Claims
- 1. A method for reducing mitral regurgitation comprising:
inserting apparatus into the coronary sinus of a patient in the vicinity of the posterior leaflet of the mitral valve, the apparatus being adapted to straighten the natural curvature of at least a portion of the coronary sinus in the vicinity of the posterior leaflet of the mitral valve, whereby to move the posterior annulus anteriorly and thereby improve leaflet coaptation.
- 2. A method for reducing mitral regurgitation comprising:
inserting apparatus into the coronary sinus of a patient in the vicinity of the posterior leaflet of the mitral valve, the apparatus being adapted to move at least a portion of the coronary sinus in the vicinity of the posterior leaflet of the mitral valve anteriorly, whereby to move the posterior annulus anteriorly and thereby improve leaflet coaptation.
- 3. A method for reducing mitral regurgitation comprising:
inserting apparatus into the coronary sinus of a patient in the vicinity of the posterior leaflet of the mitral valve, the apparatus being adapted to reduce the degree of natural curvature of at least a portion of the coronary sinus in the vicinity of the posterior leaflet of the mitral valve, whereby to move the posterior annulus anteriorly and thereby improve leaflet coaptation.
- 4. A method for reducing mitral regurgitation comprising:
inserting apparatus into the coronary sinus of a patient in the vicinity of the posterior leaflet of the mitral valve, the apparatus being adapted to increase the natural radius of curvature of at least a portion of the coronary sinus in the vicinity of the posterior leaflet of the mitral valve, whereby to move the posterior annulus anteriorly and thereby improve leaflet coaptation.
- 5. A method for reducing mitral regurgitation comprising:
inserting apparatus into the coronary sinus of a patient in the vicinity of the posterior leaflet of the mitral valve, the apparatus having a distal end, a proximal end and an intermediate portion, the apparatus being configured so that when the apparatus is positioned in the coronary sinus in the vicinity of the posterior leaflet of the mitral valve, the distal and proximal ends will apply a posteriorly-directed force to the walls of the coronary sinus and the intermediate portion will apply an anteriorly-directed force to the walls of the coronary sinus, whereby to move the posterior annulus anteriorly and thereby improve leaflet coaptation.
- 6. A method for reducing mitral regurgitation comprising:
inserting a substantially straight elongated body into the coronary sinus of a patient in the vicinity of the posterior leaflet of the mitral valve, the length of the substantially straight elongated body being sized relative to the natural curvature of the coronary sinus in the vicinity of the posterior leaflet of the mitral valve so that when the substantially straight elongated body is positioned in the coronary sinus, it will cause at least a portion of the coronary sinus to assume a substantially straight configuration adjacent to the posterior leaflet of the mitral valve, whereby to increase the radius of curvature of the mitral annulus and thereby improve leaflet coaptation.
- 7. A method for reducing mitral regurgitation comprising:
inserting a substantially rigid elongated body into the coronary sinus of a patient in the vicinity of the posterior leaflet of the mitral valve, the substantially rigid elongated body being configured relative to the natural curvature of the coronary sinus in the vicinity of the posterior leaflet of the mitral valve so that when the substantially rigid elongated body is positioned in the coronary sinus, it will cause at least a portion of the coronary sinus to assume a different configuration adjacent to the posterior leaflet of the mitral valve, whereby to move the posterior annulus anteriorly and thereby improve leaflet coaptation.
- 8. A method for reducing mitral regurgitation comprising:
inserting a straight, substantially rigid elongated body into the coronary sinus of a patient in the vicinity of the posterior leaflet of the mitral valve, the length of the straight, substantially rigid elongated body being sized relative to the natural curvature of the coronary sinus in the vicinity of the posterior leaflet of the mitral valve so that when the straight, substantially rigid elongated body is positioned in the coronary sinus, it will cause at least a portion of the coronary sinus to assume a substantially straight configuration adjacent to the posterior leaflet of the mitral valve, whereby to increase the radius of curvature of the mitral annulus and thereby improve leaflet coaptation.
- 9. A method according to claim 8 wherein the straight, substantially rigid elongated body is inserted into the coronary sinus percutaneously.
- 10. A method according to claim 9 wherein the straight, substantially rigid elongated body is inserted into the coronary sinus by introducing the straight, substantially rigid elongated body into the patient's jugular vein, passing it down the superior vena cava, passing it through the right atrium and then passing it into the coronary sinus.
- 11. A method according to claim 9 wherein the straight, substantially rigid elongated body is inserted into the coronary sinus by introducing the straight, substantially rigid elongated body into the patient's left subclavian vein, passing it down the superior vena cava, passing it through the right atrium and then passing it into the coronary sinus.
- 12. A method according to claim 8 wherein the straight, substantially rigid elongated body is inserted into the coronary sinus through an incision in the patient's heart.
- 13. A method according to claim 8 wherein the straight, substantially rigid elongated body is guided into position by passing it through a pre-positioned delivery catheter.
