged while the channel quality indication signaling is suspended.


The low-rate condition that triggers the remote unit to enter the low-rate-channel-maintenance mode can be one (or a combination) of many different conditions depending on the particular service being supported or the embodiment implemented. Thus, the low-rate condition may be satisfied by any one of a number of component conditions being satisfied or alternatively by all of a combination of component conditions being satisfied. FIG. 3 includes a series of exemplary signaling timelines that depict channel maintenance signaling in which different conditions are used to enter a low-rate-channel-maintenance mode, in accordance with multiple embodiments of the present invention. For example, signaling timeline 300 depicts CQI signaling by the remote unit in the high-rate-channel-maintenance mode for a period d. As depicted, transmission of the CQI signaling occurs in a gated fashion (having a period p) rather than in a continuous transmit fashion.


Signaling timeline 310 depicts CQI signaling in which the low-rate condition requires a pre-established period of time B to elapse after the remote unit last entered the high-rate-channel-maintenance mode. Signaling timeline 320 depicts CQI signaling in which the low-rate condition requires a pre-established period of time to elapse after link activity completes on a forward link associated with the channel maintenance signaling. Signaling timeline 330 depicts CQI signaling in which the low-rate condition requires a pre-established number of packets (one packet, e.g.) to first be received via the forward link. Signaling timeline 340 depicts CQI signaling in which the low-rate condition requires a pre-established number of bytes (500 bytes, e.g.) to first be received via the forward link. Similar to the examples depicted in timelines 330 and 340, but not additionally depicted, are the cases in which the low-rate condition requires a pre-established number of packets or bytes to first be successfully transmitted via a reverse link. Signaling timeline 350 depicts CQI signaling in which the low-rate condition requires a cumulative number of packets or bytes to first be received via the forward link that total the sum of a pre-established number (one packet, e.g.) for each high-rate initiation point that has passed. Finally, signaling timeline 360 depicts CQI signaling in which the low-rate condition requires a non-cumulative, pre-established number (one packet, e.g.) to first be received via the forward link after any high-rate initiation point.


Thus, the remote unit remains in the high-rate-channel-maintenance mode until a low-rate condition such as one or more of the conditions described above is satisfied (405). The remote unit then enters (407) the low-rate-channel-maintenance mode in which the remote unit transmits the channel maintenance signaling at either a lower rate or a lower transmit power as compared to its channel maintenance signaling when in the high-rate-channel-maintenance mode.


The remote unit remains in the low-rate-channel-maintenance mode until a high-rate condition is satisfied (409). When it is, the remote unit reenters (403) the high-rate-channel-maintenance mode from the low-rate-channel-maintenance mode. The high-rate condition that triggers the remote unit to reenter the high-rate-channel-maintenance mode can be one (or a combination) of many different conditions depending on the particular service being supported or the embodiment implemented. Thus, the high-rate condition may be satisfied by any one of a number of component conditions being satisfied or alternatively by all of a combination of component conditions being satisfied.


For example, the exemplary signaling timelines of FIG. 3 depict channel maintenance signaling in which the high-rate condition requires the time remaining until a next periodic, high-rate initiation point after the remote unit enters the low-rate-channel-maintenance mode to elapse. In other words the arrival of the next periodic initiation point satisfies the condition for reentering the high-rate-channel-maintenance mode. Another high-rate condition may require the remote unit to receive a request from the AN to reenter before reentering the high-rate-channel-maintenance mode. Yet another high-rate condition may be satisfied when the remote unit detects that handoff conditions are present for the remote unit. Finally, another high-rate condition may be satisfied when the remote unit begins receiving data via a forward link associated with the channel maintenance signaling.


In view of the more general description above, operation of certain specific embodiments will be described below with reference first to FIG. 1. In embodiments in which the network sets the channel maintenance signaling policy for the remote unit, the AN may transmit a policy establishment message to the remote unit that includes parameters that define how the different signaling modes should be used. For example, AN processing unit 125 sends an indication to remote unit 101, via transceiver 123 and wireless interface 111, that remote unit 101 should transition from a high-rate-channel-maintenance mode to a low-rate-channel-maintenance mode when a low-rate condition is met and that remote unit 101 should transition from the low-rate-channel-maintenance mode to the high-rate-channel-maintenance mode when a high-rate condition is met.


This low-rate-channel-maintenance mode differs from the high-rate-channel-maintenance mode in that remote unit 101 is to transmit channel maintenance signaling at either a lower rate or a lower transmit power than when remote unit 101 is in the high-rate-channel-maintenance mode. Again, the channel maintenance signaling may include signaling of one or more of the following signaling types: channel quality indication (CQI) signaling, power control signaling, reverse dedicated pilot signaling, forward dedicated pilot signaling, and ACK/NACK signaling.


In addition, the indication from AN processing unit 125 may also indicate certain configuration information to more explicitly define the signaling mode policy being established. For example, the low-rate and/or high-rate condition that remote unit 101 should use to switch between modes may be indicated. This could simply be an indication that remote unit 101 should periodically reenter the high-rate-channel-maintenance mode when in the low-rate-channel-maintenance mode. Also, the indication could specify the period of time between such high-rate initiation points. Thus, many different combinations exist for which information is explicitly conveyed verses which information is pre-defined, pre-configured, implied, separately negotiated, etc. between remote unit 101 and AN 121.


Remote unit processing unit 102 receives the indication from AN 121 via transceiver 103 and may respond by simply acknowledging the channel maintenance signaling policy indicated or may respond by indicating configuration information itself, possibly as part of a negotiation process with AN 121. In accordance with the established channel maintenance signaling policy, remote unit processing unit 102 enters the high-rate-channel-maintenance mode in which channel maintenance signaling is transmitted via transceiver 103. In some embodiments or in some configurations, processing unit 102 sends an indication to AN processing unit 125, via transceivers 103 and 123, that it is entering the high-rate-channel-maintenance mode.


Then when the low-rate condition is satisfied, processing unit 102 enters the low-rate-channel-maintenance mode in which channel maintenance signaling is transmitted via transceiver 103 at either a lower rate or a lower transmit power than when in the high-rate-channel-maintenance mode. Again, in some embodiments or in some configurations, processing unit 102 will send an indication to AN processing unit 125, via transceivers 103 and 123, that it is entering the low-rate-channel-maintenance mode. Then when the high-rate condition is satisfied, processing unit 102 reenters the high-rate-channel-maintenance mode. The high-rate condition that triggers this mode switch may include, whether indicated by AN 121 or not, a situation in which processing unit 102, via transceiver 103, detects that handoff conditions are present and/or it begins receiving data via a forward link of wireless interface 111.



FIG. 5 is a logic flow diagram of functionality performed by an AN in accordance with multiple embodiments of the present invention. Logic flow 500 begins (501) with the AN sending (503) an indication to a remote unit that the remote unit should transition from a high-rate-channel-maintenance mode to a low-rate-channel-maintenance mode when a low-rate condition is met and that the remote unit should transition from the low-rate-channel-maintenance mode to the high-rate-channel-maintenance mode when a high-rate condition is met. The discussion above with respect to FIG. 1 provides an example of this AN operation.


In some embodiments, the AN may also allocate (505) the link resource used by the remote unit while in the high-rate-channel-maintenance mode to another remote unit for at least a portion of the interval in which the remote unit is expected to be in the low-rate-channel-maintenance mode. In this way, the AN can attempt to utilize the link resources freed by the mode switching techniques described herein. In addition, the low-rate and high-rate conditions may be established/configured to facilitate the allocation of freed link resources. For example, the high-rate condition may be configured in order to provide a predictable interval during which another remote unit can be assigned the link resource. Thus, in addition to transmitting a policy establishment message/indication to remote unit 101 to convey how the signaling modes should be used, AN processing unit 125 may also transmit, to another remote unit (not shown) via transceiver 123, a link assignment message that assigns a link resource for a periodically reoccurring interval of time, thereby enabling the reverse link resource to be shared by a plurality of remote units.


In some embodiments, when the AN receives (507) data for the remote unit while the remote unit is in the low-rate-channel-maintenance mode, the AN buffers (509) the data until the remote unit is expected to reenter the high-rate-channel-maintenance mode. The AN, then either anticipating that the remote unit is reentering the high-rate-channel-maintenance mode (perhaps as scheduled) or receiving some indication that it has already reentered the mode, transmits the data to the remote unit and logic flow 500 ends (511).


Thus, in system 100 for example, AN processing unit 125 would receive data from packet network 151 via network interface 127 for remote unit 101. If remote unit 101 is in the low-rate-channel-maintenance mode, AN processing unit 125 would buffer the data until AN processing unit 125 expects remote unit 101 to reenter the high-rate-channel-maintenance mode. In this way, AN 121 can then transmit the data with the support of better channel maintenance signaling from remote unit 101.


Various embodiments have been discussed that illustrate some of the different ways a remote unit and AN can establish a channel maintenance signaling policy. Detailed message definitions for some IEEE 802.16-based embodiments follow. These message definitions provide some very specific examples of how a channel maintenance signaling policy may be established in an IEEE 802.16-based system. Section number references to the present IEEE 802.16 base-lined standard are provided to indicate which portions of the standard are being updated.


