The present invention relates generally to xDSL (i.e. ADSL, VDSL, etc.) and G.fast systems, and more particularly to methods and apparatuses for improving performance of transmit controlled adaptive modulation (TCAM) in such systems.
TCAM has been proposed in ITU-T SG15 11RV-046 (i.e. hereinafter “proposed TCAM”), the contents of which are incorporated by reference herein in their entirety, as a way to seamlessly adapt to quick variations of noise level that cannot be tracked with traditional seamless rate adaptation (SRA) or other on-line reconfiguration (OLR) schemes. The proposed TCAM scheme allows for a receiver controlled adaptive modulation (RCAM or RCM) mode to be used during lower and more stable noise level conditions. In the proposed TCAM, a hierarchical quadrature amplitude modulation (HQAM) scheme is used in both TCAM and RCAM modes, using bit loadings calculated by the receiver. The HQAM scheme separates a QAM constellation into “base” and “enhancement” layers and allows for mapping of data to “enhancement” layers in the constellation to be turned off by the transmitter during periods of high noise, thereby preserving adequate noise margin. When the receiver is thereafter able to perform an adequate noise measurement, it re-computes new bit loadings and sends them to the transmitter, which can then resume mapping of data to the “enhancement” layers according to the newly computed bit loadings.
The present inventors have noted that the proposed TCAM does not allow for coding such as inner trellis coded modulation (TCM) to be used, thereby reducing the system capacity in terms of transmitted bit-per-second when line conditions would otherwise permit it to be used (e.g. during RCAM mode). Accordingly, it would be desirable to have a system and method that overcomes these drawbacks, among others.
The present invention relates to methods and apparatuses for improving performance of TCAM in xDSL and G.Fast systems. According to certain aspects, the present invention improves upon the conventional TCAM scheme by allowing a traditional TCM scheme to be used while in RCM mode. In a RCM mode according to embodiments of the invention, the system uses traditional TCM+SNR margin (i.e. SNRM) with a receiver controlled bit allocation table (BAT) and tone ordering table (TOT). In a TCAM mode according to embodiments of the invention, the system uses uncoded hierarchical modulation similar to the modulation originally proposed for TCAM. According to certain aspects, the transmitter in RCM mode in embodiments of the invention can determine when line conditions require a switch to TCAM mode, and signal the transition to the receiver. Likewise, when in a TCAM mode according to embodiments of the invention, the receiver can request to switch back to RCM via a SRA mechanism, for example.
In accordance with these and other aspects, a method for performing xDSL or G.Fast communications according to embodiments of the invention includes, during a first noise condition on a line: performing a first modulation of data at a transmitter coupled to the line using parameters specified by a receiver coupled to the line, wherein the first modulation includes performing inner coding of the data; and during a second noise condition on the line: controlling, by the transmitter, the performance of a second different modulation of data at the transmitter.
These and other aspects and features of the present invention will become apparent to those ordinarily skilled in the art upon review of the following description of specific embodiments of the invention in conjunction with the accompanying figures, wherein:
The present invention will now be described in detail with reference to the drawings, which are provided as illustrative examples of the invention so as to enable those skilled in the art to practice the invention. Notably, the figures and examples below are not meant to limit the scope of the present invention to a single embodiment, but other embodiments are possible by way of interchange of some or all of the described or illustrated elements. Moreover, where certain elements of the present invention can be partially or fully implemented using known components, only those portions of such known components that are necessary for an understanding of the present invention will be described, and detailed descriptions of other portions of such known components will be omitted so as not to obscure the invention. Embodiments described as being implemented in software should not be limited thereto, but can include embodiments implemented in hardware, or combinations of software and hardware, and vice-versa, as will be apparent to those skilled in the art, unless otherwise specified herein. In the present specification, an embodiment showing a singular component should not be considered limiting; rather, the invention is intended to encompass other embodiments including a plurality of the same component, and vice-versa, unless explicitly stated otherwise herein. Moreover, applicants do not intend for any term in the specification or claims to be ascribed an uncommon or special meaning unless explicitly set forth as such. Further, the present invention encompasses present and future known equivalents to the known components referred to herein by way of illustration.
According to certain general aspects, embodiments of the invention allow for forward error correction (FEC) and modulation schemes to be changed when a transmitter detects a threshold amount of change in the noise on the line. Embodiments of the invention are referred to herein as TCAM+. According to certain aspects, TCAM+ allows a traditional TCM scheme to be used while in receiver controlled modulation (hereinafter RCM or RCTCM) mode, while benefiting from other high throughput modulation schemes controlled by the transmitter during high noise conditions.
