Information
-
Patent Grant
-
6613279
-
Patent Number
6,613,279
-
Date Filed
Tuesday, August 31, 199925 years ago
-
Date Issued
Tuesday, September 2, 200321 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Sykes; Angela D.
- Deak; Leslie R.
Agents
- Stout, Uxa, Buyan & Mullins, LLP
- Stout; Donald E.
-
CPC
-
US Classifications
Field of Search
-
International Classifications
-
Abstract
Blood mixing in fiber-wound oxygenators is improved by inserting at least one layer of a planar apertured mat between selected layers of wound gas-exchange fibers.
Description
FIELD OF THE INVENTION
This invention relates to wound fiber oxygenators, and more specifically to a method and apparatus for improving the blood-fiber contact by disrupting the laminar flow of the blood across the fibers.
BACKGROUND OF THE INVENTION
A common form of blood oxygenator used in heart-lung machines consists of many layers of microporous hollow gas-exchange fibers wound at an angle around a generally cylindrical core. Oxygen is made to flow longitudinally through the hollow fibers, and blood is caused to flow across the fibers. The material of the fibers is such that whenever a blood cell contacts a fiber, an oxygen-carbon dioxide exchange takes place between the cell and the inside of the fiber.
Because the efficiency of the oxygenator depends on the number of blood cells that contact the fibers, it is desirable to thoroughly mix the blood as it flows across the fibers. This assures that the maximum number of blood cells will have a chance to get close enough to a fiber for a successful gas exchange at some point during their transit through the oxygenator.
In conventional fiber-wound oxygenators, such thorough mixing is, however, difficult to achieve. Although the fibers are wound in opposite directions in successive layers so that they cross each other, the geometry of such windings is such that channels exist in which blood can flow laminarly all the way through the fiber bundle. Even where the blood flow encounters a fiber, the flow typically divides to flow across opposite sides of the fiber, and then recombines back into a generally laminar flow.
SUMMARY OF THE INVENTION
The present invention increases mixing of the blood in a wound fiber oxygenator by disrupting laminar blood flow through the channels formed by the winding pattern of the fibers. This is accomplished in the invention by periodically inserting, between two successive layers of fibers, a generally flat, ribbed apertured sheet of plastic. Such a sheet is preferably composed of a gridwork of solid ribs running at right angles to each other in a common plane.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
is a plan view of a portion of a typical oxygenator fiber winding;
FIG. 2
is an enlarged sectional view of the winding of
FIG. 1
transverse of the unobstructed flow channels therethrough;
FIG. 3
a
is a plan view of a mat material preferred in the invention;
FIG. 3
b
is a section along line
3
b
-
3
b
of
FIG. 3
a;
FIG. 4
is a schematic view showing the material of
FIG. 3
inserted into an oxygenator fiber winding; and
FIGS. 5
a
through
5
c
are end views illustrating preferred placements of the mat in the fiber winding.
DESCRIPTION OF THE PREFERRED EMBODIMENT
FIG. 1
illustrates a typical winding pattern for creating a fiber bundle in wound fiber oxygenators. A first layer
10
of hollow gas-exchange fibers
12
is wound on the core
14
at an acute angle to the axis
16
of the core
14
. The next layer
18
of fibers
12
is wound at an obtuse angle to the axis
16
, and further layers are alternated in the same manner between acute and obtuse angles. The fiber bundle thus formed is then conventionally potted and cut at each end (not shown) to form a multiplicity of individual fibers through which oxygen can be conveyed.
Theoretically, blood flowing across the bundle of fibers
12
so wound will encounter sufficient direction changes while flowing around the crossed fibers
12
to mix the blood stream and expose all of its parts to oxygenation at fiber walls. In practice, however, the mixing is not as thorough as it could be. As seen in
FIG. 2
, the conventional winding pattern creates small channels
20
in which blood can flow laminarly. In such a laminar flow, blood cells traveling in the center of the channels
20
are less likely to encounter a gas-exchanging fiber surface than those traveling near the edges of the channels
20
.