8.4.5.4.15 CQICH Enhanced Allocation IE format


Replace Table 302a with

TABLE 302aCQICH Enhanced allocation IE formatSizeSyntax(bits)NotesCQICH_Enhanced_Alloc_IE( ) {0x09Extended UIUC4Length4Length in bytes of following fieldsCQICH_IDvariableIndex to uniquely identify the CQICHresource assigned to the MSCQICH_MODE3000 = Standard Periodic001 = Dual Periodic010 = Inactivity Based011 = Packet Count Based100 = Byte Count Based101-111 - Reserved for futureIf (CQICH_MODE==000) {Standard PeriodicPeriod (=p)3A CQI feedback is transmitted on theCQICH every 2{circumflex over ( )}p framesFrame offset3The MS starts reporting at the frameof which the number has the same 3LSB as the specified frame offset. Ifthe current frame is specified, the MSshould start reporting in 8 framesDuration (=d)3A CQI feedback is transmitted on theCQI channels indexed by theCQICH_ID for 10 × 2{circumflex over ( )}d frames. Ifd== 000, the CQICH is deallocated. Ifd == 111, the MS should report untilthe BS command for the MS to stop.}If (CQICH_MODE==001) {Dual PeriodicPeriod During Gating Mode On3A CQI feedback is transmitted on the(=p)CQICH every 2{circumflex over ( )}p frames while gatingmode onCQI Feedback Duration during3While in Gating Mode on, A CQIGating Mode On Duration afterfeedback is transmitted on the CQIinitiation point (=B)channels indexed by the CQICH_IDfor (B+1) × 2{circumflex over ( )}p frames.Frame offset3The MS starts reporting at the frameof which the number has the same 3LSB as the specified frame offset. Ifthe current frame is specified, the MSshould start reporting in 8 framesPeriod between gating Mode on3This is the number of Frames betweeninitiation points (=D)the Initiation Points (instants whenMSS and infrastructure must enterGating Mode On).This is measured in frames - theperiod is 2{circumflex over ( )}p × (B+1) × 2{circumflex over ( )}(D+1).Gating Mode Duration (=d)3This is the duration for which thegating mode is considered on - If d== 000,the CQICH is deallocated. If d == 111,the MS should report until theBS command for the MS to stop, elsethe duration is 2{circumflex over ( )}p × (B+1) × 2{circumflex over ( )}(D+1) × 2{circumflex over ( )}(d+1).}If (CQICH_MODE==010) {Inactivity BasedPeriod During Gating Mode On3A CQI feedback is transmitted on the(=p)CQICH every 2{circumflex over ( )}p frames while gatingmode onInactivity Duration during Gating3While in Gating Mode on, if there isMode On Duration (=B)no activity for 2{circumflex over ( )}p × (B+1) frames,then the CQICH is not transmitted tillthe next Gating Mode initiationperiod.Frame offset3The MS starts reporting at the frameof which the number has the same 3LSB as the specified frame offset. Ifthe current frame is specified, the MSshould start reporting in 8 framesPeriod between gating Mode on3This is the number of Frames betweeninitiation points (=D)the Initiation Points (instants whenMSS and infrastructure must enterGating Mode On).This is measured in frames - theperiod is 2{circumflex over ( )}p × 2{circumflex over ( )}(D+1).Gating Mode Duration (=d)3This is the duration for which thegating mode is considered on - If d== 000,the CQICH is deallocated. If d == 111,the MS should report until theBS command for the MS to stop, elsethe duration is 2{circumflex over ( )}p × 2{circumflex over ( )}(D+1) × 2{circumflex over ( )}(d+1).}If (CQICH_MODE==011) {Packet Count basedPeriod During Gating Mode On3A CQI feedback is transmitted on the(=p)CQICH every 2{circumflex over ( )}p frames while gatingmode onPacket Count during Gating Mode5A CQI feedback is transmitted on theOn (=B)CQICH periodically (with period p)until B packets are received or thedurations D and/or d elapse.Frame offset3The MS starts reporting at the frameof which the number has the same 3LSB as the specified frame offset. Ifthe current frame is specified, the MSshould start reporting in 8 framesPeriod between gating Mode on5This is the number of Frames betweeninitiation points (=D)the Initiation Points (instants whenMSS and infrastructure must enterGating Mode On).This is measured in frames - theperiod is 2{circumflex over ( )}p × 2{circumflex over ( )}(D+1) frames.Gating Mode Duration (=d)3This is the duration for which thegating mode is considered on - If d== 000,the CQICH is deallocated. If d == 111,the MS should report until theBS command for the MS to stop, elsethe duration is 2{circumflex over ( )}p × 2{circumflex over ( )}(D+1) × 2{circumflex over ( )}d.Cumulative Mode1Cumulative setting. This parameter isrelevant in the case where the requirednumber of packets is not receivedbefore the end of the Gating ModePeriod.In this case, if cumulative is equal totrue, then the MSS does not enterChannel quality feedback DTX modeuntil it receives the packets not yetreceived from the prior Gating ModePeriod(s) in addition to the packets forthis current Gating Mode Period.In this case, if cumulative is equal tofalse, then the MSS enters Channelquality feedback DTX mode as soonas it receives the packets for thecurrent Gating Mode Period. In otherwords, it ignores any packets whichwere not received during prior GatingMode Period(s).}If (CQICH_MODE==100) {Byte Count basedPacket Size Indicator (=P)310*2{circumflex over ( )}P bytes constitute a packetPeriod During Gating Mode On3A CQI feedback is transmitted on the(=p)CQICH every 2{circumflex over ( )}p frames while gatingmode onPacket Count during Gating Mode5A CQI feedback is transmitted on theOn (=B)CQICH periodically (with period p)until B packets are received or thedurations D and/or d elapse.Frame offset3The MS starts reporting at the frameof which the number has the same 3LSB as the specified frame offset. Ifthe current frame is specified, the MSshould start reporting in 8 framesPeriod between gating Mode on5This is the number of Frames betweeninitiation points (=D)the Initiation Points (instants whenMSS and infrastructure must enterGating Mode On).This is measured in frames - theperiod is 2{circumflex over ( )}p × 2{circumflex over ( )}(D+1).Gating Mode Duration (=d)3This is the duration for which thegating mode is considered on - If d== 000,the CQICH is deallocated. If d == 111,the MS should report until theBS command for the MS to stop, elsethe duration is 2{circumflex over ( )}p × 2{circumflex over ( )}(D+1) × 2{circumflex over ( )}d.Cumulative Mode1Cumulative setting. This parameter isrelevant in the case where the requirenumber of packets is not receivedbefore the end of the Gating ModePeriod.In this case, if cumulative is equal totrue, then the MSS does not enterChannel quality feedback DTX modeuntil it receives the packets not yetreceived from the prior Gating ModePeriod(s) in addition to the packets forthis current Gating Mode Period.In this case, if cumulative is equal tofalse, then the MSS enters Channelquality feedback DTX mode as soonas it receives the packets for thecurrent Gating Mode Period. In otherwords, it ignores any packets whichwere not received during prior GatingMode Period(s).}CQICH_Num4Number of CQICHs assigned to thisCQICH_ID is (CQICH_Num +1)For (i=0;i<CQICH_Num+1;i++) {Feedback Type3000 = Fast DL measurement/DefaultFeedback with antenna grouping001 = Fast DL measurement/DefaultFeedback with antenna selection010 = Fast DL measurement/DefaultFeedback with reduced code book011 = Quantized pre-coding weightfeedback 100 = Index to pre-codingmatrix in codebook 101 = ChannelMatrix Information101 = Per stream power control110˜111 ReservedAllocation index6Index to the Fast-feedback channelregion marked by UIUC = 0CQICH Type200 = 6 bit CQI,01 = DIUC-CQI,10 = 3 bit CQI (even),11 = 3 bit CQI(odd) }Band_AMC_Precoding_Mode10 = One common precoder for allbands.1 = Distinct precoders for the bandswith the highest S/N values, up to thenumber of short term precoders fedback as specified byNr_Precoders_feedback 3 Nr ofprecoders feedback = NIf (Band_AMC_Precoding_Mode3Nr of precoders feedback = N=1) {  Nr_Precoders_feedback (=N) }PaddingvariableThe padding bits are used to ensurethe IE size is integer number of bytes.}


6.3.2.3.43.5 CQICH Control IE


Note that the attached message is actually a subset of the entire current message—only depicting the sections which have changed.


Change Table 95 as follows:

TABLE 95CQICH_Control IE formatSyntaxSize(bits)NotesCQICH_Control_IE( ) {CQICH Indicator1If the indicator is set to1, the CQICH_ControlIE follows.if (CQICH indicator == 1) {Allocation Index6Index to the channel ina frame the CQI reportshould be transmittedby the MS.CQICH_MODE3000 = StandardPeriodic001 = Dual Periodic010 = Inactivity Based011 = Packet CountBased100 = Byte CountBased101-111 - Reservedfor futureIf (CQICH_MODE==000) {Standard PeriodicPeriod (p)2A CQI feedback istransmitted on theCQI channels indexedby the (CQI ChannelIndex) by the MS inevery 2p frames.Frame offset3The MS startsreporting at the frameof which the numberhas the same 3 LSB asthe specified frameoffset. If the currentframe is specified, theMS should startreporting in 8 frames.Duration (d)4A CQI feedback istransmitted on theCQI channels indexedby the (CQI ChannelIndex) by the MS for2(dI) frames. If d is0b1111, the MSshould report until theBS commands the MSto stop.}If (CQICH_MODE==001) {Dual PeriodicPeriod During Gating Mode On (=p)3A CQI feedback istransmitted on theCQICH every 2{circumflex over ( )}pframes while gatingmode onCQI Feedback Duration during3While in Gating ModeGating Mode On Duration afteron, A CQI feedback isinitiation point (=B)transmitted on the CQIchannels indexed bythe CQICH_ID for(B+1) × 2{circumflex over ( )}p frames.Frame offset3The MS startsreporting at the frameof which the numberhas the same 3 LSB asthe specified frameoffset. If the currentframe is specified, theMS should startreporting in 8 framesPeriod between gating Mode on3This is the number ofinitiation points (=D)Frames between theInitiation Points(instants when MSSand infrastructure mustenter Gating ModeOn).This is measured inframes - the period is2{circumflex over ( )}p × (B+1) × 2{circumflex over ( )}(D+1).Gating Mode Duration (=d)3This is the duration forwhich the gating modeis considered on - Ifd== 000, the CQICHis deallocated. If d == 111,the MS shouldreport until the BScommand for the MSto stop, else theduration is 2{circumflex over ( )}p × (B+1) × 2{circumflex over ( )}(D+1) × 2{circumflex over ( )}(d+1).}If (CQICH_MODE==010) {Inactivity BasedPeriod During Gating Mode On (=p)3A CQI feedback istransmitted on theCQICH every 2{circumflex over ( )}pframes while gatingmode onInactivity Duration during Gating3While in Gating ModeMode On Duration (=B)on, if there is noactivity for 2{circumflex over ( )}p × (B+1)frames, then theCQICH is nottransmitted till thenext Gating Modeinitiation period.Frame offset3The MS startsreporting at the frameof which the numberhas the same 3 LSB asthe specified frameoffset. If the currentframe is specified, theMS should startreporting in 8 framesPeriod between gating Mode on3This is the number ofinitiation points (=D)Frames between theInitiation Points(instants when MSSand infrastructure mustenter Gating ModeOn).This is measured inframes - the period is2{circumflex over ( )}p × 2{circumflex over ( )}(D+1).Gating Mode Duration (=d)3This is the duration forwhich the gating modeis considered on - Ifd== 000, the CQICHis deallocated. If d == 111,the MS shouldreport until the BScommand for the MSto stop, else theduration is 2{circumflex over ( )}p × 2{circumflex over ( )}(D+1) × 2{circumflex over ( )}(d+1).}If (CQICH_MODE==011) {Packet Count basedPeriod During Gating Mode On (=p)3A CQI feedback istransmitted on theCQICH every 2{circumflex over ( )}pframes while gatingmode onPacket Count during Gating Mode On5A CQI feedback is(=B)transmitted on theCQICH periodically(with period p) until Bpackets are received orthe durations D and/ord elapse.Frame offset3The MS startsreporting at the frameof which the numberhas the same 3 LSB asthe specified frameoffset. If the currentframe is specified, theMS should startreporting in 8 framesPeriod between gating Mode on5This is the number ofinitiation points (=D)Frames between theInitiation Points(instants when MSSand infrastructure mustenter Gating ModeOn).This is measured inframes - the period is2{circumflex over ( )}p × 2{circumflex over ( )}(D+1) frames.Gating Mode Duration (=d)3This is the duration forwhich the gating modeis considered on - Ifd== 000, the CQICHis deallocated. If d == 111,the MS shouldreport until the BScommand for the MSto stop, else theduration is 2{circumflex over ( )}p × 2{circumflex over ( )}(D+1) × 2{circumflex over ( )}d.Cumulative Mode1Cumulative setting.This parameter isrelevant in the casewhere the requirednumber of packets isnot received before theend of the GatingMode Period.In this case, ifcumulative is equal totrue, then the MSSdoes not enter Channelquality feedback DTXmode until it receivesthe packets not yetreceived from the priorGating Mode Period(s)in addition to thepackets for this currentGating Mode Period.In this case, ifcumulative is equal tofalse, then the MSSenters Channel qualityfeedback DTX modeas soon as it receivesthe packets for thecurrent Gating ModePeriod. In otherwords, it ignores anypackets which werenot received duringprior Gating ModePeriod(s).}If (CQICH_MODE==100) {Byte Count basedPacket Size Indicator (=P)310*2{circumflex over ( )}P bytesconstitute a packetPeriod During Gating Mode On (=p)3A CQI feedback istransmitted on theCQICH every 2{circumflex over ( )}pframes while gatingmode onPacket Count during Gating Mode On5A CQI feedback is(=B)transmitted on theCQICH periodically(with period p) until Bpackets are received orthe durations D and/ord elapse.Frame offset3The MS startsreporting at the frameof which the numberhas the same 3 LSB asthe specified frameoffset. If the currentframe is specified, theMS should startreporting in 8 framesPeriod between gating Mode on5This is the number ofinitiation points (=D)Frames between theInitiation Points(instants when MSSand infrastructure mustenter Gating ModeOn).This is measured inframes - the period is2{circumflex over ( )}p × 2{circumflex over ( )}(D+1).Gating Mode Duration (=d)3This is the duration forwhich the gating modeis considered on - Ifd== 000, the CQICHis deallocated. If d == 111,the MS shouldreport until the BScommand for the MSto stop, else theduration is 2{circumflex over ( )}p × 2{circumflex over ( )}(D+1) × 2{circumflex over ( )}d.Cumulative Mode1Cumulative setting.This parameter isrelevant in the casewhere the requirenumber of packets isnot received before theend of the GatingMode Period.In this case, ifcumulative is equal totrue, then the MSSdoes not enter Channelquality feedback DTXmode until it receivesthe packets not yetreceived from the priorGating Mode Period(s)in addition to thepackets for this currentGating Mode Period.In this case, ifcumulative is equal tofalse, then the MSSenters Channel qualityfeedback DTX modeas soon as it receivesthe packets for thecurrent Gating ModePeriod. In otherwords, it ignores anypackets which werenot received duringprior Gating ModePeriod(s).}} else {reserved CQI reporting threshold3Shall be set to zero. Athreshold used by anMS to report its CINRusing CQI channel; If0b000, this thresholdis neglected.}}


