Method and apparatus for improved optical elements for vertical PCB fiber optic modules

Information

  • Patent Grant
  • 6901221
  • Patent Number
    6,901,221
  • Date Filed
    Thursday, May 27, 1999
    25 years ago
  • Date Issued
    Tuesday, May 31, 2005
    19 years ago
Abstract
Fiber optic transmitter and receiver electrical elements are implemented on separate vertical boards in fiber optic modules. An optical block implements lenses and reflecting surfaces to minimize manufacturing costs. The light receiver and light transmitter are mounted to receive and transmit non-orthogonal to the fiber axis to avoid optical cross talk. In one embodiment, receiver and transmitter are mounted at an angle greater than forty-five degrees with a perpendicular line to the reflective surfaces. In another embodiment, receiver and transmitter are mounted at an angle less than forty-five degrees with a perpendicular line to the reflective surfaces. The reflective surface for transmission may be a beam shaper to improve light beam uniformity and optical coupling and to avoid active alignment. The vertical boards have ground planes facing each other to minimize electrical cross talk. An optional shielded housing provides further shielding for reducing EMI.
Description
FIELD OF THE INVENTION

This invention relates generally to light bending devices. More particularly, the invention relates to fiber optic modules.


BACKGROUND OF THE INVENTION

Fiber optic modules interface optical fibers to electronic circuitry transducing communication by light or photons with communication by electrical signals. A fiber optic module may be a fiber optic receiver, transmitter or transceiver including both receive and transmit functions. The fiber optic receiver, transmitter and transceiver each have optical elements (OE) and electrical elements (EE). The fiber optic transmitter OE includes an emitter (such as a semiconductor LED or Laser) mounted in a package and an optical coupling element for coupling light or photons from the OE into the optical fiber. The type of semiconductor laser (light amplification by stimulated emission of radiation) may be a vertical cavity surface emitting laser (VCSEL). The fiber optic receiver OE includes a photodetector (such as a photodiode) mounted in a package and an optical coupling element for coupling light or photons from the optical fiber into the photodetector. The EE for each includes integrated circuits and passive elements mounted on a substrate such as a printed circuit board (PCB) or ceramic. The OE and EE are connected electrically at the emitter and photodetector.


Because of the high transmission frequencies utilized in fiber optic communication, crosstalk between receive and transmit signals is of concern. Additionally, electromagnetic interference (EMI) is of concern due to the high frequency of operation of the fiber optic modules. In order to reduce EMI, shielding of the electrical components is required which is usually accomplished by attaching a metal shield to the substrate of the fiber optic module and connecting it to ground. In order to avoid electronic crosstalk and EMI, the fiber optic transceiver usually employs separate components and separate shielding of fiber optic receiver and fiber optic transmitter components. In order to avoid optical crosstalk where light or photons can interfere between communication channels, the fiber optic transceiver usually employs separate optical elements for coupling light or photons into and out of the optical fiber for fiber optic receiver and fiber optic transmitter. Using separate optical elements requires additional components and increases the costs of fiber optic transceivers. It is desirable to reduce the component count of fiber optic transceivers such that they are less expensive to manufacture.


The form factor or size of the fiber optic module is of concern. Previously, the fiber optic transceiver, receiver, and transmitter utilized horizontal boards or substrates which mounted parallel with a system printed circuit board utilized significant footprint or board space. The horizontal boards provided nearly zero optical crosstalk and minimal electronic crosstalk when properly shielded. However, the horizontal boards, parallel to the system printed circuit board, required large spacing between optical fiber connectors to make the connection to the optical fibers. While this may have been satisfactory for early systems using minimal fiber optic communication, the trend is towards greater usage of fiber optic communication requiring improved connectivity and smaller optical fiber connectors to more densely pack them on a system printed circuit board. Thus, it is desirable to minimize the size of system printed circuit boards (PCBs) and accordingly it is desirable to reduce the footprint of the fiber optic module which will attach to such system PCBs. Additionally, the desire for tighter interconnect leads of fiber optic cables, restricts the size of the OE's. For example, in the common implementation using TO header and can, the header dimension of the interconnect lead is normally 5.6 mm. In small form factor optical modules, such as the MT family, the two optical fibers are separated by a distance of only 0.75 mm. This severely restricts the method of coupling light or photons from the OE into and out of fiber optic cables.


There are a number of types of fiber optic cables available. The types of fiber optic cables can vary by the mode or the frequencies supported (single or multimode), the diameter of the fiber, the type of index of refraction (graded, stepped, uniform, etc.), and other factors. Often times the received light from an optical fiber is nonuniform making the alignment between optical fiber and an optical element more critical. Additionally, the light output from a light transmitter is often a single mode or only having a couple modes and it is desirable to excite multiple modes in a multimode optical fiber. When multiple modes are coupled into a multimode fiber, photons propagate at different speeds in the fiber. Such a difference in speed causes an effect known as the differential mode delay (DMD) phenomenon in multimode optical fibers which can reduce the optical transmission distance within an optical fiber. To overcome this phenomenon, the beam is ordinarily off-center launched into the fiber to excite only higher order modes of the fiber. Fewer modes in the fiber will reduce the DMD effect. However, such a launch technique increases alignment difficulty in the assembly, and thus the cost of the module. It is therefore desirable to have a single design that can couple light into or receive light from various diameters of optical fibers with better alignment tolerance. Thus, it is desirable to improve the OEs of fiber optic modules for coupling or launching light into various fiber optic cables and for receiving light from various fiber optic cables.


BRIEF SUMMARY OF THE INVENTION

Briefly, the present invention includes a method, apparatus and system for improved optical elements for vertical PCB fiber optic modules as described in the claims. Fiber optic transmitter and receiver electrical elements are implemented on two separate substantially parallel boards in a fiber optic transceiver modules. The parallel boards are mount substantially perpendicular to the base of the fiber optic module and the system printed circuit board to which it attaches, to reduce the footprint of the fiber optic module. In one embodiment, bending light or photons through ninety degrees, the light transmitter (a packaged type of emitter) and a light receiver (a packaged type of photodetector) are each mounted substantially perpendicular to the transmit and receive boards respectively such that their active areas are nearly facing each other but offset. A single optical block implements lenses and reflecting surfaces to minimize manufacturing costs. The light receiver and light transmitter are mounted offset from each other in the optical block in order to avoid optical cross talk. In a second embodiment, the light transmitter (emitter) and the light receiver (photodetector) are each mounted substantially parallel with the transmit and receive boards respectively and the connection to the optical fibers. The separate and substantially parallel receive and transmit boards are provided with ground planes on back sides in order to minimize electrical cross talk. A module outer shielded housing, manufactured out of metal or metal plated plastic, provides further shielding for EMI. The substantially parallel boards may be extended to support multiple channels or multiple parallel fibers such as in a ribbon optical fiber cable. Manufacturing steps of the boards for the fiber optic module are disclosed to provide reduced manufacturing costs.


In a third embodiment of the present invention, the light receiver and light transmitter are coupled to the receive board and transmit boards on an angle facing towards the optical fibers. The receiver and transmitter can be mounted directly across from each other without any offset in position because they do not face each other but are coupled at an angle and can avoid optical cross talk. A single optical block can provide the lenses and reflecting surfaces to minimize manufacturing costs. The reflecting surface for the transmitter may include a beam shaper to uniformly mix the spatial modes and increase the beam size to reduce the beam alignment sensitivity for coupling the light into the fiber, such that passive alignment need only be used. The beam shaper furthermore improves the launching of light or photons into a multimode optical fiber to stimulate other modes such that differential mode delay effect and modal noise is reduced. The separate and substantially parallel receive and transmit boards are provided with ground planes on back sides facing each other in order to minimize electrical cross talk. A module outer shielded housing, manufactured out of metal or metal plated plastic, provides further shielding for EMI.


In a fourth embodiment of the present invention, the light receiver and light transmitter are coupled to the receive board and transmit boards on an angle facing away from the optical fibers. The receiver and transmitter can be mounted directly across from each other without any offset in position because they do not face each other but are coupled at an angle and can avoid optical cross talk. A single optical block can provide the lenses and reflecting surfaces to minimize manufacturing costs. The reflecting surface for the transmitter may include a beam shaper to uniformly mix the spatial modes and the beam size to decrease the alignment sensitivity of the transmitter, such that passive alignment need only be used. The beam shaper furthermore improves the launching of light or photons into a multimode optical fiber to stimulate other modes such that differential mode delay effect is reduced. The separate and substantially parallel receive and transmit boards are provided with ground planes on back sides in order to minimize electrical cross talk. A module outer shielded housing, manufactured out of metal or metal plated plastic, provides further shielding for EMI.





BRIEF DESCRIPTIONS OF THE DRAWINGS


FIG. 1 is a simplified top cutaway view of a first embodiment of the present invention.



FIG. 2 is an exploded view of the first embodiment of the present invention.



FIG. 3A is a cross-sectional view from the top of the optic block for the first embodiment of the present invention.



FIG. 3B is a front side perspective view from the left of the optic block for the first embodiment of the present invention.



FIG. 3C is a frontal view of the optic block for the first embodiment of the present invention.



FIG. 3D is a back side perspective view from the right of the optic block for the first embodiment of the present invention.



FIG. 3E is a back view of the optic block for the first embodiment of the present invention.



FIG. 3F is a right side view of the optic block for the first embodiment of the present invention.



FIG. 3G is a left side view of the optic block for the first embodiment of the present invention.



FIG. 3H is a cross-sectional view of the optic block for the first embodiment of the present invention.



FIG. 3I is a magnified cross-sectional view of the alignment post of the optic block.



FIG. 4 is a simplified top cutaway view of a second embodiment of the present invention.



FIG. 5 is an exploded view of the second embodiment of the present invention.



FIG. 6A is a cross-sectional view from the top of the optic block for the second embodiment of the present invention.



FIG. 6B is a front side view of the optic block for the second embodiment of the present invention.



FIG. 6C is a back side view of the optic block for the second embodiment of the present invention.



FIG. 6D is a top side view of the optic block for the second embodiment of the present invention.



FIG. 7A is a top view of a manufacturing step of the present invention.



FIG. 7B is a side view of a manufacturing step of the present invention.



FIG. 8 is a simplified top cutaway view of a third embodiment of the present invention.



FIG. 9 is an exploded view of the third embodiment of the present invention.



FIG. 10 is a cross-sectional view from the top of the optic block for the third embodiment of the present invention.



FIG. 10B is a right side view of the optic block for the third embodiment of the present invention.



FIG. 10C is a left side view of the optic block for the third embodiment of the present invention.



FIG. 10D is a top side view of the optic block for the third embodiment of the present invention.



FIG. 11 is a simplified top cutaway view of a fourth embodiment of the present invention.



FIG. 12 is an exploded view of the fourth embodiment of the present invention.



FIG. 13A is a cross-sectional view from the top of the optic block for the fourth embodiment of the present invention.



FIG. 13B is a right side view of the optic block for the fourth embodiment of the present invention.



FIG. 13C is a left side view of the optic block for the fourth embodiment of the present invention.