Communications between modems 102 and 104 via line 106 can be in accordance with protocols such as ADSL2, VDSL2, etc (i.e. xDSL), or G.Fast. Modem 102 can be implemented by chipsets and associated firmware/software suitable for use in CO equipment (e.g. DSLAMs, etc.), as adapted with the functionality of the present invention. Those skilled in the art will be able to understand how to adapt such chipsets (e.g. Nodescale Vectoring products from Ikanos Communications, Inc.) after being taught by the present examples. Modem 104 can be implemented by chipsets and associated firmware/software suitable for use in CPE equipment (e.g. xDSL modems), as adapted with the functionality of the present invention. Those skilled in the art will be able to understand how to adapt such chipsets (e.g. Velocity, Vx18x and Vx68x chipsets from Ikanos Communications, Inc.) after being taught by the present examples.
A typical mode of operation of the system in 100 according to embodiments of the invention will now be described in connection with an example where the CO 102 modem is the transmitting modem and the CPE modem 104 is the receiving modem, with modulation and coding schemes being implemented in the “downstream” communications of typical xDSL and G.Fast systems. However, it should be appreciated that both of modems 102 and 104 can have both transmitters and receivers, and embodiments of the invention can be implemented in both directions of communications on line 106.
As shown in
As further shown in
During RCTCM mode, CO modem 102 uses a traditional TCM scheme to modulate downstream communications to CPE modem 104 using the parameters calculated by CPE modem 102 in S104.
According to further aspects of the invention, the CO modem 102 can cause communications with modem 104 to switch to TCAM+ mode in S108. This can be done when the CO modem 102 determines that a type or level of noise on line 106 exceeds a certain threshold. This can be determined, for example as shown in S106 of
It should be noted that, as shown in
During TCAM+ mode according to embodiments of the invention, CO modem 102 uses error correction and modulation schemes to be described in more detail below, but using the same BAT and TOT that was used in the immediately preceding RCTCM mode. In embodiments, inner coding is not used in TCAM+ mode. Having communicated entry into TCAM+ mode, CPE modem 104 will be able to decode the data appropriately.
When it is able to do so after entering TCAM+ mode, in S110 CPE modem 104 calculates new RCTCM parameters such as a new BAT and TOT based on the current noise conditions. This can be done using conventional techniques known to those skilled in the art. As shown in S112, the CPE modem 104 can then request a switch back to RCTCM via the standard seamless adaptation rate (SRA) mechanism.
Thereafter, CO modem 102 can resume performing mapping and inner coding using the traditional TCM scheme using the new RCTCM parameters calculated by CPE modem 104 and communicated in S112.
To further illustrate aspects of the invention,
As shown, chain 200 includes a data transmit unit (DTU) framer and retransmission layer 201, an outer code 202, an interleaver 203 and an inner modulation 204. In embodiments, the outer code 202 is a Reed-Solomon (RS) code, which encodes DTUs as is well known in the art. DTU framer and retransmission layer 201 further protects the DTUs using a retransmission mechanism such as that described in G.inp or G.fast, depending on the protocol being used with the CPE modem.
Blocks 201 and 202 can be implemented using techniques known to those skilled in the art, perhaps including certain functionality for optimized retransmission for hierarchical modulation described in the proposed TCAM, and so further details thereof will be omitted here for sake of clarity of the invention. Meanwhile, blocks 203 and 204 implement the TCAM+ and RCTCM modes according to aspects of the invention, as well as the ability to switch between them, as will be described in more detail below.
In general, the inner modulation scheme implemented by block 204 during the RCTCM phase according to embodiments of the invention is the standard TCM (e.g. trellis coded QAM modulations using Ungerboeck/Wei set-partitioning). The interleaver block 203 is implemented such that the RS code output data is mapped to tones according to the retransmission procedures specified in the xDSL G.inp or G.fast standard, depending on the protocol used in communications with CPE modem 104.
Meanwhile, according to general aspects, during the TCAM+ phase in embodiments of the invention, the interleaver block 203 is implemented such that the RS coded output data is mapped to tones according to the proposed TCAM scheme (i.e., an uncoded hierarchical quadrature amplitude modulation or HQAM). In embodiments, no inner coding by block 204 is performed, thereby reducing coding-gain during the TCAM+ phase (relative to the RCTCM phase). This should not dramatically affect overall performance, because the expected time duration of the TCAM+ phase is usually very short. However, in other embodiments, it is possible for TCM to continue to be used, as long as a DTU mapping scheme to be described in more detail below is also used.