6.3.2.3.51 BS HO Request (MOB_BSHO-REQ) message

TABLE 108kMOB_BSHO-REQ message formatSyntaxSize(bits)NotesMOB_BSHO-REQ_Message_Format( ) {...CQICH_IDvariableIndex to uniquely identify heCQICH resource assigned to theMS after the MS switched to thenew anchor BS Feedback channeloffset 6 Index to the fast feedbackchannel region of the new AnchorBS marked by UIUC = 0CQICH_MODE3000 = Standard Periodic001 = Dual Periodic010 = Inactivity Based011 = Packet Count Based100 = Byte Count Based101-111 - Reserved for futureIf (CQICH_MODE==000) {Standard PeriodicPeriod (=p)2A CQI feedback is transmitted onthe CQICH every 2p framesFrame offset3The MS starts reporting at the frameof which the number has the same 3LSB as the specified frame offset. Ifthe current frame is specified, theMS should start reporting in 8framesDuration (=d)3A CQI feedback is transmitted onthe CQI channels indexed by theCQICH_ID for 10x2d frames. If d == 0b000,the CQI-CH is deallocated.If d == 0b111, the MSshould report until the BS commandfor the MS to stopMIMO_permutation_feedback_cycle2 0b00 = No MIMO andpermutation mode feedback 0b01 = theMIMO and permutation modeindication shall be transmitted on theCQICH indexed by the CQICH_IDevery 4 frames. The first indicationis sent on the 8th CQICH frame.0b10 = the MIMO mode andpermultation mode indication shallbe transmitted on the CQICHindexed by the CQICH_ID every 8frames. The first indication is senton the 8th CQICH frame. 0b11 = theMIMO mode and permultation modeindication shall be transmitted on theCQICH indexed by the CQICH_IDevery 16 frames. The first indicationis sent on the 16th CQICH frame}If (CQICH_MODE==001) {Dual PeriodicPeriod During Gating Mode3A CQI feedback is transmitted onOn (=p)the CQICH every 2{circumflex over ( )}p frames whilegating mode onCQI Feedback Duration3While in Gating Mode on, A CQIduring Gating Mode Onfeedback is transmitted on the CQIDuration after initiation pointchannels indexed by the CQICH_ID(=B)for (B+1) × 2{circumflex over ( )}p frames.Frame offset3The MS starts reporting at the frameof which the number has the same 3LSB as the specified frame offset. Ifthe current frame is specified, theMS should start reporting in 8framesPeriod between gating Mode3This is the number of Frameson initiation points (=D)between the Initiation Points(instants when MSS andinfrastructure must enter GatingMode On).This is measured in frames - theperiod is 2{circumflex over ( )}p × (B+1) × 2{circumflex over ( )}(D+1).Gating Mode Duration (=d)3This is the duration for which thegating mode is considered on - Ifd== 000, the CQICH is deallocated.If d == 111, the MS should reportuntil the BS command for the MS tostop, else the duration is 2{circumflex over ( )}p × (B+1) × 2{circumflex over ( )}(D+1) × 2{circumflex over ( )}(d+1).}If (CQICH_MODE==010) {Inactivity BasedPeriod During Gating Mode3A CQI feedback is transmitted onOn (=p)the CQICH every 2{circumflex over ( )}p frames whilegating mode onInactivity Duration during3While in Gating Mode on, if there isGating Mode On Durationno activity for 2{circumflex over ( )}p × (B+1) frames,(=B)then the CQICH is not transmittedtill the next Gating Mode initiationperiod.Frame offset3The MS starts reporting at the frameof which the number has the same 3LSB as the specified frame offset. Ifthe current frame is specified, theMS should start reporting in 8framesPeriod between gating Mode3This is the number of Frameson initiation points (=D)between the Initiation Points(instants when MSS andinfrastructure must enter GatingMode On).This is measured in frames - theperiod is 2{circumflex over ( )}p × 2{circumflex over ( )}(D+1).Gating Mode Duration (=d)3This is the duration for which thegating mode is considered on - Ifd== 000, the CQICH is deallocated.If d == 111, the MS should reportuntil the BS command for the MS tostop, else the duration is 2{circumflex over ( )}p × 2{circumflex over ( )}(D+1) × 2{circumflex over ( )}(d+1).}If (CQICH_MODE==011) {Packet Count basedPeriod During Gating Mode3A CQI feedback is transmitted onOn (=p)the CQICH every 2{circumflex over ( )}p frames whilegating mode onPacket Count during Gating5A CQI feedback is transmitted onMode On (=B)the CQICH periodically (with periodp) until B packets are received or thedurations D and/or d elapse.Frame offset3The MS starts reporting at the frameof which the number has the same 3LSB as the specified frame offset. Ifthe current frame is specified, theMS should start reporting in 8framesPeriod between gating Mode5This is the number of Frameson initiation points (=D)between the Initiation Points(instants when MSS andinfrastructure must enter GatingMode On).This is measured in frames - theperiod is 2{circumflex over ( )}p × 2{circumflex over ( )}(D+1) frames.Gating Mode Duration (=d)3This is the duration for which thegating mode is considered on - Ifd== 000, the CQICH is deallocated.If d == 111, the MS should reportuntil the BS command for the MS tostop, else the duration is 2{circumflex over ( )}p × 2{circumflex over ( )}(D+1) × 2{circumflex over ( )}d.Cumulative Mode1Cumulative setting. This parameteris relevant in the case where therequired number of packets is notreceived before the end of theGating Mode Period.In this case, if cumulative is equalto true, then the MSS does not enterChannel quality feedback DTXmode until it receives the packetsnot yet received from the priorGating Mode Period(s) in addition tothe packets for this current GatingMode Period.In this case, if cumulative is equalto false, then the MSS entersChannel quality feedback DTXmode as soon as it receives thepackets for the current Gating ModePeriod. In other words, it ignoresany packets which were not receivedduring prior Gating Mode Period(s).}If (CQICH_MODE==100) {Byte Count basedPacket Size Indicator (=P)310*2{circumflex over ( )}P bytes constitute a packetPeriod During Gating Mode3A CQI feedback is transmitted onOn (=P)the CQICH every 2{circumflex over ( )}p frames whilegating mode onPacket Count during Gating5A CQI feedback is transmitted onMode On (=B)the CQICH periodically (with periodp) until B packets are received or thedurations D and/or d elapse.Frame offset3The MS starts reporting at the frameof which the number has the same 3LSB as the specified frame offset. Ifthe current frame is specified, theMS should start reporting in 8framesPeriod between gating Mode5This is the number of Frameson initiation points (=D)between the Initiation Points(instants when MSS andinfrastructure must enter GatingMode On).This is measured in frames - theperiod is 2{circumflex over ( )}p × 2{circumflex over ( )}(D+1).Gating Mode Duration (=d)3This is the duration for which thegating mode is considered on - Ifd== 000, the CQICH is deallocated.If d == 111, the MS should reportuntil the BS command for the MS tostop, else the duration is 2{circumflex over ( )}p × 2{circumflex over ( )}(D+1) × 2{circumflex over ( )}d.Cumulative Mode1Cumulative setting. This parameteris relevant in the case where therequire number of packets is notreceived before the end of theGating Mode Period.In this case, if cumulative is equalto true, then the MSS does not enterChannel quality feedback DTXmode until it receives the packetsnot yet received from the priorGating Mode Period(s) in addition tothe packets for this current GatingMode Period.In this case, if cumulative is equalto false, then the MSS entersChannel quality feedback DTXmode as soon as it receives thepackets for the current Gating ModePeriod. In other words, it ignoresany packets which were not receivedduring prior Gating Mode Period(s).}}...