FIG. 13D is a top side view of the optic block for the fourth embodiment of the present invention.



FIG. 14 is a cross-sectional view of an exemplary beam shaper.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

In the following detailed description of the present invention, numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, it will be obvious to one skilled in the art that the present invention may be practiced without these specific details. In other instances well known methods, procedures, components, and circuits have not been described in detail so as not to unnecessarily obscure aspects of the present invention.


The present invention includes a method, apparatus and system for improved optical elements for vertical PCB fiber optic modules. Briefly, fiber optic transmitter and receiver electrical elements are implemented on two separate substantially parallel boards in a fiber optic transceiver modules. The parallel boards are mounted substantially perpendicular to the base of the fiber optic module and the system printed circuit board to which it attaches, to reduce the footprint of the fiber optic module. In one embodiment, bending light or photons through ninety degrees, the light transmitter (a packaged type of emitter) and a light receiver (a packaged type of photodetector) are each mounted substantially perpendicular to the transmit and receive boards respectively such that their active areas are nearly facing each other but offset. A single optical block implements lenses and reflecting surfaces to minimize manufacturing costs. The light receiver and light transmitter are mounted offset from each other in the optical block in order to avoid optical cross talk. In a second embodiment, the light transmitter (emitter) and the light receiver (photodetector) are each mounted substantially parallel with the transmit and receive boards respectively and the connection to the optical fibers. The separate and substantially parallel receive and transmit boards are provided with ground planes on back sides in order to minimize electrical cross talk. Preferably the ground planes on the back sides of the printed circuit boards face each other. A module outer shielded housing, manufactured out of metal or metal plated plastic, provides further shielding for EMI. The substantially parallel boards may be extended to support multiple channels or multiple parallel fibers such as in a ribbon optical fiber cable. Manufacturing steps of the boards for the fiber optic module are disclosed to provide reduced manufacturing costs.


In a third embodiment of the present invention, the light receiver and light transmitter are coupled to the receive board and transmit boards on an angle facing towards the optical fibers. The receiver and transmitter can be mounted directly across from each other without any offset in position because they do not face each other but are coupled at an angle and can avoid optical cross talk. A single optical block can provide the lenses and reflecting surfaces to minimize manufacturing costs. The reflecting surface for transmission may include a beam shaper to mix the spatial modes uniformly and to reduce beam alignment sensitivity for coupling the light into the fiber, such that passive alignment need only be used. The beam shaper furthermore improves the launching of light or photons into a multimode optical fiber to stimulate other modes such that differential mode delay effect and modal noise is reduced. The separate and substantially parallel receive and transmit boards are provided with ground planes on back sides facing each other in order to minimize electrical cross talk. A module outer shielded housing, manufactured out of metal or metal plated plastic, provides further shielding for EMI.


In a fourth embodiment of the present invention, the light receiver and light transmitter are coupled to the receive board and transmit boards on an angle facing away from the optical fibers. The receiver and transmitter can be mounted directly across from each other without any offset in position because they do not face each other but are coupled at an angle and can avoid optical cross talk. A single optical block can provide the lenses and reflecting surfaces to minimize manufacturing costs. The reflecting surface for the transmitter may include a beam shaper to uniformly mix the spatial modes and increase the beam size to decrease the alignment sensitivity of coupling light into the fiber, such that passive alignment need only be used. The beam shaper furthermore improves the launching of light or photons into a multimode optical fiber to stimulate other modes such that differential mode delay effect and modal noise are reduced. The separate and substantially parallel receive and transmit boards are provided with ground planes on back sides facing each other in order to minimize electrical cross talk. A module outer shielded housing, manufactured out of metal or metal plated plastic, provides further shielding for EMI.


Referring now to FIG. 1, a simplified cutaway view of the first embodiment of the present invention is illustrated. FIG. 1 illustrates a fiber optic module 100 coupling to a pair of fiber optic cables 101. Fiber optic module 100 includes an optical block 102 and an electrical element 104. The electrical element 104 includes a transmit printed circuit board (PCB) 106, a receive PCB 108, an optional internal shield 109, a light transmitter 110, a light receiver 111, and a shielded housing 119. The light transmitter 110 and light receiver 111 are optoelectronic devices for communicating with optical fibers using light of various wavelengths or photons. An optoelectronic device is a device which can convert or transduce light or photons into an electrical signal or an electrical signal into light or photons. The transmitter 110 is a packaged emitter, that converts an electrical signal into emitting light or photons, such as a semiconductor laser or LED, preferably packaged in a TO can. The receiver 111 is a packaged photodetector, that detects or receives light or photons and converts it into an electrical signal, such as a photo diode, preferably package in a TO can. However other packages, housings or optoelectronic devices for receiving and transmitting light or photon may be used for the receiver 111 or transmitter 110.


Each of the optoelectronic devices, receiver 111 and transmitter 110, have terminals to couple to thruholes of the PCBs 106 and 108. The transmit PCB 106 includes electrical components 112 (transmitter integrated circuit (laser driver), resistors, capacitors and other passive or active electrical components), pins 113, and a ground plane 114. The electrical components 112 control the transmitter 110 and buffer the data signal received from a system for transmission over an optical fiber. The receive PCB 108 includes electrical components 116 (receiver integrated circuit (transimpedance amplifier and post amplifier), resistors, capacitors and other passive or active electrical components), pins 117, and a ground plane 118. The electrical components 116 control the receiver 111 and buffer the data signal received from an optical fiber. The ground planes 114 and 118 and the shielded housing 119 are coupled to ground. The electrical components 116 and pins 117 are sandwiched between the ground plane 118 and the shielding 119 to shunt electromagnetic fields to ground and avoid crosstalk in the receive PCB 108. Electrical components 112 and pins 113 are sandwiched between the ground plane 114 and the shielded housing 119 to shunt electro-magnetic fields generated by these components to ground and avoid crosstalk in the transmit PCB 106. Optional internal shielding 109 further provides additional crosstalk protection between printed circuit boards. If ground planes 114 and 118 are not used, then internal shielding 109 is required to reduce the electromagnetic fields that may be generated.


The optical block 102 includes lenses 120-123 and reflectors 124-125. Lenses 120-123 may be any culminating lenses including aspheric lenses, ball lenses, and GRIN lenses. Lenses 121-123 may be symmetric (circular symmetry) or asymmetric to provide optical steering. Lens 123 is for collimating the light or photons diverging from the transmitter 110 and lens 122 is for focussing the collimated light or photons into an optical fiber. Lens 120 is for collimating the light or photons diverging out from the end of an optical fiber and lens 121 is for focusing the collimated light or photons into the receiver 111. Reflectors 124-125 may be facets formed in the optical block having angles to provide total internal reflection between the optical block material and the atmosphere. Preferably they are forty five degree angle facets. Alternatively, they may be facets coated with a reflective surface or mirror surface to reflect light or photons off the reflective coated surface or facets having an optical grating surface to reflect photons. The optical block 102 is constructed of a thermoplastic or polycarbonate which is clear to the desired wavelengths of light or photons. The reflectors 124-125, lenses 120-123 and other elements of the optical block 102 described below are formed through injection molding of the desired material.


Referring to FIG. 2, an exploded diagram of the fiber optic module 100 is illustrated and its assembly is described. Transmitter 110 is inserted into an opening 214 in the optical block 102. Receiver 111 is inserted into an opening 213 in optical block 102. An epoxy is injected into top and bottom tacking holes 215 in order to hold the transmitter 110 and receiver 111 in openings 214 and 213 respectively. An MT alignment plate 201 has optical block alignment holes 216, an optical opening 217 and fiber optic connector alignment pins 218 for alignment purposes. The optical block holes 216 couple to optical block alignment pins in the optical block 102, not illustrated in FIG. 2. The fiber optic connector alignment pins 218 are for aligning optical fibers that couple to the fiber optic module 100.


For coupling to a fiber optic connector, the fiber optic module 100 has a nose 202 and a nose shield 203. The nose 202 includes a optical fiber opening 222 and a latch opening 223. The latch opening 223 receives the optical fiber connector and holds the optical fiber substantially fixed in place and aligned with the optical opening 217 of the alignment plate 201. The nose shield 203 includes an opening 224 for insertion over the nose 202 and shield tabs 225 for coupling to the ground plane of the package. The nose shielding 203 further reduces EMI.


After assembling the nose pieces to the optical block 102, the transmitter 110 and receiver 111 may be aligned to provide optimal light or photon output and reception. Alignment of the transmitter 110 and receiver ill in optical block 102 is performed by active alignment where the receiver 111 and transmitter 110 are powered up to detect and emit photons. By moving them in and out by their headers, the receiver 111 and transmitter 110 are properly aligned in the optical block 102 to provide maximum photon detection from or coupling into fiber 101. The tacking holes 215 extend into the openings 213 and 214 such that epoxy may be poured in to hold the optoelectronic devices to the optical block. After alignment is complete, the epoxy is UV cured and allowed to set such that the receiver 111 and transmitter 110 are substantially coupled to the optical block 102.


After the epoxy has set, the receive PCB 108 and the transmit PCB 106 may be attached to the receiver 111 and transmitter 110 respectively. Receiver thruholes 232 in the receive PCB 108 are aligned and slid over terminals 211 of the receiver 111. The terminals 211 are then soldered to make an electrical connection on the component side (opposite the side of the ground plane 118) of the receive PCB 108. Transmitter thruholes 233 in the transmit PCB 106 are aligned and then slid over the terminals 210 of the transmitter 110. The terminals 210 are then soldered to make an electrical connection on the component side (opposite the side of the ground plane 114) of transmit PCB 106. Ground planes 114 and 118 have sufficient material removed around the transmitter thruholes 233 and the receiver thruholes 232 respectively to avoid shorting the terminals of the transmitter 110 and receiver 111 to ground.


After coupling the PCBs 108 and 106 to the receiver 111 and transmitter 110 respectively, the assembly is inserted into the shielded housing 119. The optional internal shield 109 is next assembled into the shielded housing 119 between the PCBs 106 and 108. The optional internal shield 109 has pin slots 230 to surround the pins 113 and 117 and avoid shorting thereto. The shielded housing 119 includes clips 236 at each corner for mating to a base 205. The base 205 includes PCB slots 240, clip openings 238 into which the clips 236 may be inserted, and base pin holes 242 into which the PCB pins 113 and 117 may be inserted. The base 205 includes a guide post 244 for mounting the fiber optic module into a system printed circuit board. The bottom of the base mounts parallel to the printed circuit board of the system such that when horizontal, the receive PCB 108 and the transmit PCB 106 are vertical and substantially perpendicular in reference to the printed circuit board of the system and the base 205. Next in assembly, the base 205 has its base pin holes 242 slid over the PCB pins 113 and 117, the printed circuit boards 106 and 108 are guided to mate with the PCB slots 240, and the clips 236 of the shielded housing 119 are guided into the clip openings 238. The receive PCB pins 113 and the transmit PCB pins 117 are vertical and substantially perpendicular in reference to the printed circuit board of the system and the base 205. After coupling the base 205 to the shielded housing 119, the clips 236 are bent, twisted, or otherwise changed in order to hold the base 205 in place. As an alternative to clips 236 and clip openings 238, the shielded housing 119 may use plastic clips, or a ridge, integrated into each side that couples to base 205 appropriately. The shielded housing 119, which is coupled to ground, encases the PCBs 106 and 108 to reduce the electro-magnetic fields generated by the electrical components coupled thereto by shunting the electric fields to ground to reduce electromagnetic interference (EMI).


