The present invention relates generally to ceramic matrix composite materials, and more specifically to a method and apparatus for increasing a durability of a ceramic matrix composite material.
Gas turbine engines typically include a compressor, a combustor, and a turbine. Airflow entering the compressor is compressed and channeled to the combustor, wherein the air is mixed with a fuel and ignited within a combustion chamber to produce combustion gases. The combustion gases are channeled to a turbine that extracts energy from the combustion gases for powering the compressor. One turbine extracts energy from the combustion gases to power the compressor. Other turbines may be used to power an output shaft connected to a load, such as an electrical generator. In some applications, the combustion gases exiting the turbine(s) are channeled through an engine exhaust nozzle to produce thrust for propelling an aircraft in flight.
Some known gas turbine aircraft engines include an engine exhaust nozzle having a variable geometry configuration, wherein a cross-sectional area of the exhaust nozzle is adjustable. Variable geometry exhaust nozzles typically have a plurality of flaps and a plurality of seals mounted circumferentially about a centerline of the exhaust nozzle. The seals are mounted generally between adjacent nozzle flaps, such that the flaps and seals form a generally continuous interior surface that directs a flow of the combustion gases through the exhaust nozzle. As their name implies, the seals seal the spaces between the flaps and shield various components of the exhaust nozzle from high temperatures and high thermal gradients during flow of the combustion gases therein.
To facilitate extending a useful life at high temperature operation, some seals are fabricated from non-metallic composite materials, such as ceramic matrix composite materials. However, even such non-metallic materials experience wear and other damage due to the hostile operating environment in gas turbine engines. For example, the seal edges may erode due to frictional contact with the flaps as well as point contact rub caused by part deformation from the high thermal gradients the seals experience during operation.
In one aspect, an inseparable assembly is provided having a body including a ceramic matrix composite material, and a cover including a metallic wire mesh. The cover is bonded to the body so that the cover overlaps at least a portion of the body.
In another aspect, a variable geometry exhaust nozzle is provided for a gas turbine engine having an exhaust centerline. The nozzle includes a plurality of flaps arranged around the exhaust centerline, each of the flaps having a sealing surface, and a plurality of flap seals. Each seal has a body which includes a sealing surface. The body is positioned between a pair of flaps of the plurality of flaps so that the sealing surface of the seal engages the sealing surface of at least one of the adjacent flaps. At least one of the seals has a cover including a metallic wire mesh bonded to the body with an adhesive so that the cover overlaps at least a portion of an edge of the body.
In yet another aspect, a method is provided for increasing a durability of a body including a ceramic matrix composite material. The method includes the steps of positioning a cover including a metallic wire mesh over at least a portion of the body, and bonding the positioned cover to the body.
Other features of the present invention will be in part apparent and in part pointed out hereinafter.
Corresponding reference characters indicate corresponding parts throughout the several views of the drawings.
Referring now the to the drawings,
In operation, air received through an inlet end 38 of the engine 20 is compressed by the fan 22 and channeled to the high pressure compressor 24, wherein the compressed air is compressed even further. The highly compressed air from the high pressure compressor 22 is channeled to the combustor 26, wherein it is mixed with a fuel and ignited to produce combustion gases. The combustion gases are channeled from the combustor 26 to drive the turbines 28 and 30, and exit an outlet end 40 of the engine 20 through an exhaust nozzle assembly 42 to provide thrust.
Respective radially inner surfaces 86 and 88 of the flaps 70 and the flap seals 72 form a generally continuous interior surface defining an exhaust nozzle orifice 90. The orifice 90 directs a flowpath of gases received from the turbine 30 (shown in
During operation of the engine 20, a pressure of the flowpath gases exiting through the exhaust nozzle orifice 90 urges the flap seals 72 against the flaps 70, and more specifically, urges the sealing surfaces 82 of the seals 72 in contact with respective sealing surfaces 78 of the flaps 70. As gases flow through the nozzle assembly 42, and more specifically the exhaust nozzle orifice 90, contact between the sealing surfaces 78 and respective sealing surfaces 82 substantially prevents leakage of gases between the flaps 70 and the flap seals 72.
A plurality of edges 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, and 174 extend between corresponding surfaces 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, and 150 of the body 80. More specifically, the edge 152 is defined at the intersection of the surfaces 130 and 132, the edge 154 is defined at the intersection of the surfaces 132 and 134, the edge 156 is defined at the intersection of the surfaces 134 and 136, and the edge 158 is defined at the intersection of the surfaces 136 and 138. Similarly, the edge 160 is defined at the intersection of the surfaces 140 and 132, the edge 162 is defined at the intersection of the surfaces 132 and 142, the edge 164 is defined at the intersection of the surfaces 142 and 136, and the edge 166 is defined at the intersection of the surfaces 136 and 144. Additionally, the edge 168 is defined at the intersection of the surfaces 150 and 136, the edge 170 is defined at the intersection of the surfaces 136 and 148, the edge 172 is defined at the intersection of the surfaces 148 and 132, and the edge 174 is defined at the intersection of the surfaces 132 and 146.