6.3.2.3.53 BS HO Response (MOB_BSHO-RSP) message

TABLE 108mMOB_BSHO-RSP message formatSyntaxSize(bits)NotesMOB-_BSHO-RSP_Message_Format( ) {...CQICH_IDvariableIndex to uniquely identify heCQICH resource assigned to theMS after the MS switched to thenew anchor BSFeedback channel offset6Index to the fast feedback channelregion of the new Anchor BSmarked by UIUC=0CQICH_MODE3000 = Standard Periodic001 = Dual Periodic010 = Inactivity Based011 = Packet Count Based100 = Byte Count Based101-111 - Reserved for futureIf (CQICH_MODE==000) {Standard PeriodicPeriod (=p)2A CQI feedback is transmitted onthe CQICH every 2p framesFrame offset3The MS starts reporting at the frameof which the number has the same 3LSB as the specified frame offset. Ifthe current frame is specified, theMS should start reporting in 8framesDuration (=d)3A CQI feedback is transmitted onthe CQI channels indexed by theCQICH_ID for 10 × 2d frames. If d == 0b000,the CQI-CH is deallocated.If d == 0b111, the MSshould report until the BS commandfor the MS to stopMIMO_permutation_feedback_cycle2 0b000 = No MIMO andpermutation mode feedback 0b01 = theMIMO and permutation modeindication shall be transmitted on theCQICH indexed by the CQICH_IDevery 4 frames. The first indicationis sent on the 8th CQICH frame.0b10 = the MIMO mode andpermultation mode indication shallbe transmitted on the CQICHindexed by the CQICH_ID every 8frames. The first indication is senton the 8th CQICH frame. 0b11 = theMIMO mode and permultation modeindication shall be transmitted on theCQICH indexed by the CQICH_IDevery 16 frames. The firstindication is sent on the 16thCQICH frame}If (CQICH_MODE==001) {Dual PeriodicPeriod During Gating Mode3A CQI feedback is transmitted onOn (=p)the CQICH every 2{circumflex over ( )}p frames whilegating mode onCQI Feedback Duration3While in Gating Mode on, A CQIduring Gating Mode Onfeedback is transmitted on the CQIDuration after initiation pointchannels indexed by the CQICH_ID(=B)for (B+1) × 2{circumflex over ( )}p frames.Frame offset3The MS starts reporting at the frameof which the number has the same 3LSB as the specified frame offset. Ifthe current frame is specified, theMS should start reporting in 8framesPeriod between gating Mode3This is the number of Frameson initiation points (=D)between the Initiation Points(instants when MSS andinfrastructure must enter GatingMode On).This is measured in frames - theperiod is 2{circumflex over ( )}p × (B+1) × 2{circumflex over ( )}(D+1).Gating Mode Duration (=d)3This is the duration for which thegating mode is considered on - Ifd== 000, the CQICH is deallocated.If d == 111, the MS should reportuntil the BS command for the MS tostop, else the duration is 2{circumflex over ( )}p × (B+1) × 2{circumflex over ( )}(D+1) × 2{circumflex over ( )}(d+1).}If (CQICH_MODE==010) {Inactivity BasedPeriod During Gating Mode3A CQI feedback is transmitted onOn (=p)the CQICH every 2{circumflex over ( )}p frames whilegating mode onInactivity Duration during3While in Gating Mode on, if there isGating Mode On Durationno activity for 2{circumflex over ( )}p × (B+1) frames,(=B)then the CQICH is not transmittedtill the next Gating Mode initiationperiod.Frame offset3The MS starts reporting at the frameof which the number has the same 3LSB as the specified frame offset. Ifthe current frame is specified, theMS should start reporting in 8framesPeriod between gating Mode3This is the number of Frameson initiation points (=D)between the Initiation Points(instants when MSS andinfrastructure must enter GatingMode On).This is measured in frames - theperiod is 2{circumflex over ( )}p × 2{circumflex over ( )}(D+1).Gating Mode Duration (=d)3This is the duration for which thegating mode is considered on - Ifd== 000, the CQICH is deallocated.If d == 111, the MS should reportuntil the BS command for the MS tostop, else the duration is 2{circumflex over ( )}p × 2{circumflex over ( )}(D+1) × 2{circumflex over ( )}(d+1).}If (CQICH_MODE==011) {Packet Count basedPeriod During Gating Mode3A CQI feedback is transmitted onOn (=p)the CQICH every 2{circumflex over ( )}p frames whilegating mode onPacket Count during Gating5A CQI feedback is transmitted onMode On (=B)the CQICH periodically (with periodp) until B packets are received or thedurations D and/or d elapse.Frame offset3The MS starts reporting at the frameof which the number has the same 3LSB as the specified frame offset. Ifthe current frame is specified, theMS should start reporting in 8framesPeriod between gating Mode5This is the number of Frameson initiation points (=D)between the Initiation Points(instants when MSS andinfrastructure must enter GatingMode On).This is measured in frames - theperiod is 2{circumflex over ( )}p × 2{circumflex over ( )}(D+1) frames.Gating Mode Duration (=d)3This is the duration for which thegating mode is considered on - Ifd== 000, the CQICH is deallocated.If d == 111, the MS should reportuntil the BS command for the MS tostop, else the duration is 2{circumflex over ( )}p × 2{circumflex over ( )}(D+1) × 2{circumflex over ( )}d.Cumulative Mode1Cumulative setting. This parameteris relevant in the case where therequired number of packets is notreceived before the end of theGating Mode Period.In this case, if cumulative is equalto true, then the MSS does not enterChannel quality feedback DTXmode until it receives the packetsnot yet received from the priorGating Mode Period(s) in addition tothe packets for this current GatingMode Period.In this case, if cumulative is equalto false, then the MSS entersChannel quality feedback DTXmode as soon as it receives thepackets for the current Gating ModePeriod. In other words, it ignoresany packets which were not receivedduring prior Gating Mode Period(s).}If (CQICH_MODE==100) {Byte Count basedPacket Size Indicator (=P)310*2{circumflex over ( )}P bytes constitute a packetPeriod During Gating Mode3A CQI feedback is transmitted onOn (=p)the CQICH every 2{circumflex over ( )}p frames whilegating mode onPacket Count during Gating5A CQI feedback is transmitted onMode On (=B)the CQICH periodically (with periodp) until B packets are received or thedurations D and/or d elapse.Frame offset3The MS starts reporting at the frameof which the number has the same 3LSB as the specified frame offset. Ifthe current frame is specified, theMS should start reporting in 8framesPeriod between gating Mode5This is the number of Frameson initiation points (=D)between the Initiation Points(instants when MSS andinfrastructure must enter GatingMode On).This is measured in frames - theperiod is 2{circumflex over ( )}p × 2{circumflex over ( )}(D+1).Gating Mode Duration (=d)3This is the duration for which thegating mode is considered on - Ifd== 000, the CQICH is deallocated.If d == 111, the MS should reportuntil the BS command for the MS tostop, else the duration is 2{circumflex over ( )}p × 2{circumflex over ( )}(D+1) × 2{circumflex over ( )}d.Cumulative Mode1Cumulative setting. This parameteris relevant in the case where therequire number of packets is notreceived before the end of theGating Mode Period.In this case, if cumulative is equalto true, then the MSS does not enterChannel quality feedback DTXmode until it receives the packetsnot yet received from the priorGating Mode Period(s) in addition tothe packets for this current GatingMode Period.In this case, if cumulative is equalto false, then the MSS entersChannel quality feedback DTXmode as soon as it receives thepackets for the current Gating ModePeriod. In other words, it ignoresany packets which were not receivedduring prior Gating Mode Period(s).}}If (CQICH_MODE==001) {Dual PeriodicPeriod During Gating Mode3A CQI feedback is transmitted onOn (=p)the CQICH every 2{circumflex over ( )}p frames whilegating mode onCQI Feedback Duration3While in Gating Mode on, A CQIduring Gating Mode Onfeedback is transmitted on the CQIDuration after initiation pointchannels indexed by the CQICH_ID(=B)for (B+1) × 2{circumflex over ( )}p frames.Frame offset3The MS starts reporting at the frameof which the number has the same 3LSB as the specified frame offset. Ifthe current frame is specified, theMS should start reporting in 8framesPeriod between gating Mode3This is the number of Frameson initiation points (=D)between the Initiation Points(instants when MSS andinfrastructure must enter GatingMode On).This is measured in frames - theperiod is 2{circumflex over ( )}p × (B+1) × 2{circumflex over ( )}(D+1).Gating Mode Duration (=d)3This is the duration for which thegating mode is considered on - Ifd== 000, the CQICH is deallocated.If d == 111, the MS should reportuntil the BS command for the MS tostop, else the duration is 2{circumflex over ( )}p × (B+1) × 2{circumflex over ( )}(D+1) × 2{circumflex over ( )}(d+1).}If (CQICH_MODE==010) {Inactivity BasedPeriod During Gating Mode3A CQI feedback is transmitted onOn (=p)the CQICH every 2{circumflex over ( )}p frames whilegating mode onInactivity Duration during3While in Gating Mode on, if there isGating Mode On Durationno activity for 2{circumflex over ( )}p × (B+1) frames,(=B)then the CQICH is not transmittedtill the next Gating Mode initiationperiod.Frame offset3The MS starts reporting at the frameof which the number has the same 3LSB as the specified frame offset. Ifthe current frame is specified, theMS should start reporting in 8framesPeriod between gating Mode3This is the number of Frameson initiation points (=D)between the Initiation Points(instants when MSS andinfrastructure must enter GatingMode On).This is measured in frames - theperiod is 2{circumflex over ( )}p × 2{circumflex over ( )}(D+1).Gating Mode Duration (=d)3This is the duration for which thegating mode is considered on - Ifd== 000, the CQICH is deallocated.If d == 111, the MS should reportuntil the BS command for the MS tostop, else the duration is 2{circumflex over ( )}p × 2{circumflex over ( )}(D+1) × 2{circumflex over ( )}(d+1).}If (CQICH_MODE==011) {Packet Count basedPeriod During Gating Mode3A CQI feedback is transmitted onOn (=p)the CQICH every 2{circumflex over ( )}p frames whilegating mode onPacket Count during Gating5A CQI feedback is transmitted onMode On (=B)the CQICH periodically (with periodp) until B packets are received or thedurations D and/or d elapse.Frame offset3The MS starts reporting at the frameof which the number has the same 3LSB as the specified frame offset. Ifthe current frame is specified, theMS should start reporting in 8framesPeriod between gating Mode5This is the number of Frameson initiation points (=D)between the Initiation Points(instants when MSS andinfrastructure must enter GatingMode On).This is measured in frames - theperiod is 2{circumflex over ( )}p × 2{circumflex over ( )}(D+1) frames.Gating Mode Duration (=d)3This is the duration for which thegating mode is considered on - Ifd== 000, the CQICH is deallocated.If d == 111, the MS should reportuntil the BS command for the MS tostop, else the duration is 2{circumflex over ( )}p × 2{circumflex over ( )}(D+1) × 2{circumflex over ( )}d.Cumulative Mode1Cumulative setting. This parameteris relevant in the case where therequired number of packets is notreceived before the end of theGating Mode Period.In this case, if cumulative is equalto true, then the MSS does not enterChannel quality feedback DTXmode until it receives the packetsnot yet received from the priorGating Mode Period(s) in addition tothe packets for this current GatingMode Period.In this case, if cumulative is equalto false, then the MSS entersChannel quality feedback DTXmode as soon as it receives thepackets for the current Gating ModePeriod. In other words, it ignoresany packets which were not receivedduring prior Gating Mode Period(s).}If (CQICH_MODE==100) {Byte Count basedPacket Size Indicator (=P)310*2{circumflex over ( )}P bytes constitute a packetPeriod During Gating Mode3A CQI feedback is transmitted onOn (=p)the CQICH every 2{circumflex over ( )}p frames whilegating mode onPacket Count during Gating5A CQI feedback is transmitted onMode On (=B)the CQICH periodically (with periodp) until B packets are received or thedurations D and/or d elapse.Frame offset3The MS starts reporting at the frameof which the number has the same 3LSB as the specified frame offset. Ifthe current frame is specified, theMS should start reporting in 8framesPeriod between gating Mode5This is the number of Frameson initiation points (=D)between the Initiation Points(instants when MSS andinfrastructure must enter GatingMode On).This is measured in frames - theperiod is 2{circumflex over ( )}p × 2{circumflex over ( )}(D+1).Gating Mode Duration (=d)3This is the duration for which thegating mode is considered on - Ifd== 000, the CQICH is deallocated.If d == 111, the MS should reportuntil the BS command for the MS tostop, else the duration is 2{circumflex over ( )}p × 2{circumflex over ( )}(D+1) × 2{circumflex over ( )}d.Cumulative Mode1Cumulative setting. This parameteris relevant in the case where therequire number of packets is notreceived before the end of theGating Mode Period.In this case, if cumulative is equalto true, then the MSS does not enterChannel quality feedback DTXmode until it receives the packetsnot yet received from the priorGating Mode Period(s) in addition tothe packets for this current GatingMode Period.In this case, if cumulative is equalto false, then the MSS entersChannel quality feedback DTXmode as soon as it receives thepackets for the current Gating ModePeriod. In other words, it ignoresany packets which were not receivedduring prior Gating Mode Period(s).}}If (CQICH_MODE==001) {Dual PeriodicPeriod During Gating Mode3A CQI feedback is transmitted onOn (=p)the CQICH every 2{circumflex over ( )}p frames whilegating mode onCQI Feedback Duration3While in Gating Mode on, A CQIduring Gating Mode Onfeedback is transmitted on the CQIDuration after initiation pointchannels indexed by the CQICH_ID(=B)for (B+1) × 2{circumflex over ( )}p frames.Frame offset3The MS starts reporting at the frameof which the number has the same 3LSB as the specified frame offset. Ifthe current frame is specified, theMS should start reporting in 8framesPeriod between gating Mode3This is the number of Frameson initiation points (=D)between the Initiation Points(instants when MSS andinfrastructure must enter GatingMode On).This is measured in frames - theperiod is 2{circumflex over ( )}p × (B+1) × 2{circumflex over ( )}(D+1).Gating Mode Duration (=d)3This is the duration for which thegating mode is considered on - Ifd== 000, the CQICH is deallocated.If d == 111, the MS should reportuntil the BS command for the MS tostop, else the duration is 2{circumflex over ( )}p × (B+1) × 2{circumflex over ( )}(D+1) × 2{circumflex over ( )}(d+1).}If (CQICH_MODE==010) {Inactivity BasedPeriod During Gating Mode3A CQI feedback is transmitted onOn (=p)the CQICH every 2{circumflex over ( )}p frames whilegating mode onInactivity Duration during3While in Gating Mode on, if there isGating Mode On Durationno activity for 2{circumflex over ( )}p × (B+1) frames,(=B)then the CQICH is not transmittedtill the next Gating Mode initiationperiod.Frame offset3The MS starts reporting at the frameof which the number has the same 3LSB as the specified frame offset. Ifthe current frame is specified, theMS should start reporting in 8framesPeriod between gating Mode3This is the number of Frameson initiation points (=D)between the Initiation Points(instants when MSS andinfrastructure must enter GatingMode On).This is measured in frames - theperiod is 2{circumflex over ( )}p × 2{circumflex over ( )}(D+1).Gating Mode Duration (=d)3This is the duration for which thegating mode is considered on - Ifd== 000, the CQICH is deallocated.If d == 111, the MS should reportuntil the BS command for the MS tostop, else the duration is 2{circumflex over ( )}p × 2{circumflex over ( )}(D+1) × 2{circumflex over ( )}(d+1).}If (CQICH_MODE==011) {Packet Count basedPeriod During Gating Mode3A CQI feedback is transmitted onOn (=p)the CQICH every 2{circumflex over ( )}p frames whilegating mode onPacket Count during Gating5A CQI feedback is transmitted onMode On (=B)the CQICH periodically (with periodp) until B packets are received or thedurations D and/or d elapse.Frame offset3The MS starts reporting at the frameof which the number has the same 3LSB as the specified frame offset. Ifthe current frame is specified, theMS should start reporting in 8framesPeriod between gating Mode5This is the number of Frameson initiation points (=D)between the Initiation Points(instants when MSS andinfrastructure must enter GatingMode On).This is measured in frames - theperiod is 2{circumflex over ( )}p × 2{circumflex over ( )}(D+1) frames.Gating Mode Duration (=d)3This is the duration for which thegating mode is considered on - Ifd== 000, the CQICH is deallocated.If d == 111, the MS should reportuntil the BS command for the MS tostop, else the duration is 2{circumflex over ( )}p × 2{circumflex over ( )}(D+1) × 2{circumflex over ( )}d.Cumulative Mode1Cumulative setting. This parameteris relevant in the case where therequired number of packets is notreceived before the end of theGating Mode Period.In this case, if cumulative is equalto true, then the MSS does not enterChannel quality feedback DTXmode until it receives the packetsnot yet received from the priorGating Mode Period(s) in addition tothe packets for this current GatingMode Period.In this case, if cumulative is equalto false, then the MSS entersChannel quality feedback DTXmode as soon as it receives thepackets for the current Gating ModePeriod. In other words, it ignoresany packets which were not receivedduring prior Gating Mode Period(s).}If (CQICH_MODE==100) {Byte Count basedPacket Size Indicator (=P)310*2{circumflex over ( )}P bytes constitute a packetPeriod During Gating Mode3A CQI feedback is transmitted onOn (=p)the CQICH every 2{circumflex over ( )}p frames whilegating mode onPacket Count during Gating5A CQI feedback is transmitted onMode On (=B)the CQICH periodically (with periodp) until B packets are received or thedurations D and/or d elapse.Frame offset3The MS starts reporting at the frameof which the number has the same 3LSB as the specified frame offset. Ifthe current frame is specified, theMS should start reporting in 8framesPeriod between gating Mode5This is the number of Frameson initiation points (=D)between the Initiation Points(instants when MSS andinfrastructure must enter GatingMode On).This is measured in frames - theperiod is 2{circumflex over ( )}p × 2{circumflex over ( )}(D+1).Gating Mode Duration (=d)3This is the duration for which thegating mode is considered on - Ifd== 000, the CQICH is deallocated.If d == 111, the MS should reportuntil the BS command for the MS tostop, else the duration is 2{circumflex over ( )}p × 2{circumflex over ( )}(D+1) × 2{circumflex over ( )}d.Cumulative Mode1Cumulative setting. This parameteris relevant in the case where therequire number of packets is notreceived before the end of theGating Mode Period.In this case, if cumulative is equalto true, then the MSS does not enterChannel quality feedback DTXmode until it receives the packetsnot yet received from the priorGating Mode Period(s) in addition tothe packets for this current GatingMode Period.In this case, if cumulative is equalto false, then the MSS entersChannel quality feedback DTXmode as soon as it receives thepackets for the current Gating ModePeriod. In other words, it ignoresany packets which were not receivedduring prior Gating Mode Period(s).}}...