Referring now to FIG. 3A, a cross-sectional view of the optical block 102 for the first embodiment is illustrated. The transmitter 110, the receiver 111, and the MT alignment plate 201 are coupled to the optical block 102. The light transmitter 110 includes an emitter 302 for generation of light or photons in response to electrical signals from the transmit PCB 106. The light receiver 111 includes a detector 304 to receive light or photons and generate electrical signals in response to light or photons coupled thereto. Light or photons emitted by the emitter 302 are coupled into lens 123 and collimated onto the reflector 125 at an incident angle I1 (angle with the perpendicular to reflector 125 surface) of substantially forty five degrees. Reflector 125 reflects the incident light or photons on a refraction angle R1 (angle with the perpendicular to reflector 125 surface) equivalent to incident angle I1 of substantially forty five degrees. The reflected light or photons travel perpendicular to the incident light or photons towards the lens 122. Lens 122 focuses the light or photons from the emitter 302 into an aligned optical fiber through the optical port 217 in the MT alignment plate 201. Thus, light or photons coupled or launched into an optical fiber, defining a first optical axis, are substantially perpendicular to the light or photons emitted and incident upon lens 123 from the emitter 302 of the transmitter 110.


Light or photons, incident from a fiber optic cable coupled to the fiber optic module 100, is received through the optical port 217 of the MT alignment plate 201. Light or photons from the fiber optic cable are aligned to be incident upon the lens 120. Lens 120 collimates the incident light or photons from a fiber optic cable onto the reflector 124 at an incident angle I2 of substantially forty five degrees. Reflector 124 reflects incident light or photons at a refractive angle R2 equivalent to incident angle I2 of substantially forty five degrees towards lens 121. Lens 121 focuses the light or photons received from a fiber optical cable onto the detector 304. Light or photons incident from a fiber optic cable, defining a second optical axis, are substantially perpendicular to the light or photons incident upon the detector 304.



FIG. 3B illustrates a frontal perspective view from the left side of the optical block 102. The front side of the optical block 102 includes optical block alignment pins 316 and an optical output opening 317. The optical block alignment pins 316 couple to the alignment holes 216 of the alignment plate 201 such that the optical output opening 317 is aligned with the optical port 217 in the alignment plate 201. FIG. 3C illustrates the front side of the optical block 102. The optical output opening 317 is indicated.



FIG. 3D is a back side perspective view from the right of the optical block 102. The back side of the optical block 102 includes a cavity 322 that is used to form the shape of the reflective surfaces 124-125 during manufacturing of the optical block 102. FIG. 3E is a back view of the optic block illustrating the opening into the cavity 322.



FIG. 3F illustrates the right side of the optical block 102 which has the opening 214 to mate with the type of housing of the transmitter 110. The lens 123 can be viewed near the center of the opening 214. FIG. 3G illustrates the left side of the optical block 102, which has the opening 213 to mate with the type of housing of the receiver 111. The lens 121 can be viewed near the center of the opening 213. Comparing FIGS. 3F and 3G, the offset between openings 213 and 214 to avoid optical crosstalk is visible. In the preferred embodiment, receiver 111 is closer to the optical opening 317 in order to minimize the loss of incoming received optical power. However, the position of receiver 111 and transmitter 110 can be interchanged. FIG. 3H is a cross-sectional view of the optical block 102 illustrating the relative position of the optical block alignment posts 316. The area 324 surrounding the alignment post 316 is magnified in FIG. 3I. FIG. 3I provides a magnified cross-sectional view of the alignment post 316.



FIG. 4 illustrates a second embodiment of the present invention. To couple to the optical fibers 101, a fiber optic module 400 includes an optical block 402 and electrical elements 404. Electrical elements 404 include transmitter PCB 106, receiver PCB 108, light receiver 111, light transmitter 110, and a shielded housing 419. Shielded housing 419 may be narrower than shielded housing 119 due to receiver 111 and transmitter 110 being parallel with the PCBs 108 and 106. Optical block 402 includes lens 423 and lens 421 for coupling light or photons into and out of the fiber optic cable 101. Lens 423 and 421 may be spherical lenses or each may be a pair of aspheric lenses on the same optical axis. Light or photons emitted by the transmitter 110 are collected and focused by lens 423 into a transmit fiber optic cable. Light or photons on a receive fiber optic cable are collected and focused by lens 421 into the receiver 111. In this manner, fiber optic module 400 keeps light or photons substantially in parallel and does not have to reflect the light or photons to couple it with receiver 111 or transmitter 110.



FIG. 5 illustrates an exploded diagram of the fiber optic module 400. Fiber optic module 400 is assembled similar to fiber optic module 100 as previously described with reference to FIG. 2. However, optical block 402 differs from optical block 102. Receiver 111 and transmitter 110 are inserted into openings 513 and 514 respectively in the optical block 402. An epoxy is injected in top and bottom tacking holes 515 of the optical block 402 and the receiver 111 and transmitter 110 are tested and aligned to substantially couple light or photons into and out of fiber optic cables. After the epoxy is set and the receiver and transmitter are substantially fixed in the optical block 102, the transmit PCB 106 and the receive PCB 108 are coupled respectively to the transmitter 110 and the receiver 111. The terminals 511 and 510 of the receiver 111 and the transmitter 110 respectively are soldered directly onto the PCB. The high frequency pins associated with the receiver 111 and transmitter 110 are preferably soldered on the component side of the printed circuit boards in order to provide proper shielding. The alignment plate 201, the nose 202 and the nose shielding 203 are unnecessary in this embodiment of the present invention. Fiber ferrules are utilized instead for alignment between the optical block 402 and the optical fibers 101.


Referring now to FIG. 6A, a cross-sectional view of the optical block 402 for the second embodiment is illustrated. The transmitter 110 and the receiver 111 are coupled to the optical block 402. The transmitter 110 includes an emitter 302 for generation of light or photons. The receiver 111 includes a detector 304 to receive light or photons. Light or photons emitted by the emitter 302 are coupled into lens 423, collected and focused into the optical fiber through the optical port 417A. Light or photons, incident from a fiber optic cable coupled to the fiber optic module 400, is received through the optical port 417B. Photons from the fiber optic cable are incident upon the lens 421. Lens 421 collects and focuses the incident light or photons from the fiber optic cable onto the detector 304 of the receiver 111. In order to keep the optical fibers 101 in alignment with the optical block 402, a pair of fiber ferrules 422 are provided. The fiber ferrules 422 are inserted into the optical ports 417A and 417B.



FIG. 6B illustrates the front side of the optical block 402. The front side of the optical block 402 includes optical output ports 417A and 417B. In FIG. 6B, the lens 421 is visible through the optical output port 417B and the lens 423 is visible through the optical output port 417A. FIG. 6C is an illustration of the back side of the optical block 402. In FIG. 6C, the lens 421 is visible through opening 513 and lens 423 is visible through opening 514. FIG. 6D illustrates the top side of the optical block 402 which has the tacking holes 515 coupling to the openings 513 and 514. Epoxy may be inserted into the top and bottom tacking holes 515 to hold the transmitter 110 and receiver 111 in position in the optical block 402.


Referring now to FIGS. 7A-7B, final steps of the assembly of printed circuit boards 106 and 108 are illustrated. Transmit PCB 106 and receive PCB 108 are assembled as one unit on one printed circuit board 700 with a center score 702 defining a boundary line between transmit and receive components. After all components have been attached and assembled onto the unitary PCB 700, the PCB 700 is flexed along the score 702 such that the transmit PCB 106 and the receive PCB 108 may be separated. Transmit PCB 106 and the receive PCB 108 may thereafter be assembled as part of the fiber optic module 100 and the fiber optic module 400. The transmit PCB 106 and the receive PCB 108 may each be approximately 6.5 mm in height excluding pins 113 and 117.



FIG. 8 illustrates a third embodiment of the present invention. To couple to the optical fibers 101, a fiber optic module 800 includes an optical block 802 and electrical elements 804. Fiber optic module 800 is similar to fiber optic module 100 as previously described, except that, optical block 802 differs from optical block 102. Optical block 802 includes lenses 820-823 and reflectors 824-825 for coupling light or photons into and out of the fiber optic cable 101. Additionally, optical block 802 may be constructed of one or several pieces split between receive optics and transmit optics or the type of optical elements. Electrical elements 804 include transmitter PCB 106, receiver PCB 108, light receiver 111, light transmitter 110, and a shielded housing 819. Shielded housing 819 may be narrower than shielded housing 119 because of the improvements to the optical block 802.


Lenses 820-823 of the optical block may be any culminating lenses including aspheric lenses. Lenses 820-823 may be symmetric (circular symmetry) or asymmetric to provide optical steering. Lens 823 is for collimating the light or photons diverging from the transmitter 110 and lens 822 is for focussing the collimated light or photons into an optical fiber. Lens 820 is for collimating the light or photons diverging out from the end of an optical fiber and lens 821 is for focusing the collimated light or photons into the receiver 111. Reflectors 824-825 may be facets formed in the optical block having angles to provide total internal reflection between the optical block material and the atmosphere for incident light. Preferably the reflectors 824-825 are on a thirty degree angle with the fiber axis. The fiber axis is an axis or line emanating from the circular center of a perfectly coupled optical fiber. Alternatively, the facets may be coated with a reflective or mirror surface to reflect light or photons off the reflective coated surface to reflect photons. Additionally, the reflector 825 may be a beam shaper to form a more uniform light pattern for more efficient optical fiber coupling. The reflector 825 may include an optical grating surface or a prism as the beam shaper. The optical block 802 is constructed from similar materials and in a similar method as optical block 102.



FIG. 9 illustrates an exploded diagram of the fiber optic module 800. Fiber optic module 800 is assembled similar to fiber optic module 100 as previously described with reference to FIG. 2. However, optical block 802 differs from optical block 102. Receiver 111 and transmitter 110 are inserted into openings 913 and 914 respectively in the optical block 802. An epoxy is injected in top and bottom tacking holes 915 of the optical block 802 and the receiver 111 and transmitter 110 are passively aligned therein. Due to improvements in the optical block 802, the receiver 111 and transmitter 110 can be mechanically aligned, without powering the optoelectronic devices and performing an active alignment, and provide sufficient efficiency of coupling light or photons into and out of fiber optic cables. Additionally, two dimensional alignment in X-Y directions is only necessary due to the improved optical block 802. Needing to perform only passive alignment over two dimensions reduces manufacturing costs of the fiber optic module 800. After the epoxy is set and the receiver 111 and transmitter 110 are substantially fixed in the optical block 102, the transmit PCB 106 and the receive PCB 108 are coupled respectively to the transmitter 110 and the receiver 111. The terminals 911 and 910 of the receiver 111 and the transmitter 110 may be bent-lead terminals or straight terminals to couple to the receiver pin holes 232 and the transmitter pin holes 233 respectively.