In embodiments, because different modulation schemes are used, the mapping of DTUs to tones is also different between RCM and TCAM+ phases, as will be described in more detail below. Different DTU mapping leads to a need for a clean transition between RCTCM and TCAM+. A natural transition period is at the superframe level, since standard xDSL and G.fast superframes consist of an integer number of DTUs (via use of dummy padding).
Nevertheless, the G.fast standard padding scheme can be modified to support transition at the TDD frame level for G.fast applications.
Unlike the proposed TCAM, which does not need signaling for transitioning from RCAM to TCAM, the transition from RCTCM to TCAM+ according to embodiments of the invention needs to be signaled to the receiver. In embodiments, signaling content is very small, and can consist only of the index of the DMT frame (or superframe) of action (FoA) in which the transition of modulation scheme is to be applied. According to certain aspects of the invention, no new bit allocation table (BAT) or tone ordering table (TOT) or other large table needs to be exchanged.
It should be noted that, in other embodiments, the same mapping of DTUs can be performed in both RCTCM and TCAM+ phases, using the mapping scheme for the TCAM+ phase as will be described below.
Meanwhile, element 401 shows the first DTU mapped to the first noise layer (i.e. the first and second available bits of all tones to be loaded) and the first 8 available tones to be loaded in the first symbol. The bit-allocation rule is dictated by the same BAT as that previously calculated by the receiver and used during the immediately previous RCTCM phase. As shown in
It should be noted that, during a TCAM+ phase in embodiments of the invention, individual noise layers 402 can be turned off such that they do not carry any useful information (i.e. no DTUs are mapped to these layers). In this regard, it should be noted that
In any event, this decision can be transparent to the receiver, which merely notes that no useful information is being transmitted on a layer that has been turned off. Those skilled in the art will be able to adapt the proposed TCAM scheme to turn off specific noise layers in the DTU mapping of
According to certain aspects, the transition between RCTCM and TCAM+ phase at the superframe level in embodiments of the invention prevents DTUs from overlapping DMT symbols from the different phases. As a consequence, padding (i.e. dummy bits or bits containing non-information) is required for feeding the right amount of bits to the inner modulation scheme without changing the bit allocation rule. Padding is represented as elements 305 and 405 in
Although the present invention has been particularly described with reference to the preferred embodiments thereof, it should be readily apparent to those of ordinary skill in the art that changes and modifications in the form and details may be made without departing from the spirit and scope of the invention. It is intended that the appended claims encompass such changes and modifications.
The present application claims priority to U.S. Provisional Patent Appln. No. 61/954,838, filed Mar. 18, 2014, the contents of which are incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
8259848 | Malladi | Sep 2012 | B2 |
20020106989 | Aizawa | Aug 2002 | A1 |
20030084394 | Erving | May 2003 | A1 |
20050111565 | Pons | May 2005 | A1 |
20060023690 | Umashankar | Feb 2006 | A1 |
20080263426 | Zaleski | Oct 2008 | A1 |
20090028268 | Locke | Jan 2009 | A1 |
20100281349 | Pons et al. | Nov 2010 | A1 |
20120307846 | Myung | Dec 2012 | A1 |
20130058430 | Jain et al. | Mar 2013 | A1 |
20130279687 | Wei | Oct 2013 | A1 |
20140003560 | Kolze et al. | Jan 2014 | A1 |
Number | Date | Country |
---|---|---|
2587703 | May 2013 | EP |
Entry |
---|
“G.fast: Combining TCAM and RCAM,” ITU—Telecommunication Standardization Sector, Study Group 15, Paris, France, Feb. 27-Mar. 2, 2012, 2012-02-4A-041, pp. 1-12. |
International Search Report and Written Opinion issued Jun. 18, 2015 for PCT/US2015/021288. |
ITU-T SG15 11RV-046, ITU—Telecommunication Standardization Sector, Study Group 15, Temporary Document 11RV-046, Richmond, VA Nov. 3-10, 2011, 4 pages. |
Number | Date | Country | |
---|---|---|---|
20150270924 A1 | Sep 2015 | US |
Number | Date | Country | |
---|---|---|---|
61954838 | Mar 2014 | US |