In one embodiment, the cover 180 is a metallic wire mesh, however, it should be understood that the cover 180 may be any material, and may be fabricated in any material configuration, having a durability greater than a predetermined durability of a portion of the flap seal body 80, and more specifically, a portion of the flap seal body 80 that includes the cover 180 bonded thereto, as described below. In one embodiment, the cover 180 is a metallic wire mesh fabricated from a nickel-based alloy, such as, for example, HAYNES® HASTELLOY X™ alloy, commercially available from Haynes International, Inc., Kokomo, Ind. In another embodiment, the cover 180 is a metallic wire mesh fabricated from a cobalt-based alloy, such as, for example, HAYNES® alloy 188, commercially available from Haynes International, Inc., Kokomo, Ind. In yet another embodiment, the cover 180 is a metallic wire mesh fabricated from stainless steel, such as, for example, stainless steel grade 316 commercially available from Cleveland Wire Cloth, Cleveland, Ohio.
The covers 180, referred to herein as the covers 180a, 180b, and 180c with regard to
After cleaning, the adhesive is applied to some or all of the mating sides 188, 190, 192, 194, and 196 of each cover 180a, 180b, and 180c, in addition to the seal body mating surfaces 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, and 150. The covers 180a, 180b, and 180c are then positioned on the seal body 80 over the respective ends 102, 104, and 106, as illustrated in
In the exemplary embodiment, the covers 180a, 180b, and 180c each substantially overlap the respective ends 102, 104, and 106. However, it will be understood that the covers 180a, 180b, and 180c may each overlap only a portion of the respective ends 102, 104, and 106. Additionally, in the exemplary embodiment, the covers 180a, 180b, and 180c each substantially overlap the respective edges 168, 170, 172, 174, 152, 154, 156, 158, 160, 162, 164, and 166. However, it will be understood that the covers 180a, 180b, and 180c may each overlap only a portion of the respective edges 168, 170, 172, 174, 152, 154, 156, 158, 160, 162, 164, and 166.
Although the seal body 80 is herein described and illustrated in the exemplary manner, it should be understood that the seal body 80 may include any number of covers 180 each bonded to any portion of the body 80 such that at least one cover 180 overlaps at least a portion of the body 80.
The above-described cover is cost-effective and reliable for increasing a durability of a ceramic matrix composite material. More specifically, the cover facilitates reinforcing a portion of the ceramic matrix composite material. As a result, the cover may increase the performance and useful life of the ceramic matrix composite material, and thereby reduce replacement costs. Additionally, the cover may increase a wear resistance and a strain to failure ratio of the ceramic matrix composite material, and may allow the ceramic matrix composite material to experience higher thermal gradients without failing. In the exemplary embodiment, the cover facilitates increasing the performance and useful life of a gas turbine engine exhaust seal. As a result, the exemplary cover facilitates reducing a number of exhaust nozzle seals that are replaced within a gas turbine engine to maintain a desired operational efficiency of the engine.
Although the invention is herein described and illustrated in association with a gas turbine engine, and more specifically, in association with an exhaust nozzle seal for use with a gas turbine engine, it should be understood that the present invention is applicable to any ceramic matrix composite material. Accordingly, practice of the present invention is not limited to gas turbine engine exhaust nozzle seals nor gas turbine engines generally. Additionally, practice of the present invention is not limited to gas turbine engine exhaust nozzle seals that are fabricated from ceramic matrix composite materials. Rather, it should be understood that the present invention is applicable to gas turbine engine seals that are fabricated from materials other than ceramic matrix composite materials.
Exemplary embodiments of gas turbine engine exhaust nozzle assemblies are described above in detail. The assemblies are not limited to the specific embodiments described herein, but rather, components of each assembly may be utilized independently and separately from other components described herein. Each exhaust nozzle assembly component can also be used in combination with other exhaust nozzle assembly components.
When introducing elements of the present invention or the preferred embodiment(s) thereof, the articles “a”, “an”, “the” and “said” are intended to mean that there are one or more of the elements. The terms “comprising”, “including” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements.
As various changes could be made in the above constructions without departing from the scope of the invention, it is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.