Referring now to FIG. 10A, a cross-sectional view of the optical block 802 for the second embodiment is illustrated. The transmitter 110, the receiver 111, and the MT alignment plate 201 are coupled to the optical block 802. The receiver 111 and transmitter 110 may be passively aligned such that they do not make a forty five degree reflective angle (R4) or incident angle (I3) respectively with reflectors 824 and 825. R4 and I3 are angles greater than forty-five degrees. A first preferable range of angles of alignment, forming the reflective angle R4 and incident angle I3, is between fifty to seventy degrees and a second preferable range of angles of alignment is between fifty-five to sixty-five degrees.


Light or photons emitted by the transmitter 110 are coupled into lens 823 and collimated onto the reflector 825 at an incident angle I3 (angle with the perpendicular to reflector 825 surface) not equal to forty five degrees. Reflector 825 reflects the incident light or photons on a reflective angle R3 (angle with the perpendicular to reflector 825 surface). If reflector 825 is only a reflective surface, the reflective angle R3 is equivalent to the incident angle I3. If reflector 825 is a beam shaper the reflective angle R3 may not be equal to the incident angle I3. With a beam shaper, the reflective angle R3 may be off the fiber axis by the angle L1, referred to as the launch angle. The launch angle L1 ranges between zero and thirty degrees. The reflected light or photons travel towards the lens 822. Lens 822 focuses the light or photons from the transmitter 110 into an aligned optical fiber through the optical port 417A. Thus with optical block 802, light or photons coupled or launched into an optical fiber, are non-orthogonal to the light or photons emitted and incident upon lens 823 from the transmitter 110.


Light or photons, incident from a fiber optic cable coupled to the fiber optic module 800, is received through the optical port 417A. Light or photons from the fiber optic cable are aligned to be incident upon the lens 820. Lens 820 collimates and focuses the incident light or photons from a fiber optic cable onto the reflector 824 at an incident angle I4. Reflector 824 reflects incident light or photons at a reflective angle R4. The reflective angle R4 is equivalent to the incident angle I4. Lens 821 focuses the light or photons received from a fiber optical cable into the receiver 111. Thus with optical block 802, light or photons incident from a fiber optic cable are non-orthogonal to the light or photons incident upon the receiver 111.


Similar to optical block 102 illustrated in FIG. 3B, the front side of the optical block 802 includes optical block alignment pins 316 and an optical output port 317. The optical block alignment pins 316 couple to the alignment holes 216 of the alignment plate 201 such that the optical output port 317 is aligned with the optical port 417A.



FIG. 10B illustrates the right side of the optical block which has the opening 914 to mate with the type of housing of the transmitter 110. FIG. 10C illustrates the left side of the optical block 802 which has the opening 913 to mate with the type of housing of the receiver 111. Comparing FIGS. 10B and 10C, there is no offset between the openings 913 and 914 because the optical block 802 does not need it to avoid optical crosstalk. This is another reason optical block 802 can be smaller than optical block 102 so as to further reduce the footprint and manufacturing costs of the fiber optic module 800. FIG. 10D illustrates the top side of the optical block 802 which has the top tacking holes 915 coupling to openings 913 and 914. Epoxy may be inserted into the top and bottom tacking holes 915 to hold the transmitter 110 and receiver 111 in position.



FIG. 11 illustrates a fourth embodiment of the present invention. To couple to the optical fibers 101, a fiber optic module 1100 includes an optical block 1102 and electrical elements 1104. Fiber optic module 1100 is similar to fiber optic module 100 as previously described, except that, optical block 1102 differs from optical block 102. Optical block 1102 includes lenses 1120-1123 and reflectors 1124-1125 for coupling light or photons into and out of the fiber optic cable 101. Additionally, optical block 1102 may be constructed of one or several pieces split between receive optics and transmit optics or the type of optical elements. Electrical elements 1104 include transmitter PCB 106, receiver PCB 108, light receiver 111, light transmitter 110, and a shielded housing 1119. Shielded housing 1119 may be narrower than shielded housing 119 because of the improvements to the optical block 1102.


Lenses 1120-1123 of the optical block may be any culminating lenses including aspheric lenses. Lenses 1120-1123 may be symmetric (circular symmetry) or asymmetric to provide optical steering. Lens 1123 is for collimating the light or photons diverging from the transmitter 110 and lens 1122 is for focussing the collimated light or photons into an optical fiber. Lens 1120 is for collimating the light or photons diverging out from the end of an optical fiber and lens 1121 is for focusing the collimated light or photons into the receiver 111. Reflectors 1124-1125 are facets formed in the optical block. Preferably the reflectors 1124-1125 are on a sixty degree angle with the fiber axis. Alternatively, the facets need to be coated with a reflective or mirror surface to reflect light or photons off it. Additionally, the reflector 1125 may be a beam shaper to form a more uniform light pattern for more efficient optical fiber coupling. The reflector 1125 may include an optical grating surface or a prism as the beam shaper. The optical block 1102 is constructed from similar materials and in a similar method as optical block 102.



FIG. 12 illustrates an exploded diagram of the fiber optic module 1100. Fiber optic module 1100 is assembled similar to fiber optic module 100 as previously described with reference to FIG. 2. However, optical block 1102 differs from optical block 102 but is very similar to optical block 802. Receiver 111 and transmitter 110 are inserted into openings 1213 and 1214 respectively in the optical block 1102. An epoxy is injected in top and bottom tacking holes 1215 of the optical block 1102 and the receiver 111 and transmitter 110 may be passively aligned therein. Due to improvements in the optical block 1102, the receiver 111 and transmitter 110 can be mechanically aligned, without powering the optoelectronic devices and performing an active alignment, and provide sufficient efficiency of coupling light or photons into and out of fiber optic cables. Additionally, two dimensional alignment in X-Y directions is only necessary due to the improved optical block 1102. Needing to perform only passive alignment over two dimensions reduces manufacturing costs of the fiber optic module 1100. After the epoxy is set and the receiver 111 and transmitter 110 are substantially fixed in the optical block 102, the transmit PCB 106 and the receive PCB 108 are coupled respectively to the transmitter 110 and the receiver 111. The terminals 1211 and 1210 of the receiver 111 and the transmitter 110 may be bent-lead terminals or straight terminals to couple to the receiver pin holes 232 and the transmitter pin holes 233 respectively.


Referring now to FIG. 13A, a cross-sectional view of the optical block 1102 for the second embodiment is illustrated. The transmitter 110, the receiver 111, and the MT alignment plate 201 are coupled to the optical block 1102. The receiver 111 and transmitter 110 are passively aligned such that they do not make a forty five degree reflective angle (R6) or incident angle (I5) respectively with reflectors 1124 and 1125. R6 and I5 are angles less than forty-five degrees. A first preferable range of angles of alignment, forming the reflective angle R6 and incident angle I5, is between twenty to forty degrees and a second preferable range of angles of alignment is between twenty-five to thirty-five degrees.


Light or photons emitted by the transmitter 110 are coupled into lens 1123 and collimated onto the reflector 1125 at an incident angle I5 (angle with the perpendicular to reflector 1125 surface) not equal to forty five degrees. Reflector 1125 reflects the incident light or photons on a reflective angle R5 (angle with the perpendicular to reflector 1125 surface). If reflector 1125 is only a reflective surface, the reflective angle R5 is equivalent to the incident angle I5. If reflector 1125 is a beam shaper the reflective angle R5 may not be equal to the incident angle I5. With a beam shaper, the reflective angle R5 may be off the fiber axis by the angle L1, referred to as the launch angle. The launch angle L1 ranges between zero and thirty degrees. The reflected light or photons travel towards the lens 1122. Lens 1122 focuses the light or photons from the transmitter 110 into an aligned optical fiber through the optical port 417A. Thus with optical block 1102, light or photons coupled or launched into an optical fiber, are non-orthogonal to the light or photons emitted and incident upon lens 1123 from the transmitter 110.


Light or photons, incident from a fiber optic cable coupled to the fiber optic module 1100, is received through the optical port 417A. Light or photons from the fiber optic cable are aligned to be incident upon the lens 1120. Lens 1120 collimates and focuses the incident light or photons from a fiber optic cable onto the reflector 1124 at an incident angle I6. Reflector 1124 reflects incident light or photons at a reflective angle R6. The reflective angle R6 is equivalent to the incident angle I6. Lens 1121 focuses the light or photons received from a fiber optical cable into the receiver 111. Thus with optical block 1102, light or photons incident from a fiber optic cable are non-orthogonal to the light or photons incident upon the receiver 111.


Similar to optical block 102 illustrated in FIG. 3B, the front side of the optical block 1102 includes optical block alignment pins 316 and an optical output port 317. The optical block alignment pins 316 couple to the alignment holes 216 of the alignment plate 201 such that the optical output port 317 is aligned with the optical port 417A.



FIG. 13B illustrates the right side of the optical block which has the opening 1114 to mate with the type of housing of the transmitter 110. FIG. 13C illustrates the left side of the optical block 1102 which has the opening 1113 to mate with the type of housing of the receiver 111. Comparing FIGS. 13B and 13C, there is no offset between the openings 1113 and 1114 because the optical block 1102 does not need it to avoid optical crosstalk. This is another reason optical block 1102 can be smaller than optical block 102 so as to further reduce the footprint and manufacturing costs of the fiber optic module 1100. FIG. 13D illustrates the top side of the optical block 1102 which has the top tacking holes 1215 coupling to openings 1213 and 1214. Epoxy may be inserted into the top and bottom tacking holes 1215 to hold the transmitter 110 and receiver 111 in position.



FIG. 14 is illustrative of one type of beam shaper, an optical grating surface 1402. Optical grating surface 1402 forms the reflector 825. The optical grating surface is formed into the optical block 802 leaving the atmosphere 1400 on the opposite side. The optical grating surface 1402 can be formed as part of the injection molding of the optical block or it may be etched into the surface or a film whose thickness or refractive index is periodically modulated could be adhesively coupled to the reflective surface. Light within the optical block 802 at an incident angle I3 is diffracted by the optical grating surface 1402 at a diffractive angle R3. The diffractive angle R3 depends upon the point where the incident ray strikes the optical grating surface 1402. The differences in diffractive angles provides for the beam mode mixing.


The reflecting surface includes a beam shaper in order to mix the spatial modes. The uniformly mixed modes reduce the effect known as the modal noise. The off-angle launching reduces the differential mode delay phenomenon in multimode optical fibers which can reduce the optical transmission distance within an optical fiber. Using a beam shaper, the beam can also be collimated without using lenses in order to save valuable physical space within the fiber optic modules. Additionally, uniformly distributed modes decrease the alignment sensitivity of the optical coupling of the transmitter such that passive alignment need only be used. The beam shaper furthermore improves the launching of light or photons into a multimode optical fiber to stimulate other modes, referred to as a multi-mode conditional launching. This reduces the phenomena known as the differential mode delay effect.