8.4.5.3.27 MS_SDMA_DL_IE

TABLE 285uAAS_SDMA_DL_IESyntaxSize (bits)NotesAAS_SDMA_DL_IE( ){...If (CQICH Allocation Included) {Allocation Index6Index to the channelin a frame the CQIreport should betransmitted by the SSCQICH_MODE3000 = StandardPeriodic001 = Dual Periodic010 = InactivityBased011 = Packet CountBased100 = Byte CountBased101-111 - Reservedfor futureIf (CQICH_MODE==000) {Standard PeriodicPeriod (p)3A CQI feedback istransmitted on theCQI channelsindexed by the (CQIChannel Index) bythe SS in every 2pframes.Frame offset3The MSS startsreporting at the frameof which the numberhas the same 3 LSB asthe specified frameoffset. If the currentframe is specified,the MSS should startreporting in 8 frames.Duration (d)4A CQI feedback istransmitted on theCQI channelsindexed by the (CQIChannel Index) bythe SS for 2(d−1)frames. If d is0b0000, the CQICH isde-allocated. If d is0b1111, the MSSshould report until theBS command for theMSS to stop.}If (CQICH_MODE==001) {Dual PeriodicPeriod During Gating Mode On (=p)3A CQI feedback istransmitted on theCQICH every 2{circumflex over ( )}pframes while gatingmode onCQI Feedback Duration during Gating3While in Gating ModeMode On Duration after initiation pointon, A CQI feedback is(=B)transmitted on theCQI channels indexedby the CQICH_ID for(B+1) × 2{circumflex over ( )}p frames.Frame offset3The MS startsreporting at the frameof which the numberhas the same 3 LSB asthe specified frameoffset. If the currentframe is specified, theMS should startreporting in 8 framesPeriod between gating Mode on3This is the number ofinitiation points (=D)Frames between theInitiation Points(instants when MSSand infrastructuremust enter GatingMode On).This is measured inframes - the period is2{circumflex over ( )}p × (B+1) × 2{circumflex over ( )}(D+1).Gating Mode Duration (=d)3This is the durationfor which the gatingmode is considered on -If d== 000, theCQICH isdeallocated. If d == 111,the MS shouldreport until the BScommand for the MSto stop, else theduration is 2{circumflex over ( )}p × (B+1) × 2{circumflex over ( )}(D+1) × 2{circumflex over ( )}(d+1).}If (CQICH_MODE==010) {Inactivity BasedPeriod During Gating Mode On (=p)3A CQI feedback istransmitted on theCQICH every 2{circumflex over ( )}pframes while gatingmode onInactivity Duration during Gating3While in Gating ModeMode On Duration (=B)on, if there is noactivity for 2{circumflex over ( )}p × (B+1)frames, thenthe CQICH is nottransmitted till thenext Gating Modeinitiation period.Frame offset3The MS startsreporting at the frameof which the numberhas the same 3 LSB asthe specified frameoffset. If the currentframe is specified, theMS should startreporting in 8 framesPeriod between gating Mode on3This is the number ofinitiation points (=D)Frames between theInitiation Points(instants when MSSand infrastructuremust enter GatingMode On).This is measured inframes - the period is2{circumflex over ( )}p × 2{circumflex over ( )}(D+1).Gating Mode Duration (=d)3This is the durationfor which the gatingmode is considered on -If d== 000, theCQICH isdeallocated. If d == 111,the MS shouldreport until the BScommand for the MSto stop, else theduration is 2{circumflex over ( )}p × 2{circumflex over ( )}(D+1) × 2{circumflex over ( )}(d+1).}If (CQICH_MODE==011) {Packet Count basedPeriod During Gating Mode On (=p)3A CQI feedback istransmitted on theCQICH every 2{circumflex over ( )}pframes while gatingmode onPacket Count during Gating Mode On5A CQI feedback is(=B)transmitted on theCQICH periodically(with period p) until Bpackets are receivedor the durations Dand/or d elapse.Frame offset3The MS startsreporting at the frameof which the numberhas the same 3 LSB asthe specified frameoffset. If the currentframe is specified, theMS should startreporting in 8 framesPeriod between gating Mode on5This is the number ofinitiation points (=D)Frames between theInitiation Points(instants when MSSand infrastructuremust enter GatingMode On).This is measured inframes - the period is2{circumflex over ( )}p × 2{circumflex over ( )}(D+1)frames.Gating Mode Duration (=d)3This is the durationfor which the gatingmode is considered on -If d== 000, theCQICH isdeallocated. If d == 111,the MS shouldreport until the BScommand for the MSto stop, else theduration is 2{circumflex over ( )}p × 2{circumflex over ( )}(D+1) × 2{circumflex over ( )}d.Cumulative Mode1Cumulative setting.This parameter isrelevant in the casewhere the requirednumber of packets isnot received beforethe end of the GatingMode Period.In this case, ifcumulative is equal totrue, then the MSSdoes not enterChannel qualityfeedback DTX modeuntil it receives thepackets not yetreceived from theprior Gating ModePeriod(s) in additionto the packets for thiscurrent Gating ModePeriod.In this case, ifcumulative is equal tofalse, then the MSSenters Channel qualityfeedback DTX modeas soon as it receivesthe packets for thecurrent Gating ModePeriod. In otherwords, it ignores anypackets which werenot received duringprior Gating ModePeriod(s).}If (CQICH_MODE==100) {Byte Count basedPacket Size Indicator (=P)310*2{circumflex over ( )}P bytesconstitute a packetPeriod During Gating Mode On (=p)3A CQI feedback istransmitted on theCQICH every 2{circumflex over ( )}pframes while gatingmode onPacket Count during Gating Mode On5A CQI feedback is(=B)transmitted on theCQICH periodically(with period p) until Bpackets are receivedor the durations Dand/or d elapse.Frame offset3The MS startsreporting at the frameof which the numberhas the same 3 LSB asthe specified frameoffset. If the currentframe is specified, theMS should startreporting in 8 framesPeriod between gating Mode on5This is the number ofinitiation points (=D)Frames between theInitiation Points(instants when MSSand infrastructuremust enter GatingMode On).This is measured inframes - the period is2{circumflex over ( )}p × 2{circumflex over ( )}(D+1).Gating Mode Duration (=d)3This is the durationfor which the gatingmode is considered on -If d== 000, theCQICH isdeallocated. If d == 111,the MS shouldreport until the BScommand for the MSto stop, else theduration is 2{circumflex over ( )}p × 2{circumflex over ( )}(D+1) × 2{circumflex over ( )}d.Cumulative Mode1Cumulative setting.This parameter isrelevant in the casewhere the requirenumber of packets isnot received beforethe end of the GatingMode Period.In this case, ifcumulative is equal totrue, then the MSSdoes not enterChannel qualityfeedback DTX modeuntil it receives thepackets not yetreceived from theprior Gating ModePeriod(s) in additionto the packets for thiscurrent Gating ModePeriod.In this case, ifcumulative is equal tofalse, then the MSSenters Channel qualityfeedback DTX modeas soon as it receivesthe packets for thecurrent Gating ModePeriod. In otherwords, it ignores anypackets which werenot received duringprior Gating ModePeriod(s).}}If (CQICH_MODE==001) {Dual PeriodicPeriod During Gating Mode On (=p)3A CQI feedback istransmitted on theCQICH every 2{circumflex over ( )}pframes while gatingmode onCQI Feedback Duration during Gating3While in Gating ModeMode On Duration after initiation pointon, A CQI feedback is(=B)transmitted on theCQI channels indexedby the CQICH_ID for(B+1) × 2{circumflex over ( )}p frames.Frame offset3The MS startsreporting at the frameof which the numberhas the same 3 LSB asthe specified frameoffset. If the currentframe is specified, theMS should startreporting in 8 framesPeriod between gating Mode on3This is the number ofinitiation points (=D)Frames between theInitiation Points(instants when MSSand infrastructuremust enter GatingMode On).This is measured inframes - the period is2{circumflex over ( )}p × (B+1) × 2{circumflex over ( )}(D+1).Gating Mode Duration (=d)3This is the durationfor which the gatingmode is considered on -If d== 000, theCQICH isdeallocated. If d == 111,the MS shouldreport until the BScommand for the MSto stop, else theduration is 2{circumflex over ( )}p × (B+1) × 2{circumflex over ( )}(D+1) × 2{circumflex over ( )}(d+1).}If (CQICH_MODE==010) {Inactivity BasedPeriod During Gating Mode On (=p)3A CQI feedback istransmitted on theCQICH every 2{circumflex over ( )}pframes while gatingmode onInactivity Duration during Gating3While in Gating ModeMode On Duration (=B)on, if there is noactivity for 2{circumflex over ( )}p × (B+1)frames, thenthe CQICH is nottransmitted till thenext Gating Modeinitiation period.Frame offset3The MS startsreporting at the frameof which the numberhas the same 3 LSB asthe specified frameoffset. If the currentframe is specified, theMS should startreporting in 8 framesPeriod between gating Mode on3This is the number ofinitiation points (=D)Frames between theInitiation Points(instants when MSSand infrastructuremust enter GatingMode On).This is measured inframes - the period is2{circumflex over ( )}p × 2{circumflex over ( )}(D+1).Gating Mode Duration (=d)3This is the durationfor which the gatingmode is considered on -If d== 000, theCQICH isdeallocated. If d == 111,the MS shouldreport until the BScommand for the MSto stop, else theduration is 2{circumflex over ( )}p × 2{circumflex over ( )}(D+1) × 2{circumflex over ( )}(d+1).}If (CQICH_MODE==011) {Packet Count basedPeriod During Gating Mode On (=p)3A CQI feedback istransmitted on theCQICH every 2{circumflex over ( )}pframes while gatingmode onPacket Count during Gating Mode On5A CQI feedback is(=B)transmitted on theCQICH periodically(with period p) until Bpackets are receivedor the durations Dand/or d elapse.Frame offset3The MS startsreporting at the frameof which the numberhas the same 3 LSB asthe specified frameoffset. If the currentframe is specified, theMS should startreporting in 8 framesPeriod between gating Mode on5This is the number ofinitiation points (=D)Frames between theInitiation Points(instants when MSSand infrastructuremust enter GatingMode On).This is measured inframes - the period is2{circumflex over ( )}p × 2{circumflex over ( )}(D+1)frames.Gating Mode Duration (=d)3This is the durationfor which the gatingmode is considered on -If d== 000, theCQICH isdeallocated. If d == 111,the MS shouldreport until the BScommand for the MSto stop, else theduration is 2{circumflex over ( )}p × 2{circumflex over ( )}(D+1) × 2{circumflex over ( )}d.Cumulative Mode1Cumulative setting.This parameter isrelevant in the casewhere the requirednumber of packets isnot received beforethe end of the GatingMode Period.In this case, ifcumulative is equal totrue, then the MSSdoes not enterChannel qualityfeedback DTX modeuntil it receives thepackets not yetreceived from theprior Gating ModePeriod(s) in additionto the packets for thiscurrent Gating ModePeriod.In this case, ifcumulative is equal tofalse, then the MSSenters Channel qualityfeedback DTX modeas soon as it receivesthe packets for thecurrent Gating ModePeriod. In otherwords, it ignores anypackets which werenot received duringprior Gating ModePeriod(s).}If (CQICH_MODE==100) {Byte Count basedPacket Size Indicator (=P)310*2{circumflex over ( )}P bytesconstitute a packetPeriod During Gating Mode On (=p)3A CQI feedback istransmitted on theCQICH every 2{circumflex over ( )}pframes while gatingmode onPacket Count during Gating Mode On5A CQI feedback is(=B)transmitted on theCQICH periodically(with period p) until Bpackets are receivedor the durations Dand/or d elapse.Frame offset3The MS startsreporting at the frameof which the numberhas the same 3 LSB asthe specified frameoffset. If the currentframe is specified, theMS should startreporting in 8 framesPeriod between gating Mode on5This is the number ofinitiation points (=D)Frames between theInitiation Points(instants when MSSand infrastructuremust enter GatingMode On).This is measured inframes - the period is2{circumflex over ( )}p × 2{circumflex over ( )}(D+1).Gating Mode Duration (=d)3This is the durationfor which the gatingmode is considered on-If d== 000, theCQICH isdeallocated. If d == 111,the MS shouldreport until the BScommand for the MSto stop, else theduration is 2{circumflex over ( )}p × 2{circumflex over ( )}(D+1) × 2{circumflex over ( )}d.Cumulative Mode1Cumulative setting.This parameter isrelevant in the casewhere the requirenumber of packets isnot received beforethe end of the GatingMode Period.In this case, ifcumulative is equal totrue, then the MSSdoes not enterChannel qualityfeedback DTX modeuntil it receives thepackets not yetreceived from theprior Gating ModePeriod(s) in additionto the packets for thiscurrent Gating ModePeriod.In this case, ifcumulative is equal tofalse, then the MSSenters Channel qualityfeedback DTX modeas soon as it receivesthe packets for thecurrent Gating ModePeriod. In otherwords, it ignores anypackets which werenot received duringprior Gating ModePeriod(s).}}...