- 14. A method according to claim 13 wherein the straight, substantially rigid elongated body is guided into position by inserting a guidewire into the coronary sinus, passing the delivery catheter over the guidewire and into the coronary sinus, removing the guidewire, and then passing the straight, substantially rigid elongated body down the delivery catheter.
- 15. A method according to claim 8 wherein the straight, substantially rigid elongated body is guided into position by passing it over a pre-positioned guidewire.
- 16. A method according to claim 15 wherein the straight, substantially rigid elongated body is guided into position by inserting a guidewire into the coronary sinus and then passing the straight, substantially rigid elongated body down the guidewire.
- 17. A method according to claim 8 further comprising the subsequent step of removing the straight, substantially rigid elongated body from the coronary sinus.
- 18. A method according to claim 8 wherein the straight, substantially rigid elongated body is inserted under visualization.
- 19. A method according to claim 18 wherein visualization is achieved by using a procedure chosen from the group consisting of fluoroscopy, echocardiography, intravascular ultrasound, angioscopy and real-time magnetic resonance imaging.
- 20. A method according to claim 8 including the additional step of assessing the efficacy of the procedure.
- 21. Apparatus for reducing mitral regurgitation comprising:
a body having a distal end, a proximal end and an intermediate portion, the body being configured so that when the body is positioned in the coronary sinus in the vicinity of the posterior leaflet of the mitral valve, the distal and proximal ends will apply a posteriorly-directed force to the walls of the coronary sinus, and the intermediate portion will apply an anteriorly-directed force to the walls of the coronary sinus, whereby to move the posterior annulus of the mitral valve anteriorly and thereby improve leaflet coaptation.
- 22. Apparatus for reducing mitral regurgitation comprising:
a substantially straight elongated body adapted to be inserted into the coronary sinus of a patient in the vicinity of the posterior leaflet of the mitral valve, the length of the substantially straight elongated body being sized relative to the natural curvature of the coronary sinus in the vicinity of the posterior leaflet of the mitral valve so that when the substantially straight elongated body is positioned in the coronary sinus, it will cause at least a portion of the coronary sinus to assume a substantially straight configuration adjacent to the posterior leaflet of the mitral valve, whereby to increase the radius of curvature of the mitral annulus, moving it anteriorly, and thereby improve leaflet coaptation.
- 23. Apparatus for reducing mitral regurgitation comprising:
a substantially rigid elongated body adapted to be inserted into the coronary sinus of a patient in the vicinity of the posterior leaflet of the mitral valve, the length of the substantially rigid elongated body being sized relative to the natural curvature of the coronary sinus in the vicinity of the posterior leaflet of the mitral valve so that when the substantially rigid elongated body is positioned in the coronary sinus, it will cause at least a portion of the coronary sinus to assume a different configuration adjacent to the posterior leaflet of the mitral valve, whereby to move the posterior annulus anteriorly and thereby improve leaflet coaptation.
- 24. Apparatus for reducing mitral regurgitation comprising:
a straight, substantially rigid elongated body adapted to be inserted into the coronary sinus of a patient in the vicinity of the posterior leaflet of the mitral valve, the length of the straight, substantially rigid elongated body being sized relative to the natural curvature of the coronary sinus in the vicinity of the posterior leaflet of the mitral valve so that when the straight, substantially rigid elongated body is positioned in the coronary sinus, it will cause at least a portion of the coronary sinus to assume a substantially straight configuration adjacent to the posterior leaflet of the mitral valve, whereby to increase the radius of curvature of the mitral annulus, moving it anteriorly, and thereby improve leaflet coaptation.
- 25. Apparatus according to claim 24 further comprising a delivery catheter adapted to be positioned within the coronary sinus of the patient, said flexible deliver catheter being formed out of a flexible material so that it will substantially assume the configuration of the coronary sinus, said delivery catheter being adapted to receive said straight, substantially rigid elongated body therein.
- 26. Apparatus according to claim 25 wherein said straight, substantially rigid elongated body is mounted to a rod, wherein said rod is formed out of a flexible material so that said rod will assume the configuration of the coronary sinus, and further wherein said rod is sized to fit within said delivery catheter.
- 27. Apparatus according to claim 24 further comprising a removable guidewire for positioning said delivery catheter in the coronary sinus.
- 28. Apparatus according to claim 24 further comprising a guidewire adapted to be positioned within the coronary sinus, said guidewire being formed out of a flexible material so that it will substantially assume the configuration of the coronary sinus, and further wherein the straight, substantially rigid elongated body is cannulated for riding along said guidewire.
- 29. Apparatus according to claim 24 wherein at least one of the distal and proximal ends of said straight, substantially rigid elongated body includes a flexible portion for relieving the stress imposed on the coronary sinus when said straight, substantially rigid elongated body is disposed within the coronary sinus.
- 30. Apparatus according to claim 24 wherein at least one of the distal and proximal ends of said straight, substantially rigid elongated body is tapered for relieving the stress imposed on the coronary sinus when said straight, substantially rigid elongated body is disposed within the coronary sinus.
- 31. Apparatus according to claim 24 wherein said straight, substantially rigid elongated body has a length no longer than the segment of the coronary sinus located between the coronary ostium and the AIV.