The previous detailed description describes fiber optic modules as including a receiver and transmitter. However, one of ordinary skill can see that a fiber optic module may be a receiver only or a transmitter only such that only one board may be substantially perpendicular to the base. Additionally, the previous detailed description described one PCB board for receive and transmit functions. However, the present invention may be extended to a plurality of PCB boards substantially in parallel for providing transmit or receive functionality or both into parallel fiber optic cables.


As those of ordinary skill will recognize, the present invention has many advantages over the prior art. One advantage of the present invention is that the alignment of optoelectronic devices is simplified such that manufacturing costs are reduced. Another advantage of the present invention is that vertical PCBs provide a narrower width of fiber optic module to provide a coupling to narrower optical fiber connectors. Another advantage of the present invention is that orientation of the optoelectronics eliminates optical cross talk. Another advantage of the present invention is that the physical separation of the receive and transmit optical elements and electrical elements provides superior isolation and minimizes optical and electrical cross-talk.


The preferred embodiments of the present invention for METHOD AND APPARATUS FOR IMPROVED OPTICAL ELEMENTS FOR VERTICAL PCB FIBER OPTIC MODULES are thus described. While the present invention has been described in particular embodiments, the present invention should not be construed as limited by such embodiments, but rather construed according to the claims that follow below.

Claims
  • 1. A fiber optic module for coupling photons between an optoelectronic device and an optical fiber, the fiber optic module comprising: a base having a slot and a plurality of pin holes, the base to mount the fiber optic module in a system for coupling photons between an optoelectronic device and an optical fiber; a printed circuit board (PCB) inserted into the slot substantially perpendicular to the base, the PCB having a plurality of pins inserted into the plurality of pin holes and an optoelectronic device to communicate with an optical fiber using photons, the optoelectronic device having terminals coupled to the PCB; and an optical block coupled to the optoelectronic device of the PCB to couple photons between the optoelectronic device and an optical fiber, the optical block having a reflective surface to reflect photons between the optoelectronic device and the optical fiber, the optical block coupled to the optoelectronic device such that an angle between the optoelectronic device and a line perpendicular to the reflective surface is not equal to forty five degrees or a multiple thereof.
  • 2. The fiber optic module of claim 1 for coupling photons between an optoelectronic device and an optical fiber wherein, the optical block further has a first lens to focus photons and a second lens to collimate photons between the optoelectronic device and an optical fiber.
  • 3. The fiber optic module of claim 2 for coupling photons between an optoelectronic device and an optical fiber, wherein, the second lens of the optical block is an aspheric lens, a ball lens or a GRIN lens.
  • 4. The fiber optic module of claim 3 for coupling photons between an optoelectronic device and an optical fiber, wherein, the first lens is an asymmetric lens to steer photons or a symmetric lens to provide additional modes of coupling photons.
  • 5. The fiber optic module of claim 3 for coupling photons between an optoelectronic device and an optical fiber, wherein, the second lens is an asymmetric lens to steer photons or a symmetric lens to provide additional modes of coupling photons.
  • 6. The fiber optic module of claim 2 for coupling photons between an optoelectronic device and an optical fiber, wherein, the first lens of the optical block is an aspheric lens, a ball lens or a GRIN lens.
  • 7. The fiber optic module of claim 2 for coupling photons between an optoelectronic device and an optical fiber, wherein, photons are to be launched into an optical fiber, the second lens of the optical block to receive photons from the optoelectronic device and direct them towards the reflective surface, the reflective surface to reflect photons received from the second lens and direct them towards the first lens and the optical fiber, and the first lens of the optical block to focus photons from the reflective surface into an optical fiber.
  • 8. The fiber optic module of claim 7 for coupling photons between an optoelectronic device and an optical fiber, wherein, the optoelectronic device is an emitter.
  • 9. The fiber optic module of claim 8 for coupling photons between an optoelectronic device and an optical fiber, wherein, the emitter is a vertical cavity surface emitting laser (VCSEL).
  • 10. The fiber optic module of claim 2 for coupling photons between an optoelectronic device and an optical fiber, wherein, photons are to be received from an optical fiber, the second lens of the optical block to receive photons from the optical fiber and direct them towards the reflective surface, the reflective surface to reflect photons received by the second lens towards the first lens and the optoelectronic device, and the first lens of the optical block is a focusing lens to focus photons from the reflective surface into the optoelectronic device.
  • 11. The fiber optic module of claim 10 for coupling photons between an optoelectronic device and an optical fiber, wherein, the optoelectronic device is a photodetector.
  • 12. The fiber optic module of claim 1 for coupling photons between an optoelectronic device and an optical fiber wherein, the PCB further comprises: electrical components coupled between the optoelectronic device and the plurality of pins on a first side of the PCB, the electrical components to control the optoelectronic device, and a ground plane coupled to a second side of the PCB to reduce electromagnetic fields generated by the electrical components.
  • 13. The fiber optic module of claim 12 for coupling photons between an optoelectronic device and an optical fiber, the fiber optic module further comprising: a shielded housing coupled to the base, the shielded housing encasing the PCB to reduce electromagnetic interference (EMI).
  • 14. The fiber optic module of claim 1 for coupling photons between an optoelectronic device and an optical fiber wherein, the angle between the optoelectronic device and the line perpendicular to the reflective surface is greater than forty five degrees.
  • 15. The fiber optic module of claim 14 for coupling photons between an optoelectronic device and an optical fiber wherein, the angle between the optoelectronic device and the line perpendicular to the reflective surface is between fifty degrees and seventy degree.
  • 16. The fiber optic module of claim 15 for coupling photons between an optoelectronic device and an optical fiber wherein, the angle between the optoelectronic device and the line perpendicular to the reflective surface is between fifty-five degrees and sixty-five degrees.
  • 17. The fiber optic module of claim 14 for coupling photons between an optoelectronic device and an optical fiber, wherein, the reflective surface is a boundary surface providing total internal reflection for the photons to be reflected.
  • 18. The fiber optic module of claim 1 for coupling photons between an optoelectronic device and an optical fiber wherein, the angle between the optoelectronic device and the line perpendicular to the reflective surface is less than forty five degrees.
  • 19. The fiber optic module of claim 18 for coupling photons between an optoelectronic device and an optical fiber wherein, the angle between the optoelectronic device and the line perpendicular to the reflective surface is between twenty degrees and forty degrees.
  • 20. The fiber optic module of claim 19 for coupling photons between an optoelectronic device and an optical fiber wherein, the angle between the optoelectronic device and the line perpendicular to the reflective surface is between twenty-five degrees and thirty-five degrees.
  • 21. The fiber optic module of claim 1 for coupling photons between an optoelectronic device and an optical fiber, wherein, the reflective surface is a beam shaper to reflect and alter a light beam of photons.
  • 22. The fiber optic module of claim 21 for coupling photons between an optoelectronic device and an optical fiber, wherein, the beam shaper is an optical grating surface to scramble photo-modes and to reflect the photons.
  • 23. The fiber optic module of claim 1 for coupling photons between an optoelectronic device and an optical fiber, wherein, the reflective surface is a mirror coated surface to reflect the photons.
  • 24. A fiber optic transceiver for coupling photons between optoelectronic devices and optical fibers, the fiber optic transceiver comprising: a base having a first slot near one side, a second slot near an opposite side of the first slot, a first plurality of pin holes near the one side and a second plurality of pin holes near the opposite side, the base to mount the fiber optic transceiver in a system for coupling photons between an optoelectronic device and an optical fiber; a first printed circuit board (PCB) inserted into the first slot substantially perpendicular to the base, the first PCB having a plurality of pins inserted into the first plurality of pin holes and a first optoelectronic device to communicate with a first optical fiber using photons, the first optoelectronic device having terminals coupled to the first PCB; a second PCB inserted into the second slot substantially perpendicular to the base, the second PCB having a second plurality of pins inserted into the second plurality of pin holes and a second optoelectronic device to communicate with a second optical fiber using photons, the second optoelectronic device having terminals coupled to the second PCB; and optical elements coupled to the first optoelectronic device of the first PCB to couple photons between the first optoelectronic device and a first optical fiber and the second optoelectronic device of the second PCB to couple photons between the second optoelectronic device and a second optical fiber, the optical elements having a first reflective surface and a second reflective surface, the optical elements coupled to the first optoelectronic device such that a first angle between the first optoelectronic device and a first line perpendicular to the first reflective surface is not equal to forty five degrees or a multiple thereof and the optical elements coupled to the second optoelectronic device such that a second angle between the second optoelectronic device and a second line perpendicular to the second reflective surface is not equal to forty five degrees or a multiple thereof.
  • 25. The fiber optic transceiver of claim 24 for coupling photons between optoelectronic devices and optical fibers, wherein, the optical elements further have a first lens to collimate photons and a third lens to focus photons between the first optoelectronic device and the first optical fiber, a second lens to focus photons and a fourth lens to collimate photons between the second optoelectronic device and the second optical fiber.
  • 26. The fiber optic transceiver of claim 25 for coupling photons between optoelectronic devices and optical fibers, wherein, the first lens of the optical block is for receiving photons from the first optical fiber and collimating them towards the first reflective surface, the first reflective surface reflects photons received by the first lens towards the third lens and the first optoelectronic device, and the third lens of the optical block is for focusing photons from the first reflective surface into the first optoelectronic device.
  • 27. The fiber optic module of claim 26 for coupling photons between an optoelectronic device and an optical fiber, wherein, the fourth lens of the optical block to receive photons from the second optoelectronic device and collimate them towards the second reflective surface, the second reflective surface to reflect photons received from the fourth lens and direct them towards the second lens and the second optical fiber, and the second lens of the optical block to focus photons from the second reflective surface into the second optical fiber.
  • 28. The fiber optic transceiver of claim 27 for coupling photons between optoelectronic devices and optical fibers, wherein, the first optoelectronic device is a photodetector, and the second optoelectronic device is and emitter.
  • 29. The fiber optic transceiver of claim 28 for coupling photons between optoelectronic devices and optical fibers, wherein, the emitter is a vertical cavity surface emitting laser (VCSEL).
  • 30. The fiber optic transceiver of claim 26 for coupling photons between optoelectronic devices and optical fibers, wherein, the first optoelectronic device is a photodetector.
  • 31. The fiber optic transceiver of claim 25 for coupling photons between optoelectronic devices and optical fibers, wherein, the first, second, third and fourth lenses of the optical block are from the set of aspheric lenses, ball lenses, or GRIN lenses.
  • 32. The fiber optic transceiver of claim 25 for coupling photons between optoelectronic devices and optical fibers, wherein, the first, second, third and fourth lenses of the optical block are lenses to steer photons or to provide additional modes of coupling photons.
  • 33. The fiber optic module of claim 25 for coupling photons between an optoelectronic device and an optical fiber, wherein, the fourth lens of the optical block to receive photons from the second optoelectronic device and collimate them towards the second reflective surface, the second reflective surface to reflect photons received from the fourth lens and direct them towards the second lens and the second optical fiber, and the second lens of the optical block to focus photons from the second reflective surface into the second optical fiber.
  • 34. The fiber optic transceiver of claim 33 for coupling photons between optoelectronic devices and optical fibers, wherein, the second optoelectronic device is an emitter.
  • 35. The fiber optic transceiver of claim 34 for coupling photons between optoelectronic devices and optical fibers, wherein, the emitter is a vertical cavity surface emitting laser (VCSEL).
  • 36. The fiber optic module of claim 24 for coupling photons between an optoelectronic device and an optical fiber wherein, the first and second angles are greater than forty five degrees.