8.4.5.4.23 Anchor BS Switch IE

TABLE 302jAnchor_BS_switch_IE formatSyntaxSize(bits)NotesAnchor_BS_switch_IE( ) {...If(CQICH_Allocation_Indicator== 1) {CQICH_IDvariableIndex to uniquely identify theCQICH resource assigned to theMS after the MS switched to thenew anchor BSFeedback channel offset6Index to the Fast-feedback channelregion of the new Anchor BSmarked by UIUC=0CQICH_MODE3000 = Standard Periodic001 = Dual Periodic010 = Inactivity Based011 = Packet Count Based100 = Byte Count Based101-111 - Reserved for futureIf (CQICH_MODE==000) {Standard PeriodicPeriod (=p)2A CQI feedback is transmitted onthe CQICH every 2p frames.Frame offset3The MS starts reporting at the frameof which the number has the same 3LSB as the specified frame offset. Ifthe current frame is specified, theMS should start reporting in 8framesDuration (=d)3A CQI feedback is transmitted onthe CQI channels indexed by theCQICH_ID for 10 × 2d frames. If d ==0b000,the CQI-CH is de-allocated. If d ==0b111, the MSshould report until the BS commandfor the MS to stop.MIMO_permutation_feedback_cycle2 0b00 = No MIMO andpermutation mode feedback 0b01 = theMIMO and permutation modeindication shall be transmitted on theCQICH indexed by the CQICH_IDevery 4 frames. The first indicationis sent on the 8th CQICH frame.0b10 = the MIMO mode andpermultation mode indication shallbe transmitted on the CQICHindexed by the CQICH_ID every 8frames. The first indication is senton the 8th CQICH frame. 0b11 = theMIMO mode and permultationmode indication shall be transmittedon the CQICH indexed by theCQICH_ID every 16 frames. Thefirst indication is sent on the 16thCQICH frame. Reserved VariableNumber of bits required to align tobyte length from CQICH AllocationIndicator bit field, shall be set tozero.}If (CQICH_MODE==001) {Dual PeriodicPeriod During Gating Mode On3A CQI feedback is transmitted on(=p)the CQICH every 2{circumflex over ( )}p frames whilegating mode onCQI Feedback Duration during3While in Gating Mode on, A CQIGating Mode On Duration afterfeedback is transmitted on the CQIinitiation point (=B)channels indexed by the CQICH_IDfor (B+1) × 2{circumflex over ( )}p frames.Frame offset3The MS starts reporting at the frameof which the number has the same 3LSB as the specified frame offset. Ifthe current frame is specified, theMS should start reporting in 8framesPeriod between gating Mode on3This is the number of Framesinitiation points (=D)between the Initiation Points(instants when MSS andinfrastructure must enter GatingMode On).This is measured in frames - the period is 2{circumflex over ( )}p × (B+1) × 2{circumflex over ( )}(D+1).Gating Mode Duration (=d)3This is the duration for which thegating mode is considered on - Ifd== 000, the CQICH is deallocated.If d == 111, the MS should reportuntil the BS command for the MS tostop, else the duration is 2{circumflex over ( )}p × (B+1) × 2{circumflex over ( )}(D+1) × 2{circumflex over ( )}(d+1).}If (CQICH_MODE==010) {Inactivity BasedPeriod During Gating Mode On3A CQI feedback is transmitted on(=p)the CQICH every 2{circumflex over ( )}p frames whilegating mode onInactivity Duration during3While in Gating Mode on, if there isGating Mode On Duration (=B)no activity for 2{circumflex over ( )}p × (B+1) frames,then the CQICH is not transmittedtill the next Gating Mode initiationperiod.Frame offset3The MS starts reporting at the frameof which the number has the same 3LSB as the specified frame offset. Ifthe current frame is specified, theMS should start reporting in 8framesPeriod between gating Mode on3This is the number of Framesinitiation points (=D)between the Initiation Points(instants when MSS andinfrastructure must enter GatingMode On).This is measured in frames - the period is 2{circumflex over ( )}p × 2{circumflex over ( )}(D+1).Gating Mode Duration (=d)3This is the duration for which thegating mode is considered on - Ifd== 000, the CQICH is deallocated.If d == 111, the MS should reportuntil the BS command for the MS tostop, else the duration is 2{circumflex over ( )}p × 2{circumflex over ( )}(D+1) × 2{circumflex over ( )}(d+1).}If (CQICH_MODE==011) {Packet Count basedPeriod During Gating Mode On3A CQI feedback is transmitted on(=p)the CQICH every 2{circumflex over ( )}p frames whilegating mode onPacket Count during Gating5A CQI feedback is transmitted onMode On (=B)the CQICH periodically (with periodp) until B packets are received or thedurations D and/or d elapse.Frame offset3The MS starts reporting at the frameof which the number has the same 3LSB as the specified frame offset. Ifthe current frame is specified, theMS should start reporting in 8framesPeriod between gating Mode on5This is the number of Framesinitiation points (=D)between the Initiation Points(instants when MSS andinfrastructure must enter GatingMode On).This is measured in frames - the period is 2{circumflex over ( )}p × 2{circumflex over ( )}(D+1) frames.Gating Mode Duration (=d)3This is the duration for which thegating mode is considered on - Ifd== 000, the CQICH is deallocated.If d == 111, the MS should reportuntil the BS command for the MS tostop, else the duration is 2{circumflex over ( )}p × 2{circumflex over ( )}(D+1) × 2{circumflex over ( )}d.Cumulative Mode1Cumulative setting. This parameteris relevant in the case where therequired number of packets is notreceived before the end of theGating Mode Period.In this case, if cumulative is equalto true, then the MSS does not enterChannel quality feedback DTXmode until it receives the packetsnot yet received from the priorGating Mode Period(s) in addition tothe packets for this current GatingMode Period.In this case, if cumulative is equalto false, then the MSS entersChannel quality feedback DTXmode as soon as it receives thepackets for the current Gating ModePeriod. In other words, it ignoresany packets which were not receivedduring prior Gating Mode Period(s).}If (CQICH_MODE==100) {Byte Count basedPacket Size Indicator (=P)310*2{circumflex over ( )}p bytes constitute a packetPeriod During Gating Mode On3A CQI feedback is transmitted on(=p)the CQICH every 2{circumflex over ( )}p frames whilegating mode onPacket Count during Gating5A CQI feedback is transmitted onMode On (=B)the CQICH periodically (with periodp) until B packets are received or thedurations D and/or d elapse.Frame offset3The MS starts reporting at the frameof which the number has the same 3LSB as the specified frame offset. Ifthe current frame is specified, theMS should start reporting in 8framesPeriod between gating Mode on5This is the number of Framesinitiation points (=D)between the Initiation Points(instants when MSS andinfrastructure must enter GatingMode On).This is measured in frames - the period is 2{circumflex over ( )}p × 2{circumflex over ( )}(D+1).Gating Mode Duration (=d)3This is the duration for which thegating mode is considered on - Ifd== 000, the CQICH is deallocated.If d == 111, the MS should reportuntil the BS command for the MS tostop, else the duration is 2{circumflex over ( )}p × 2{circumflex over ( )}(D+1) × 2{circumflex over ( )}d.Cumulative Mode1Cumulative setting. This parameteris relevant in the case where therequire number of packets is notreceived before the end of theGating Mode Period.In this case, if cumulative is equalto true, then the MSS does not enterChannel quality feedback DTXmode until it receives the packetsnot yet received from the priorGating Mode Period(s) in addition tothe packets for this current GatingMode Period.In this case, if cumulative is equalto false, then the MSS entersChannel quality feedback DTXmode as soon as it receives thepackets for the current Gating ModePeriod. In other words, it ignoresany packets which were not receivedduring prior Gating Mode Period(s).}}...