In order to break up the laminar flow of blood in the channels
20
, the invention proposes placing an apertured, planar plastic mat
22
(
FIGS. 3
a
and
3
b
) around the core
14
at least once during the winding of the fibers
12
. Because of the planar nature of the mat
22
, the mat
22
intersects the channels
20
and breaks up the laminar flow pattern through the channels
20
.
The mat
22
is preferably formed of a planar, integral gridwork of plastic ribs
24
,
26
intersecting each other at an angle which may be about 90° or less, which define generally, diamond-shaped apertures
28
between them. Such a material is commercially available from various manufacturers.
As shown in
FIG. 4
(in which the spacing between the fibers
12
in the layers
10
and
18
is exaggerated for clarity), a preferred way of carrying out the invention involves winding a plurality of layers of fibers
12
onto the core
14
, placing a mat
22
around the core
14
, and continuing to wind more layers of fibers
12
onto the core
14
. Preferably, the advantages of the invention can be obtained by a single mat
22
placed about half way (
FIG. 5
a
), two-thirds of the way (
FIG. 5
b
) or one-third of the way (
FIG. 5
c
) through the winding
30
. It would also be possible to place a plurality of mats
22
onto the core
14
at intervals during the process of winding the fibers
12
.
Following the winding of the fibers
12
, with the mats
22
inserted between fiber layers, the ends of the winding
30
can be potted, cut and processed in the conventional manner (not shown).
It is understood that the exemplary method and apparatus for improving blood mixing in oxygenators described herein and shown in the drawings represents only a presently preferred embodiment of the invention. Indeed, various modifications and additions may be made to such embodiment without departing from the spirit and scope of the invention. Thus, other modifications and additions may be obvious to those skilled in the art and may be implemented to adapt the present invention for use in a variety of different applications.
Claims
- 1. A multi-layer wound-fiber blood oxygenator, comprising:a) a core having an axis; b) a first group of wound-fiber layers, including i) at least one layer of hollow gas-exchange fibers wound around said core at an acute angle relative said axis, and ii) at least one layer of hollow gas-exchange fibers wound around said core at an angle of at least 90° relative said axis; c) a second group of wound-fiber layers, including i) at least one layer of hollow gas-exchange fibers wound around said core at an acute angle relative said axis, and ii)at least one layer of hollow gas-exchange fibers wound around said core at an angle of at least 90° relative said axis; and d) a planar, apertured mat positioned around said core between said first and second groups of layers, the mat consisting essentially of spaced coplanar plastic ribs intersecting each other to define apertures therebetween.
- 2. The oxygenator of claim 1, wherein said ribs so intersect each other as to form substantially diamond-shaped apertures between them.
- 3. A method of improving mixing of a blood stream while traveling through a gas-exchange fiber bundle in a wound-fiber oxygenator, comprising the steps of:a) forming an inner portion of a fiber bundle by winding a first group of layers of hollow gas-exchange fibers around a core having an axis, the first group including i) at least one layer of hollow gas-exchange fibers wound around said core at an acute angle relative said axis, and ii) at least one layer of hollow gas-exchange fibers wound around said core at an angle of at least 90° relative said axis; b) placing a planar, apertured mat around the inner portion of said bundle; and c) forming an outer portion of said bundle by winding a second group of layers of hollow gas-exchange fibers around the core, the second group including i) at least one layer of hollow gas-exchange fibers wound around said core at an acute angle relative said axis, and ii) at least one layer of hollow gas-exchange fibers wound around said core at an angle of at least 90° relative said axis.
US Referenced Citations (51)
Foreign Referenced Citations (10)
Number |
Date |
Country |
654158 |
Dec 1937 |
DE |
0 299 381 |
Jul 1988 |
EP |
0 408 000 |
Jul 1990 |
EP |
0 553 488 |
Aug 1993 |
EP |
0 798 035 |
Oct 1997 |
EP |
2 555 724 |
Nov 1983 |
FR |
56025696 |
Dec 1981 |
JP |
8300098 |
Jan 1983 |
WO |
WO 8300098 |
Jan 1983 |
WO |
WO 9726032 |
Jul 1997 |
WO |