  • 37. The fiber optic module of claim 36 for coupling photons between an optoelectronic device and an optical fiber wherein, the first and second angles are between fifty degrees seventy degrees.
  • 38. The fiber optic module of claim 37 for coupling photons between an optoelectronic device and an optical fiber wherein, the first and second angles are between fifty-five degrees and sixty-five degrees.
  • 39. The fiber optic transceiver of claim 36 for coupling photons between optoelectronic devices and optical fibers, wherein, the first and second reflective surfaces are boundary surfaces providing total internal reflection for the photons to be reflected.
  • 40. The fiber optic module of claim 24 for coupling photons between an optoelectronic device and an optical fiber wherein, the first and second angles are less than forty five degrees.
  • 41. The fiber optic module of claim 40 for coupling photons between an optoelectronic device and an optical fiber wherein, the first and second angles are between twenty degrees and forty five degrees.
  • 42. The fiber optic module of claim 41 for coupling photons between an optoelectronic device and an optical fiber wherein, the first and second angles are between twenty-five degrees and thirty-five degrees.
  • 43. The fiber optic transceiver of claim 24 for coupling photons between an optoelectronic device and an optical fiber wherein, the second reflective surface is a beam shaper to reflect and alter a light beam of photons.
  • 44. The fiber optic transceiver of claim 43 for coupling photons between optoelectronic devices and optical fibers, wherein, the beam shaper is an optical grating surface to scramble photo-modes and to reflect photons.
  • 45. The fiber optic transceiver of claim 24 for coupling photons between optoelectronic devices and optical fibers, wherein, the first and second reflective surfaces are mirror coated surfaces to reflect photons.
  • 46. The fiber optic transceiver of claim 24 for coupling photons between optoelectronic devices and optical fibers, the fiber optic transceiver further comprising: an internal shield inserted between the first PCB and the second PCB, the internal shield further reducing electrical crosstalk.
  • 47. The fiber optic transceiver of claim 27 for coupling photons between optoelectronic devices and optical fibers wherein, the first PCB further comprises: first electrical components coupled between the optoelectronic device and the plurality of pins on a first side of the first PCB, the first electrical components to control the first optoelectronic device, and a first ground plane coupled to a second side of the first PCB to reduce electromagnetic fields; and, the second PCB further comprises: second electrical components coupled between the optoelectronic device and the plurality of pins on a first side of the second PCB, the second electrical components to control the second optoelectronic device, and a second ground plane coupled to a second side of the second PCB to reduce electromagnetic fields.
  • 48. A fiber optic transceiver for transmitting and receiving photons over optical fibers, the fiber optic transceiver comprising: a transmitter to transmit photons; a receiver to receive photons; and an optical block to couple light between optical fibers and the transmitter and the receiver, the optical block having a first reflector to reflect photons between the receiver and a first optical fiber, a second reflector to reflect photons between the transmitter and a second optical fiber, a receive opening on one side of the optical block to receive the receiver at an angle with a line perpendicular to the first reflector not equal to forty-five degrees, a transmit opening on an opposite side of the optical block opposite the receive opening, the transmit opening to receive the transmitter at an angle with a line perpendicular to the second reflector not equal to forty five degrees, a first lens, the first reflector, and a third lens in an optical path between the receive opening and the first optical fiber, and a second lens, the second reflector, and a fourth lens in an optical path between the transmit opening and the second optical fiber.
  • 49. The fiber optic transceiver of claim 48 for transmitting and receiving photons over optical fibers, wherein, the angle for receiving the receiver through the receive opening is less than forty five degrees, and wherein, the angle for receiving the transmitter through the transmit opening is less than forty five degrees.
  • 50. The fiber optic transceiver of claim 48 for transmitting and receiving photons over optical fibers, wherein, the angle for receiving the receiver through the receive opening is greater than forty five degrees, and wherein, the angle for receiving the transmitter through the transmit opening is greater than forty five degrees.
  • 51. The fiber optic transceiver of claim 50 for transmitting and receiving photons over optical fibers, wherein, the first reflector and the second reflector are boundary surfaces providing sufficient index of refraction to provide total internal reflection of incident light.
  • 52. The fiber optic transceiver of claim 48 for transmitting and receiving photons over optical fibers, wherein the optical block of the fiber optic transceiver further has: a pair of optical block alignment pins to couple to an alignment plate of an optical fiber receiver, the pair of optical block alignment pins to align the optical block to optical fibers.
  • 53. The fiber optic transceiver of claim 48 for transmitting and receiving photons over optical fibers, wherein, the first and fourth lenses are collimating lenses and the second and third lenses are focusing lenses.
  • 54. The fiber optic transceiver of claim 53 for transmitting and receiving photons over optical fibers, wherein, the first reflector is a mirror reflector and the second reflector is a beam shaper.
  • 55. The fiber optic transceiver of claim 54 for transmitting and receiving photons over optical fibers, wherein, the second reflector is an optical grating.
  • 56. The fiber optic transceiver of claim 53 for transmitting and receiving photons over optical fibers, wherein, the first reflector and the second reflector are mirror coated surfaces to reflect incident light.
  • 57. A fiber optic module for coupling photons between an optoelectronic device and an optical fiber, the fiber optic module comprising: a base having a slot and a plurality of pin holes, the base to mount the fiber optic module in a system for coupling photons between an optoelectronic device and an optical fiber; a printed circuit board (PCB) inserted into the slot substantially perpendicular to the base, the PCB having a plurality of pins inserted into the plurality of pin holes and an optoelectronic device to communicate with an optical fiber using photons, the optoelectronic device having terminals coupled to the PCB; an optical block coupled to the optoelectronic device of the PCB to couple photons between the optoelectronic device and an optical fiber, the optical block having a reflective surface to reflect photons between the optoelectronic device and the optical fiber, a first lens to focus photons and a second lens to collimate photons between the optoelectronic device and an optical fiber, the optical block coupled to the optoelectronic device such that an angle between the optoelectronic device and a line perpendicular to the reflective surface is not equal to forty five decrees or a multiple thereof; and an optical fiber alignment plate having a pair of optical block holes to couple in alignment the alignment plate to the optical block, the alignment plate having an optical opening to allow passage of photons and a fiber optic post on a back side to couple in alignment an optical fiber with the optical opening.
  • 58. The fiber optic module of claim 57 for coupling photons between an optoelectronic device and an optical fiber, the fiber optic module further comprising: a nose coupled to the base, the nose to receive an optical fiber connector and hold an optical fiber substantially fixed and aligned with the optical opening of the alignment plate.
  • 59. The fiber optic module of claim 58 for coupling photons between an optoelectronic device and an optical fiber, the fiber optic module further comprising: a nose shield surrounding the nose to reduce electromagnetic interference.
  • 60. A fiber optic transceiver for coupling photons between optoelectronic devices and optical fibers, the fiber optic transceiver comprising: a base having a first slot near one side, a second slot near an opposite side of the first slot, a first plurality of pin holes near the one side and a second plurality of pin holes near the opposite side, the base to mount the fiber optic transceiver in a system for coupling photons between an optoelectronic device and an optical fiber; a first printed circuit board (PCB) inserted into the first slot substantially perpendicular to the base, the first PCB having a plurality of pins inserted into the first plurality of pin holes and a first optoelectronic device to communicate with a first optical fiber using photons, the first optoelectronic device having terminals coupled to the first PCB; a second PCB inserted into the second slot substantially perpendicular to the base, the second PCB having a second plurality of pins inserted into the second plurality of pin holes and a second optoelectronic device to communicate with a second optical fiber using photons, the second optoelectronic device having terminals coupled to the second PCB; optical elements coupled to the first optoelectronic device of the first PCB to couple photons between the first optoelectronic device and a first optical fiber and the second optoelectronic device of the second PCB to couple photons between the second optoelectronic device and a second optical fiber, the optical elements having a first reflective surface and a second reflective surface, the optical elements coupled to the first optoelectronic device such that a first angle between the first optoelectronic device and a first line perpendicular to the first reflective surface is not equal to forty five degrees or a multiple thereof and the optical elements coupled to the second optoelectronic device such that a second angle between the second optoelectronic device and a second line perpendicular to the second reflective surface is not equal to forty five degrees or a multiple thereof, the optical elements further having a first lens to collimate photons and a third lens to focus photons between the first optoelectronic device and the first optical fiber, a second lens to focus photons and a fourth lens to collimate photons between the second optoelectronic device and the second optical fiber; and an optical fiber alignment plate having a pair of holes for coupling in alignment the alignment plate to the optical elements, the alignment plate having an optical opening to allow passage of photons and a pair of fiber optic alignment pins on a back side to couple in alignment a pair of optical fibers with the optical opening.
  • 61. The fiber optic transceiver of claim 32 for coupling photons between optoelectronic devices and optical fibers, the fiber optic transceiver further comprising: a nose coupled to the base, the nose to receive an optical fiber connector and hold a pair of optical fibers substantially fixed and aligned with the optical opening of the alignment plate.
  • 62. The fiber optic transceiver of claim 61 for coupling photons between optoelectronic devices and optical fibers, the fiber optic transceiver further comprising: a nose shield surrounding the nose to reduce electromagnetic interference.
  • 63. A fiber optic transceiver for coupling photons between optoelectronic devices and optical fibers, the fiber optic transceiver comprising: a base having a first slot near one side, a second slot near an opposite side of the first slot, a first plurality of pin holes near the one side and a second plurality of pin holes near the opposite side, the base to mount the fiber optic transceiver in a system for coupling photons between an optoelectronic device and an optical fiber; a first printed circuit board (PCB) inserted into the first slot substantially perpendicular to the base, the first PCB having a plurality of pins inserted into the first plurality of pin holes and a first optoelectronic device to communicate with a first optical fiber using photons, the first optoelectronic device having terminals coupled to the first PCB; a second PCB inserted into the second slot substantially perpendicular to the base, the second PCB having a second plurality of pins inserted into the second plurality of pin holes and a second optoelectronic device to communicate with a second optical fiber using photons, the second optoelectronic device having terminals coupled to the second PCB; optical elements coupled to the first optoelectronic device of the first PCB to couple photons between the first optoelectronic device and a first optical fiber and the second optoelectronic device of the second PCB to couple photons between the second optoelectronic device and a second optical fiber, the optical elements having a first reflective surface and a second reflective surface, the optical elements coupled to the first optoelectronic device such that a first angle between the first optoelectronic device and a first line perpendicular to the first reflective surface is not equal to forty five degrees or a multiple thereof and the optical elements coupled to the second optoelectronic device such that a second angle between the second optoelectronic device and a second line perpendicular to the second reflective surface is not equal to forty five degrees or a multiple thereof; and wherein the first PCB and the second PCB are inserted into the first slot and second slot respectively such that the first electrical components are in between the first ground plane and the shielded housing and the second electrical components are in between the second ground plane and the shielded housing to reduce electrical crosstalk.
CROSS REFERENCE TO RELATED APPLICATION

This application is related to U.S. patent application Ser. No. 09/320,409, filed May 26, 1999 by inventors Wenbin Jiang et al, entitled “METHOD AND APPARATUS FOR VERTICAL CONSTRUCTION OF FIBER OPTIC TRANSMITTERS, RECEIVERS AND TRANSCEIVERS”, now issued as U.S. Pat. No. 6,213,651 B1, the disclosure of which is hereby incorporated by reference, verbatim and with the same effect as though it were fully and completely set forth herein.