8.4.5.4.12 CQICH Allocation IE Format

TABLE 298CQICH alloc IE formatSyntaxSizeNotesCQICH_Alloc_IE( ) ( ) {Extended DIUC4 bitsCQICH = 0x03Length4 bitsLength of the message in bytes(variable)CQICH_IDvariableIndex to uniquely identify theCQICH resource assigned to the SSThe size of this field is dependent onsystem parameter defined in DCD.Allocation offset6 bitsIndex to the fast feedback channelregion marked by UIUC = 0.CQICH_MODE3000 = Standard Periodic001 = Dual Periodic010 = Inactivity Based011 = Packet Count Based100 = Byte Count Based101-111 - Reserved for futureIf (CQICH_MODE==000) {Standard PeriodicPeriod (p)2 bitsA CQI feedback is transmitted onthe CQICH every 2p frames.Frame offset3 bitsThe SS starts reporting at the frameof which the number has the same 3LSB as the specified frame offset. Ifthe current frame is specified, the SSshould start reporting in 8 framesDuration (d)3 bitsA CQI feedback is transmitted onthe CQI channels indexed by theCQICH_ID for 10 × 2d frames. If d == 0,the CQI-CH is deallocated. Ifd == 0b111, the SS should reportuntil the BS command for the SS tostop.MIMO_permutation_feedback_cycle2 bits 0b00 = No MIMO andpermutation mode feedback 0b01 = TheMIMO and permutation modeindication shall be transmitted on theCQICH indexed by the CQICH_IDevery 4 frames. The first indicationis sent on the 8th CQICH frame.0b10 = The MIMO mode andpermultation mode indication shallbe transmitted on the CQICHindexed by the CQICH_ID every 8frames. The first indication is senton the 8th CQICH frame. 0b11 = TheMIMO mode and permultationmode indication shall be transmittedon the CQICH indexed by theCQICH_ID every 16 frames. Thefirst indication is sent on the 16thCQICH frame.}If (CQICH_MODE==001) {Dual PeriodicPeriod During Gating Mode3A CQI feedback is transmitted onOn (=p)the CQICH every 2{circumflex over ( )}p frames whilegating mode onCQI Feedback Duration during3While in Gating Mode on, A CQIGating Mode On Durationfeedback is transmitted on the CQIafter initiation point (=B)channels indexed by the CQICH_IDfor (B+1) × 2{circumflex over ( )}p frames.Frame offset3The MS starts reporting at the frameof which the number has the same 3LSB as the specified frame offset. Ifthe current frame is specified, theMS should start reporting in 8framesPeriod between gating Mode3This is the number of Frameson initiation points (=D)between the Initiation Points(instants when MSS andinfrastructure must enter GatingMode On).This is measured in frames - the period is 2{circumflex over ( )}p × (B+1) × 2{circumflex over ( )}(D+1).Gating Mode Duration (=d)3This is the duration for which thegating mode is considered on - Ifd== 000, the CQICH is deallocated.If d == 111, the MS should reportuntil the BS command for the MS tostop, else the duration is 2{circumflex over ( )}p × (B+1) × 2{circumflex over ( )}(D+1) × 2{circumflex over ( )}(d+1).}If (CQICH_MODE==010) {Inactivity BasedPeriod During Gating Mode3A CQI feedback is transmitted onOn (=p)the CQICH every 2{circumflex over ( )}p frames whilegating mode onInactivity Duration during3While in Gating Mode on, if there isGating Mode On Durationno activity for 2{circumflex over ( )}p × (B+1) frames,(=B)then the CQICH is not transmittedtill the next Gating Mode initiationperiod.Frame offset3The MS starts reporting at the frameof which the number has the same 3LSB as the specified frame offset. Ifthe current frame is specified, theMS should start reporting in 8framesPeriod between gating Mode3This is the number of Frameson initiation points (=D)between the Initiation Points(instants when MSS andinfrastructure must enter GatingMode On).This is measured in frames - the period is 2{circumflex over ( )}p × 2{circumflex over ( )}(D+1).Gating Mode Duration (=d)3This is the duration for which thegating mode is considered on - Ifd== 000, the CQICH is deallocated.If d == 111, the MS should reportuntil the BS command for the MS tostop, else the duration is 2{circumflex over ( )}p × 2{circumflex over ( )}(D+1) × 2{circumflex over ( )}(d+1).}If (CQICH_MODE==011) {Packet Count basedPeriod During Gating Mode3A CQI feedback is transmitted onOn (=p)the CQICH every 2{circumflex over ( )}p frames whilegating mode onPacket Count during Gating5A CQI feedback is transmitted onMode On (=B)the CQICH periodically (with periodp) until B packets are received or thedurations D and/or d elapse.Frame offset3The MS starts reporting at the frameof which the number has the same 3LSB as the specified frame offset. Ifthe current frame is specified, theMS should start reporting in 8framesPeriod between gating Mode5This is the number of Frameson initiation points (=D)between the Initiation Points(instants when MSS andinfrastructure must enter GatingMode On).This is measured in frames - the period is 2{circumflex over ( )}p × 2{circumflex over ( )}(D+1) frames.Gating Mode Duration (=d)3This is the duration for which thegating mode is considered on - Ifd == 000, the CQICH is deallocated.If d == 111, the MS should reportuntil the BS command for the MS tostop, else the duration is 2{circumflex over ( )}p × 2{circumflex over ( )}(D+1) × 2{circumflex over ( )}d.Cumulative Mode1Cumulative setting. This parameteris relevant in the case where therequired number of packets is notreceived before the end of theGating Mode Period.In this case, if cumulative is equalto true, then the MSS does not enterChannel quality feedback DTXmode until it receives the packetsnot yet received from the priorGating Mode Period(s) in addition tothe packets for this current GatingMode Period.In this case, if cumulative is equalto false, then the MSS entersChannel quality feedback DTXmode as soon as it receives thepackets for the current Gating ModePeriod. In other words, it ignoresany packets which were not receivedduring prior Gating Mode Period(s).}If (CQICH_MODE==100) {Byte Count basedPacket Size Indicator (=P)310*2{circumflex over ( )}P bytes constitute a packetPeriod During Gating Mode3A CQI feedback is transmitted onOn (=p)the CQICH every 2{circumflex over ( )}p frames whilegating mode onPacket Count during Gating5A CQI feedback is transmitted onMode On (=B)the CQICH periodically (with periodp) until B packets are received or thedurations D and/or d elapse.Frame offset3The MS starts reporting at the frameof which the number has the same 3LSB as the specified frame offset. Ifthe current frame is specified, theMS should start reporting in 8framesPeriod between gating Mode5This is the number of Frameson initiation points (=D)between the Initiation Points(instants when MSS andinfrastructure must enter GatingMode On).This is measured in frames - the period is 2{circumflex over ( )}p × 2{circumflex over ( )}(D+1).Gating Mode Duration (=d)3This is the duration for which thegating mode is considered on - Ifd== 000, the CQICH is deallocated.If d == 111, the MS should reportuntil the BS command for the MS tostop, else the duration is 2{circumflex over ( )}p × 2{circumflex over ( )}(D+1) × 2{circumflex over ( )}d.Cumulative Mode1Cumulative setting. This parameteris relevant in the case where therequire number of packets is notreceived before the end of theGating Mode Period.In this case, if cumulative is equalto true, then the MSS does not enterChannel quality feedback DTXmode until it receives the packetsnot yet received from the priorGating Mode Period(s) in addition tothe packets for this current GatingMode Period.In this case, if cumulative is equalto false, then the MSS entersChannel quality feedback DTXmode as soon as it receives thepackets for the current Gating ModePeriod. In other words, it ignoresany packets which were not receivedduring prior Gating Mode Period(s).}PaddingvariableThe padding bits is used to ensurethe IE size is integer number ofbytes.}


Detailed message definitions for some 3GPP2-based embodiments follow. These message definitions provide some very specific examples of how a channel maintenance signaling policy may be established in a 3GPP2-based system. Section number references to the present TSG-C SWG 2.5, stage 3 text are provided to indicate which portions of the standard are being updated.


1.1.6.1.5


The access terminal shall obey the following rules when transmitting the DRC Channel:

  • Access terminal shall use DRCLength slots to send a single DRC. The DRC (value and cover) is defined to take effect at the slot boundary following the end of its transmission, and stay in effect for DRCLength slots.
  • The DRC (value and cover) shall not change in slots other than T such that:

    (T+1−FrameOffset) mod DRCLength=0,
    • where T is the CDMA System Time in slots.
  • If the DRCGating is equal to 1, the access terminal shall transmit the DRC over a one slot period, starting in slot T that satisfies the following equation:

    (T+2−FrameOffset) mod DRCLength=0,
    • where T is the CDMA System Time in slots.
  • If DRCDTXlnterval is set to 0x01:


The access terminal shall begin the DRC DTX Interval starting in slot T that satisfies the following equation:

(T+1−FrameOffset−DRCLength×DRCDTXStagger) mod (DRCLength×DRCDTXlnterval),

    • where T is the CDMA System Time in slots.
  • The access terminal shall transmit the DRC as indicated by the DRCGating bit.
  • The access terminal shall continue to transmit the DRC for at least the period indicated by DRCDTXActivePeriod.
  • If the access terminal successfully receives a Forward Traffic Channel Packet addressed to it during the period indicated by DRCDTXActivePeriod, the access terminal shall continue to transmit DRC for an additional period beyond current DRCDTXActivePeriod with length DRCDTXActivePeriod.


