The present invention relates generally to universal serial bus (USB) connectivity and more particularly relates to an improved USB connection having electrostatic discharge (ESD) protection. The following description is presented to enable one of ordinary skill in the art to make and use the invention and is provided in the context of a patent application and its requirements. Various modifications to the preferred embodiments and the generic principles and features described herein will be readily apparent to those skilled in the art. Thus, the present invention is not intended to be limited to the embodiments shown, but is to be accorded the widest scope consistent with the principles and features described herein.
One embodiment of the present invention includes an apparatus including a USB device having a USB connector and a discharge plane of a low resistance, having a proximate end and a distal end, configured internally to the USB connector wherein one of the distal end or the proximate end is connectable with a ground signal of the USB connector and the axial planar length of the plane is less than the connection planar length of the USB connector.
In operation, for this preferred embodiment, as a USB device having a USB socket were nearing physical connection with a paired USB device (i.e., a USB plug device), the grounding plane presents an opportunity for excess static charge build up to jump the air gap between the USB plug and the USB socket-based devices. The static charge will jump the air gap without affecting the signal lines of the USB plug or the USB socket device as the ESD charge first comes into contact with the grounding plane as the grounding plane is physically positioned to be first exposed to the potential static charge of the opposite device. It is envisioned that high levels of ESD charge will readily jump the air gap (e.g., 2-3 KV) and lesser amounts are also expected.
In
In operation, for this preferred embodiment, as a USB device having a USB plug were nearing physical connection with a paired USB device (i.e., a USB socket device), the grounding plane presents an opportunity for excess static charge build up to jump the air gap between the USB plug and the USB socket-based devices. The static charge will jump the air gap without affecting the signal lines of the USB plug or the USB socket device as the ESD charge first comes into contact with the grounding plane as the grounding plane is physically positioned to be first exposed to the potential static charge of the opposite device. It is envisioned that high levels of ESD charge will readily jump the air gap (e.g., 2-3 KV) and lesser amounts are also expected.
In a further preferred embodiment, the grounding plane is in flexible contact with the ground of the plug. Preferably, the grounding plane may be configured to be a flexible conductive material or may be affixed to the connector with the assistance of spring or tensionable device to assist the grounding plane to return to its original position after a pair connector is connected and then disengaged.
Many other embodiments of the present invention are also envisioned. For example, in other embodiments, the present invention is directly applicable for kits and improvement configurations to existing USB devices.
As used herein, terms such as personal computers, PCs, systems, and similar terms are intended to be used interchangeably, without distinction or limitation. Such systems may include but not be limited to servers, server-based systems, multi-chipset systems, touch sensitive systems, assemblies and devices therein, etc.
As used herein, the terms “remote”, “peripheral”, “device”, and the like are intended to be used interchangeably but are not intended to be singular or necessarily specific to a particular connection technology such as being hardwired or wireless, but rather such terms are used with the understanding that the terms of interest are in or capable of being in operative communication with a system of the present invention.
Any theory, mechanism of operation, proof, or finding stated herein is meant to further enhance understanding of the present invention and is not intended to make the present invention in any way dependent upon such theory, mechanism of operation, proof, or finding. It should be understood that while the use of the word preferable, preferably or preferred in the description above indicates that the feature so described may be more desirable, it nonetheless may not be necessary and embodiments lacking the same may be contemplated as within the scope of the invention, that scope being defined by the claims that follow.
In reading the claims it is intended that when words such as “a,” “an,” “at least one,” “at least a portion” are used there is no intention to limit the claim to only one item unless specifically stated to the contrary in the claim. Further, when the language “at least a portion” and/or “a portion” is used the item may include a portion and/or the entire item unless specifically stated to the contrary. While the invention has been illustrated and described in detail in the drawings and foregoing description, the same is to be considered as illustrative and not restrictive in character, it being understood that only the selected embodiments have been shown and described and that all changes, modifications and equivalents that come within the spirit of the invention as defined herein or by any of the following claims are desired to be protected.