US Referenced Citations (432)
Number Name Date Kind
2949595 Doeleman Aug 1960 A
3335387 Mueller Aug 1967 A
3385970 Coffin, Jr. et al. May 1968 A
3395331 Snitzer Jul 1968 A
3423594 Galopin Jan 1969 A
3492058 Waldman Jan 1970 A
3564231 Bruce Feb 1971 A
3582637 Cecil, Jr. Jun 1971 A
3624385 Wall Nov 1971 A
3628036 Humphrey Dec 1971 A
3663822 Uchida May 1972 A
3712984 Lienhard Jan 1973 A
3721815 Wall Mar 1973 A
3724383 Gallaghan et al. Apr 1973 A
3756688 Hudson et al. Sep 1973 A
3758784 Vischulis Sep 1973 A
3780295 Kapron et al. Dec 1973 A
3790791 Anderson Feb 1974 A
3792208 Meyer Feb 1974 A
3792284 Kaelin Feb 1974 A
3800388 Borner et al. Apr 1974 A
3803409 Prochazka Apr 1974 A
3803511 Thompson Apr 1974 A
3808549 Maurer Apr 1974 A
3809908 Clanton May 1974 A
3814933 Weber Jun 1974 A
3842257 Kohler Oct 1974 A
3842262 Heitman et al. Oct 1974 A
3859536 Thiel Jan 1975 A
3864016 Dakss et al. Feb 1975 A
3870396 Racki et al. Mar 1975 A
3878397 Robb et al. Apr 1975 A
3887803 Savage, Jr. Jun 1975 A
3892962 Whited Jul 1975 A
3894789 Kobayashi et al. Jul 1975 A
3896305 Ostrowsky et al. Jul 1975 A
3932761 Ramsey et al. Jan 1976 A
3950075 Cook et al. Apr 1976 A
3963920 Palmer Jun 1976 A
3968564 Springthorpe Jul 1976 A
3976877 Thillays Aug 1976 A
3995935 McCartney Dec 1976 A
4007978 Holton Feb 1977 A
4030811 Khoe et al. Jun 1977 A
4045120 de Corlieu et al. Aug 1977 A
4056299 Paige Nov 1977 A
4060309 Le Noane et al. Nov 1977 A
4065203 Goell et al. Dec 1977 A
4075477 Hanson Feb 1978 A
4076376 Slaughter Feb 1978 A
4102559 Hunzinger Jul 1978 A
4118100 Goell et al. Oct 1978 A
4119362 Holzman Oct 1978 A
4130343 Miller et al. Dec 1978 A
4136357 Frederiksen Jan 1979 A
4144541 Schaefer et al. Mar 1979 A
4149072 Smith et al. Apr 1979 A
4156206 Comerford et al. May 1979 A
4161650 Caouette et al. Jul 1979 A
4166668 MacLeod Sep 1979 A
4167303 Bowen et al. Sep 1979 A
4168883 MacLeod Sep 1979 A
4169656 Hodge Oct 1979 A
4170399 Hansen et al. Oct 1979 A
4179801 Hollis Dec 1979 A
4181401 Jensen Jan 1980 A
4182545 Greer Jan 1980 A
4184741 Hawk et al. Jan 1980 A
4186994 Denken et al. Feb 1980 A
4186995 Schumacher Feb 1980 A
4190767 Crouse Feb 1980 A
4199222 Ikushima et al. Apr 1980 A
4204743 Etaix May 1980 A
4217030 Howarth Aug 1980 A
4229067 Love Oct 1980 A
4237474 Ladany Dec 1980 A
4252402 Puech et al. Feb 1981 A
4257672 Balliet Mar 1981 A
4268114 d'Auria et al. May 1981 A
4268115 Slemon et al. May 1981 A
4268756 Crouse et al. May 1981 A
4270134 Takeda et al. May 1981 A
4273413 Bendikens et al. Jun 1981 A
4276656 Petryk, Jr. Jun 1981 A
4281891 Shinohara et al. Aug 1981 A
4285572 Beaudette et al. Aug 1981 A
4297651 Dyment et al. Oct 1981 A
4302070 Nakayama et al. Nov 1981 A
4307934 Palmer Dec 1981 A
4311359 Keller Jan 1982 A
4326771 Henry et al. Apr 1982 A
4330172 Monaghan et al. May 1982 A
4347655 Zory et al. Sep 1982 A
4355323 Kock Oct 1982 A
4357072 Goodfellow et al. Nov 1982 A
4362360 Mannschke Dec 1982 A
4378954 Baker Apr 1983 A
4383731 Simon et al. May 1983 A
4384368 Rosenfeldt et al. May 1983 A
4387956 Cline Jun 1983 A
4394061 Schroeder Jul 1983 A
4399453 Berg et al. Aug 1983 A
4399487 Neumann Aug 1983 A
4399541 Kovats et al. Aug 1983 A
4406514 Hillegonds et al. Sep 1983 A
4408353 Bowen et al. Oct 1983 A
4410469 Katagiri et al. Oct 1983 A
4418983 Bowen et al. Dec 1983 A
4427879 Becher et al. Jan 1984 A
4431261 Kozikowski Feb 1984 A
4432604 Schwab Feb 1984 A
4435037 Abramson et al. Mar 1984 A
4439006 Stevenson Mar 1984 A
4446515 Sauer et al. May 1984 A
4449244 Kopainsky May 1984 A
4456334 Henry et al. Jun 1984 A
4461537 Raymer, II et al. Jul 1984 A
4465333 Caserta et al. Aug 1984 A
4470660 Hillegonds et al. Sep 1984 A
4471414 Savage, Jr. Sep 1984 A
4479696 Lubin et al. Oct 1984 A
4479698 Landis et al. Oct 1984 A
4485474 Osterwalder Nov 1984 A
4491900 Savage, Jr. Jan 1985 A
4491981 Weller et al. Jan 1985 A
4493113 Forrest et al. Jan 1985 A
4523802 Sakaguchi et al. Jun 1985 A
4527285 Kekas et al. Jul 1985 A
4530566 Smith et al. Jul 1985 A
4533209 Segerson et al. Aug 1985 A
4534616 Bowen et al. Aug 1985 A
4535233 Abraham Aug 1985 A
4539476 Donuma et al. Sep 1985 A
4542076 Bednarz et al. Sep 1985 A
4549782 Miller Oct 1985 A
4549783 Schmachtenberg, III Oct 1985 A
4553811 Becker et al. Nov 1985 A
4553813 McNaughton et al. Nov 1985 A
D282174 Kikuchi et al. Jan 1986 S
4566134 Harbour et al. Jan 1986 A
4580295 Richman Apr 1986 A
4591711 Taumberger May 1986 A
4595839 Braun et al. Jun 1986 A
4597631 Flores Jul 1986 A
4602164 Gore, III et al. Jul 1986 A
4611886 Cline et al. Sep 1986 A
4612670 Henderson Sep 1986 A
4615031 Eales et al. Sep 1986 A
4616899 Schlafer Oct 1986 A
4616900 Cairns Oct 1986 A
4623220 Grabbe et al. Nov 1986 A
4625333 Takezawa et al. Nov 1986 A
4630278 Auffret et al. Dec 1986 A
4645295 Pronovost Feb 1987 A
4647148 Katagiri Mar 1987 A
4653847 Berg et al. Mar 1987 A
4661959 Kaneko Apr 1987 A
4665529 Baer et al. May 1987 A
4668044 D'Auria et al. May 1987 A
4673245 Kling et al. Jun 1987 A
4678264 Bowen et al. Jul 1987 A
4684210 Matsunaga et al. Aug 1987 A
4687285 Hily et al. Aug 1987 A
4699455 Erbe et al. Oct 1987 A
4701010 Roberts Oct 1987 A
4701013 Jurczyszyn et al. Oct 1987 A
4702556 Ishii et al. Oct 1987 A
4705351 Toda Nov 1987 A
4707066 Falkenstein et al. Nov 1987 A
4707067 Haberland et al. Nov 1987 A
4708429 Clark et al. Nov 1987 A
4714315 Krause Dec 1987 A
4720630 Takeuchi et al. Jan 1988 A
4722337 Losch et al. Feb 1988 A
4722586 Dodson et al. Feb 1988 A
4726648 Haberland et al. Feb 1988 A
4727248 Meur et al. Feb 1988 A
4730198 Brown et al. Mar 1988 A
4732446 Gipson et al. Mar 1988 A
4737008 Ohyama et al. Apr 1988 A
4744626 Mery May 1988 A
4752109 Gordon et al. Jun 1988 A
4756590 Forrest et al. Jul 1988 A
4756592 Sasayama et al. Jul 1988 A
4756593 Koakutsu et al. Jul 1988 A
4762388 Tanaka et al. Aug 1988 A
4762395 Gordon et al. Aug 1988 A
4763225 Frenkel et al. Aug 1988 A
4763979 Heywang Aug 1988 A
4767178 Sasaki et al. Aug 1988 A
4767179 Sampson et al. Aug 1988 A
4778240 Komatsu Oct 1988 A
4783137 Kosman et al. Nov 1988 A
4787706 Cannon, Jr. et al. Nov 1988 A
4790618 Abe Dec 1988 A
4798440 Hoffer et al. Jan 1989 A
4799757 Goetter Jan 1989 A
4802178 Ury Jan 1989 A
4803361 Aiki et al. Feb 1989 A
4803689 Shibanuma Feb 1989 A
4807955 Ashman et al. Feb 1989 A
4807956 Tournereau et al. Feb 1989 A
4820013 Fuse Apr 1989 A
4834490 Falkenstein et al. May 1989 A
4834491 Aoki et al. May 1989 A
4836635 De Amorim Jun 1989 A
4837927 Savage, Jr. Jun 1989 A
4840451 Sampson et al. Jun 1989 A
4844581 Turner Jul 1989 A
4856091 Taska Aug 1989 A
4861134 Alameel et al. Aug 1989 A
4863233 Nienaber et al. Sep 1989 A
4871224 Karstensen et al. Oct 1989 A
4873566 Hokanson et al. Oct 1989 A
4875752 Suzuki Oct 1989 A
4881789 Levinson Nov 1989 A
4897711 Blonder et al. Jan 1990 A
4903340 Sorensen Feb 1990 A
4911519 Burton et al. Mar 1990 A
4912521 Almquist et al. Mar 1990 A
4913511 Tabalba et al. Apr 1990 A
4915470 Moore et al. Apr 1990 A
4918702 Kimura Apr 1990 A
4927228 Van De Pas May 1990 A