- 32. Apparatus according to claim 25 wherein said apparatus further comprises a support catheter for preventing said delivery catheter from diverting into the inferior vena cava when said straight, substantially rigid elongated body is passed through said delivery catheter.
- 33. A method for reducing mitral regurgitation comprising:
inserting apparatus into the coronary sinus of a patient in the vicinity of the posterior leaflet of the mitral valve, the apparatus being adapted to invert the natural curvature of at least a portion of the coronary sinus in the vicinity of the posterior leaflet of the mitral valve, whereby to move the posterior annulus anteriorly and thereby improve leaflet coaptation.
- 34. Apparatus for reducing mitral regurgitation comprising:
an elongated body adapted to be inserted into the coronary sinus of a patient in the vicinity of the posterior leaflet of the mitral valve, the apparatus being adapted to invert the natural curvature of at least a portion of the coronary sinus in the vicinity of the posterior leaflet of the mitral valve, whereby to move the posterior annulus anteriorly and thereby improve leaflet coaptation.
- 35. A method according to claim 8 wherein said straight, substantially rigid elongated body is guided into position without the use of a guide catheter and a guidewire.
REFERENCE TO PENDING PRIOR PATENT APPLICATIONS
[0001] This patent application claims benefit of:
[0002] (1) pending prior U.S. Provisional Patent Application Serial No. 60/266,766, filed Feb. 5, 2001 by William E. Cohn et al. for TRANSVASCULAR APPROACH TO MITRAL VALVE PROCEDURES (Attorney's Docket No. VIA-16 PROV);
[0003] (2) pending prior U.S. Provisional Patent Application Serial No. 60/273,893, filed Mar. 5, 2001 by William E. Cohn et al. for TRANSVASCULAR METHODS AND DEVICES FOR MITRAL VALVE PROCEDURES (Attorney's Docket No. VIA-17 PROV);
[0004] (3) pending prior U.S. Provisional Patent Application Serial No. 60/278,153, filed Mar. 23, 2001 by William E. Cohn et al. for METHOD AND APPPARATUS TO IMPROVE MITRAL VALVE FUNCTION (Attorney's Docket No. VIA-18 PROV);
[0005] (4) pending prior U.S. Provisional Patent Application Serial No. 60/279,974, filed Mar. 29, 2001 by Daniel C. Taylor et al. for METHOD AND APPARATUS TO IMPROVE MITRAL VALVE FUNCTION (Attorney's Docket No. VIA-19 PROV);
[0006] (5) pending prior U.S. Provisional Patent Application Serial No. 60/280,038, filed Mar. 30, 2001 by William E. Cohn et al. for METHODS AND APPARATUS FOR TEMPORARY IMPROVEMENT IN MITRAL VALVE FUNCTION (Attorney's Docket No. VIA-20 PROV);
[0007] (6) pending prior U.S. Provisional Patent Application Serial No. 60/279,973, filed Mar. 29, 2001 by Daniel C. Taylor et al. for METHODS AND DEVICES TO IMPROVE MITRAL VALVE FUNCTION (Attorney's Docket No. VIA-21 PROV);
[0008] (7) pending prior U.S. Provisional Patent Application Serial No. 60/283,820, filed Apr. 13, 2001 by William E. Cohn et al. for METHOD AND APPARATUS FOR TEMPORARY IMPROVEMENT IN MITRAL VALVE FUNCTION (Attorney's Docket No. VIA-22 PROV);
[0009] (8) pending prior U.S. Provisional Patent Application Serial No. 60/312,217, filed Aug. 14, 2001 by Daniel C. Taylor et al. for METHOD AND APPARATUS FOR TEMPORARY IMPROVEMENT IN MITRAL VALVE FUNCTION (Attorney's Docket No. VIA-23 PROV);
[0010] (9) pending prior U.S. Provisional Patent Application Serial No. 60/339,481, filed Oct. 26, 2001 by William E. Cohn et al. for TRANSVASCULAR APPROACH TO MITRAL VALVE PROCEDURES (Attorney's Docket No. VIA-30 PROV); and
[0011] (10) pending prior U.S. Provisional Patent Application Serial No. 60/348,424, filed Jan. 14, 2002 by Daniel C. Taylor et al. for METHOD AND APPARATUS TO IMPROVE MITRAL VALVE FUNCTION (Attorney's Docket No. VIA-31 PROV).
[0012] The aforementioned ten (10) patent applications are hereby incorporated herein by reference.
Provisional Applications (10)
|
Number |
Date |
Country |
|
60266766 |
Feb 2001 |
US |
|
60273893 |
Mar 2001 |
US |
|
60278153 |
Mar 2001 |
US |
|
60279974 |
Mar 2001 |
US |
|
60280038 |
Mar 2001 |
US |
|
60279973 |
Mar 2001 |
US |
|
60283820 |
Apr 2001 |
US |
|
60312217 |
Aug 2001 |
US |
|
60339481 |
Oct 2001 |
US |
|
60348424 |
Jan 2002 |
US |