The Access Terminal may discontinue transmission of the DRC Channel at the end of the last DRCDTXActive period

TABLE 11.7.7.1-1Configurable ValuesAttribute IDAttributeValuesMeaning0xffDRCGating0x00Continuoustransmission0x01Discontinuoustransmission0xfeDRCLockLength0x00DRCLock bit is repeated8 times.0x01DRCLock bit is repeated16 times.0x02DRCLock bit is repeated32 times.0x03DRCLock bit is repeated64 times.All otherReservedvalues0xfdMultiUserPacketsEnabled0x00Use of Multi-UserPackets is disabled0x01Use of Multi-UserPackets is enabledAll otherReservedvalues0xfcDSCLength0x08Length of a single DSCtransmission is 64 slots.0x01 toLength of a single DSC0x20transmission in units of8 slots.All otherReservedvalues0xfbDeltaACKChannelGainMUP0x0cDeltaACKChannelGainMUP is 6 dB.0x00 toDeltaACKChannelGain0x12MUP in units of 0.5 dB.All otherReservedvalues0xfaShortPacketsEnabledThresh0x01ShortPacketsEnabledThreshis 2048 bits.0x00ShortPacketsEnabledThreshis 1024 bits.0x02ShortPacketsEnabledThreshis 3072 bits.0x03ShortPacketsEnabledThreshis 4096 bits.All otherReservedvalues0xf9DRCDTXSupported0x00DRC DTX mode is notsupported0x01DRC DTX mode issupported0x02 toReserved0xff0xf8DRCDTXInterval0x00DRC Channel DTXmode is disabled.0x01 toInterval between0xf0transitions from DTX totransmission of DRCChannel while DRCChannel is in DTXmode, in slots.0xf0 toReserved0xff0xf7DRCDTXActivePeriod0x00Reserved0x0aThe DRC Channel istransmitted during thefirst 10 × DRCLengthslots of theDRCDTXInterval0x01 toThe number of slots in0xffthe beginning of theDRCDTXInterval duringwhich the DRC Channelis transmitted = 10 × DRCDTXActivePeriod0xf6DRCDTXStagger0x00 toOffset, in slots × DRCLength0x8fof beginningof DRC DTX Interval0x90 toReserved0xff


Benefits, other advantages, and solutions to problems have been described above with regard to specific embodiments of the present invention. However, the benefits, advantages, solutions to problems, and any element(s) that may cause or result in such benefits, advantages, or solutions, or cause such benefits, advantages, or solutions to become more pronounced are not to be construed as a critical, required, or essential feature or element of any or all the claims. As used herein and in the appended claims, the term “comprises,” “comprising,” or any other variation thereof is intended to refer to a non-exclusive inclusion, such that a process, method, article of manufacture, or apparatus that comprises a list of elements does not include only those elements in the list, but may include other elements not expressly listed or inherent to such process, method, article of manufacture, or apparatus.


The terms a or an, as used herein, are defined as one or more than one. The term plurality, as used herein, is defined as two or more than two. The term another, as used herein, is defined as at least a second or more. The terms including and/or having, as used herein, are defined as comprising (i.e., open language). The term coupled, as used herein, is defined as connected, although not necessarily directly, and not necessarily mechanically. The terms program, computer program, and computer instructions, as used herein, are defined as a sequence of instructions designed for execution on a computer system. This sequence of instructions may include, but is not limited to, a subroutine, a function, a procedure, an object method, an object implementation, an executable application, an applet, a servlet, a shared library/dynamic load library, a source code, an object code and/or an assembly code.

Claims
  • 1. A method for improved channel maintenance signaling comprising: entering a high-rate-channel-maintenance mode in which a remote unit transmits channel maintenance signaling, wherein channel maintenance signaling comprises signaling of at least one type from the group consisting of channel quality indication (CQI) signaling, power control signaling, reverse dedicated pilot signaling, forward dedicated pilot signaling, and ACK/NACK signaling; when a low-rate condition is met, entering a low-rate-channel-maintenance mode in which the remote unit transmits channel maintenance signaling at one of a lower rate or a lower transmit power than when in the high-rate-channel-maintenance mode; when a high-rate condition is met, reentering the high-rate-channel-maintenance mode from the low-rate-channel-maintenance mode, wherein the high-rate condition comprises a condition from the group consisting of the remote unit detects that handoff conditions are present, the remote unit begins receiving data via a forward link associated with the channel maintenance signaling, and the time remaining until a next periodic, high-rate initiation point after the remote unit enters the low-rate-channel-maintenance mode has elapsed.
  • 2. The method of claim 1, wherein the low-rate condition comprises a condition from the group consisting of: a pre-established period of time has elapsed since entering the high-rate-channel-maintenance mode, a pre-established period of time has elapsed since entering the high-rate-channel-maintenance mode without detecting activity on a forward link associated with the channel maintenance signaling, a pre-established number of packets have been received via a forward link associated with the channel maintenance signaling, a pre-established number of bytes have been received via a forward link associated with the channel maintenance signaling, a cumulative number of packets have been received, via a forward link associated with the channel maintenance signaling, totaling the sum of a pre-established number for each high-rate initiation point that has passed, a cumulative number of bytes have been received via a forward link associated with the channel maintenance signaling, totaling the sum of a pre-established number for each high-rate initiation point that has passed, a pre-established number of packets have been successfully transmitted via a reverse link, and a pre-established number of bytes have been successfully transmitted via a reverse link.
  • 3. The method of claim 1, wherein transmitting channel maintenance signaling at one of a lower rate or a lower transmit power than when in the high-rate-channel-maintenance mode comprises suspending channel maintenance signaling.
  • 4. The method of claim 1, wherein CQI signaling comprises data rate control (DRC) signaling.
  • 5. The method of claim 1, wherein the channel maintenance signaling comprises channel quality indication signaling but not reverse dedicated pilot signaling.
  • 6. The method of claim 1, wherein transmitting CQI signaling comprises transmitting CQI signaling in accordance with one of a gated transmit pattern or a continuous transmit pattern.
  • 7. The method of claim 1, further comprising receiving an indication from an access network (AN) that the remote unit should periodically reenter the high-rate-channel-maintenance mode from the low-rate-channel-maintenance mode.
  • 8. The method of claim 7, wherein the indication that the remote unit should periodically reenter the high-rate-channel-maintenance mode further indicates configuration information from the group consisting of the low-rate condition that the remote unit should use to enter the low-rate-channel-maintenance mode, a period of time between high-rate initiation points, and a frame offset for CQI signaling.
  • 9. The method of claim 1, further comprising sending an indication to an access network (AN) that the remote unit is entering the low-rate-channel-maintenance mode.
  • 10. The method of claim 1, further comprising sending an indication to an access network (AN) that the remote unit is entering the high-rate-channel-maintenance mode.
  • 11. A method for improved channel maintenance signaling comprising: sending, by an access network (AN) to a remote unit, an indication that the remote unit should transition from a high-rate-channel-maintenance mode to a low-rate-channel-maintenance mode when a low-rate condition is met and that the remote unit should transition from the low-rate-channel-maintenance mode to the high-rate-channel-maintenance mode when a high-rate condition is met, wherein the high-rate-channel-maintenance mode comprises a mode in which a remote unit transmits channel maintenance signaling, wherein channel maintenance signaling comprises signaling of at least one type from the group consisting of channel quality indication (CQI) signaling, power control signaling, reverse dedicated pilot signaling, forward dedicated pilot signaling, and ACK/NACK signaling, and wherein the low-rate-channel-maintenance mode comprises a mode in which the remote unit transmits channel maintenance signaling at one of a lower rate or a lower transmit power than when in the high-rate-channel-maintenance mode.
  • 12. The method of claim 11, wherein the low-rate condition comprises a condition from the group consisting of: a pre-established period of time has elapsed since entering the high-rate-channel-maintenance mode, a pre-established period of time has elapsed since entering the high-rate-channel-maintenance mode without detecting activity on a forward link associated with the channel maintenance signaling, a pre-established number of packets have been received via a forward link associated with the channel maintenance signaling, a pre-established number of bytes have been received via a forward link associated with the channel maintenance signaling, a cumulative number of packets have been received, via a forward link associated with the channel maintenance signaling, totaling the sum of a pre-established number for each high-rate initiation point that has passed, a cumulative number of bytes have been received via a forward link associated with the channel maintenance signaling, totaling the sum of a pre-established number for each high-rate initiation point that has passed, a pre-established number of packets have been successfully transmitted via a reverse link, and a pre-established number of bytes have been successfully transmitted via a reverse link.
  • 13. The method of claim 11, wherein the high-rate condition comprises a condition from the group consisting of: the remote unit detects that handoff conditions are present, the remote unit begins receiving data via a forward link associated with the channel maintenance signaling, and the time remaining until a next periodic, high-rate initiation point after the remote unit enters the low-rate-channel-maintenance mode has elapsed.
  • 14. The method of claim 11, further comprising receiving an indication from the remote unit that the remote unit is entering the low-rate-channel-maintenance mode.
  • 15. The method of claim 11, further comprising receiving an indication from the remote unit that the remote unit is entering the high-rate-channel-maintenance mode.
  • 16. The method of claim 11, wherein the indication further indicates configuration information from the group consisting of the low-rate condition that the remote unit should use to enter the low-rate-channel-maintenance mode, the high-rate condition that the remote unit should use to enter the high-rate-channel-maintenance mode, a period of time between high-rate initiation points, and a frame offset for CQI signaling.
  • 17. The method of claim 11, further comprising buffering, by the AN, data for delivery to the remote unit until the remote unit is expected to reenter the high-rate-channel-maintenance mode.
  • 18. The method of claim 11, further comprising allocating a reverse link resource, used by the remote unit while in the high-rate-channel-maintenance mode, to a second remote unit for at least a portion of the interval in which the remote unit is expected to be in the low-rate-channel-maintenance mode.
  • 19. The method of claim 18, further comprising sending a reverse link assignment message that assigns a reverse link resource to the second remote unit for a periodically reoccurring interval of time, thereby enabling the reverse link resource to be shared by a plurality of remote units.
  • 20. A remote unit comprising: a transceiver; a processing unit, communicatively coupled to the transceiver, adapted to enter a high-rate-channel-maintenance mode in which channel maintenance signaling is transmitted via the transceiver, wherein channel maintenance signaling comprises signaling of at least one type from the group consisting of channel quality indication (CQI) signaling, power control signaling, reverse dedicated pilot signaling, forward dedicated pilot signaling, and ACK/NACK signaling, adapted to enter, when a low-rate condition is met, a low-rate-channel-maintenance mode in which channel maintenance signaling is transmitted via the transceiver at one of a lower rate or a lower transmit power than when in the high-rate-channel-maintenance mode, and adapted to reenter, when a high-rate condition is met, the high-rate-channel-maintenance mode from the low-rate-channel-maintenance mode, wherein the high-rate condition comprises a condition from the group consisting of the remote unit detects that handoff conditions are present, the remote unit begins receiving data via a forward link associated with the channel maintenance signaling, and the time remaining until a next periodic, high-rate initiation point after the remote unit enters the low-rate-channel-maintenance mode has elapsed.
  • 21. An access network (AN) comprising: a transceiver; a network interface; a processing unit, communicatively coupled to the transceiver and the network interface, adapted to send, to a remote unit via the transceiver, an indication that the remote unit should transition from a high-rate-channel-maintenance mode to a low-rate-channel-maintenance mode when a low-rate condition is met and that the remote unit should transition from the low-rate-channel-maintenance mode to the high-rate-channel-maintenance mode when a high-rate condition is met, wherein the high-rate-channel-maintenance mode comprises a mode in which a remote unit transmits channel maintenance signaling, wherein channel maintenance signaling comprises signaling of at least one type from the group consisting of channel quality indication (CQI) signaling, power control signaling, reverse dedicated pilot signaling, forward dedicated pilot signaling, and ACK/NACK signaling, and wherein the low-rate-channel-maintenance mode comprises a mode in which the remote unit transmits channel maintenance signaling at one of a lower rate or a lower transmit power than when in the high-rate-channel-maintenance mode.
REFERENCE(S) TO RELATED APPLICATION(S)

The present application claims priority from provisional application, Ser. No. 60/684428, entitled “METHOD AND APPARATUS FOR IMPROVED CHANNEL MAINTENANCE SIGNALING,” filed May 25, 2005, which is commonly owned and incorporated herein by reference in its entirety.

Provisional Applications (1)
Number Date Country
60684428 May 2005 US