4944568 Danbach et al. Jul 1990 A
4945229 Daly et al. Jul 1990 A
4945400 Blonder et al. Jul 1990 A
4962990 Matsuzawa et al. Oct 1990 A
4969924 Suverison et al. Nov 1990 A
4977329 Eckhardt et al. Dec 1990 A
4979787 Lichtenberger Dec 1990 A
D314176 Weber et al. Jan 1991 S
4986625 Yamada et al. Jan 1991 A
4989934 Zavracky et al. Feb 1991 A
4997254 Ganev Mar 1991 A
5005178 Kluitmans et al. Apr 1991 A
5005939 Arvanitakis et al. Apr 1991 A
5011246 Corradetti et al. Apr 1991 A
5011249 Diaz Apr 1991 A
5013247 Watson May 1991 A
5020873 Althaus et al. Jun 1991 A
5026134 Sugawara et al. Jun 1991 A
5039194 Block et al. Aug 1991 A
5042891 Mulholland et al. Aug 1991 A
5043775 Lee Aug 1991 A
5046798 Yagiu et al. Sep 1991 A
5047835 Chang Sep 1991 A
5048919 Ladany Sep 1991 A
5050953 Anderson et al. Sep 1991 A
5065226 Kluitmans et al. Nov 1991 A
5067785 Schirbl et al. Nov 1991 A
5069522 Block et al. Dec 1991 A
5071219 Yurtin et al. Dec 1991 A
5073045 Abendschein Dec 1991 A
5073047 Suzuki et al. Dec 1991 A
5074682 Uno et al. Dec 1991 A
5078515 Soulard et al. Jan 1992 A
5091991 Briggs et al. Feb 1992 A
5093879 Bregman et al. Mar 1992 A
5099307 Go et al. Mar 1992 A
5104242 Ishikawa Apr 1992 A
5104243 Harding Apr 1992 A
5107537 Schriks et al. Apr 1992 A
5109453 Edwards et al. Apr 1992 A
5109454 Okuno et al. Apr 1992 A
5111476 Hollenbeck et al. May 1992 A
5113404 Gaebe et al. May 1992 A
5113466 Acarlar et al. May 1992 A
5113467 Peterson et al. May 1992 A
5117474 van den Bergh et al. May 1992 A
5117476 Yingst et al. May 1992 A
5119462 Matsubara et al. Jun 1992 A
5121451 Grard et al. Jun 1992 A
5121457 Foley et al. Jun 1992 A
5122893 Tolbert Jun 1992 A
5124281 Ackerman et al. Jun 1992 A
5125849 Briggs et al. Jun 1992 A
5127071 Go Jun 1992 A
5127073 Mulholland et al. Jun 1992 A
5127074 Watanabe et al. Jun 1992 A
5134679 Robin et al. Jul 1992 A
5136152 Lee Aug 1992 A
5140663 Edwards et al. Aug 1992 A
D329693 Arvanitakis et al. Sep 1992 S
5146078 Luryi Sep 1992 A
D330006 Kamakura et al. Oct 1992 S
5155784 Knott Oct 1992 A
5155785 Holland et al. Oct 1992 A
5155786 Ecker et al. Oct 1992 A
5159190 Hohberg et al. Oct 1992 A
5163109 Okugawa et al. Nov 1992 A
5168537 Rajasekharan et al. Dec 1992 A
D333122 Kamakura et al. Feb 1993 S
5193099 Chou Mar 1993 A
5195155 Shimaoka et al. Mar 1993 A
5199093 Longhurst Mar 1993 A
5201018 Coden et al. Apr 1993 A
5202943 Carden et al. Apr 1993 A
5206766 Bassett et al. Apr 1993 A
5212754 Basavanhally et al. May 1993 A
5212761 Petrunia May 1993 A
5216737 Driessen et al. Jun 1993 A
5233676 Yonemura et al. Aug 1993 A
5241614 Ecker et al. Aug 1993 A
5243678 Schaffer et al. Sep 1993 A
5247530 Shigeno et al. Sep 1993 A
5253320 Takahashi et al. Oct 1993 A
5259052 Briggs et al. Nov 1993 A
5259053 Schaffer et al. Nov 1993 A
5259054 Benzoni et al. Nov 1993 A
5271079 Levinson Dec 1993 A
5276756 Chambers et al. Jan 1994 A
5280191 Chang Jan 1994 A
5283680 Okugawa et al. Feb 1994 A
5283802 Hsiung Feb 1994 A
5285511 Akkapeddi et al. Feb 1994 A
5285512 Duncan et al. Feb 1994 A
5289345 Corradetti et al. Feb 1994 A
5295214 Card et al. Mar 1994 A
5325454 Rittle et al. Jun 1994 A
5325455 Henson et al. Jun 1994 A
5329428 Block et al. Jul 1994 A
5329604 Baldwin et al. Jul 1994 A
5333221 Briggs et al. Jul 1994 A
5333225 Jacobowitz et al. Jul 1994 A
5337391 Lebby Aug 1994 A
5337396 Chen et al. Aug 1994 A
5337398 Benzoni et al. Aug 1994 A
5345524 Lebby et al. Sep 1994 A
5345530 Lebby et al. Sep 1994 A
5347604 Go et al. Sep 1994 A
5353364 Kurashima Oct 1994 A
5361244 Nakamura et al. Nov 1994 A
5361318 Go et al. Nov 1994 A
D353796 Oliver et al. Dec 1994 S
5371822 Horwitz et al. Dec 1994 A
D354271 Speiser et al. Jan 1995 S
5408559 Takahashi et al. Apr 1995 A
5412497 Kaetsu et al. May 1995 A
5414787 Kurata May 1995 A
5416668 Benzoni May 1995 A
5416869 Yoshino May 1995 A
5416870 Chun et al. May 1995 A
5416871 Takahashi et al. May 1995 A
5416872 Sizer, II et al. May 1995 A
5428704 Lebby et al. Jun 1995 A
5432630 Lebby et al. Jul 1995 A
5434747 Shibata Jul 1995 A
5436997 Makiuchi et al. Jul 1995 A
5440658 Savage, Jr. Aug 1995 A
5442726 Howard et al. Aug 1995 A
5446814 Kuo et al. Aug 1995 A
5452387 Chun et al. Sep 1995 A
5452388 Rittle et al. Sep 1995 A
5455703 Duncan et al. Oct 1995 A
5469526 Rawlings Nov 1995 A
5473715 Schofield et al. Dec 1995 A
5475783 Kurashima Dec 1995 A
5479288 Ishizuka et al. Dec 1995 A
5482658 Lebby et al. Jan 1996 A
5499311 DeCusatis Mar 1996 A
5499312 Hahn et al. Mar 1996 A
5511140 Cina et al. Apr 1996 A
5515200 Delrosso et al. May 1996 A
5515468 DeAndrea et al. May 1996 A
5526160 Watanabe et al. Jun 1996 A
5528408 McGinley et al. Jun 1996 A
5535296 Uchida Jul 1996 A
5537504 Cina et al. Jul 1996 A
5546281 Poplawski et al. Aug 1996 A
5548676 Savage, Jr. Aug 1996 A
5548677 Kakii et al. Aug 1996 A
5550941 Lebby et al. Aug 1996 A
5555333 Kato Sep 1996 A
5561727 Akita et al. Oct 1996 A
5596663 Ishibashi et al. Jan 1997 A
5604831 Dittman et al. Feb 1997 A
5631989 Koren et al. May 1997 A
5636298 Jiang et al. Jun 1997 A
5640407 Freyman et al. Jun 1997 A
5659641 DeMeritt et al. Aug 1997 A
5687267 Uchida Nov 1997 A
5698849 Figueria, Jr. Dec 1997 A
D389123 Vernon Jan 1998 S
D389802 Vernon Jan 1998 S
5708743 DeAndrea et al. Jan 1998 A
5717533 Poplawski et al. Feb 1998 A
5732176 Savage, Jr. Mar 1998 A
5734558 Poplawski et al. Mar 1998 A
5736782 Schairer Apr 1998 A
5738538 Bruch et al. Apr 1998 A
5751471 Chen et al. May 1998 A
5757998 Thatcher et al. May 1998 A
5761229 Baldwin et al. Jun 1998 A
5767999 Kayner Jun 1998 A
5774614 Gilliland et al. Jun 1998 A
D396210 Shiga et al. Jul 1998 S
5778127 Gilliland et al. Jul 1998 A
5812582 Gilliland et al. Sep 1998 A
5812717 Gilliland Sep 1998 A
5815623 Gilliland et al. Sep 1998 A
5864468 Poplawski et al. Jan 1999 A
5879173 Poplawski et al. Mar 1999 A
5896480 Scharf et al. Apr 1999 A
5898812 Vanoli Apr 1999 A
5901263 Giao et al. May 1999 A
5913002 Jiang Jun 1999 A
6024500 Wolf Feb 2000 A
6047172 Babineau et al. Apr 2000 A
6059463 Althaus et al. May 2000 A
6061493 Gilliland et al. May 2000 A
6062893 Miskin et al. May 2000 A
6071017 Gilliland et al. Jun 2000 A
6072613 Henningsson et al. Jun 2000 A
6085006 Gaio et al. Jul 2000 A
RE63820 McGinley et al. Aug 2000
6120191 Asakura et al. Sep 2000 A
6142680 Kikuchi et al. Nov 2000 A
6142802 Berg et al. Nov 2000 A
6200041 Gaio et al. Mar 2001 B1
6201704 Poplawski et al. Mar 2001 B1
6206582 Gilliland Mar 2001 B1
6213651 Jiang et al. Apr 2001 B1
6220878 Poplawski et al. Apr 2001 B1
6241534 Neer et al. Jun 2001 B1
6267606 Poplawski et al. Jul 2001 B1
D446501 Donnell et al. Aug 2001 S
6282000 Kikuchi et al. Aug 2001 B1
6335869 Branch et al. Jan 2002 B1
6341899 Shirakawa et al. Jan 2002 B1
6369924 Scharf et al. Apr 2002 B1
6457875 Kropp et al. Oct 2002 B1
Foreign Referenced Citations (8)
Number Date Country
0 448 989 Oct 1991 EP
0 652 696 Nov 1994 EP
1098299 Apr 1989 JP
8194129 Jul 1996 JP
8248277 Sep 1996 JP
408321627 Dec 1996 JP
9171127 Jun 1997 JP
WO 9954772 Oct 1999 WO