The concepts, systems, circuits, devices and techniques described herein relate generally to radio frequency (RF) circuits and more particularly to automotive radar systems.
As is known in the art, some existing automotive radar systems detect targets which produce a radar return signal having a signal strength which exceeds a threshold signal strength in range/Doppler space. The radar then develops an estimate of X-Y position and velocity for each target. This approach typically requires algorithms in the form of state machines and tracking with thresholds and heuristics.
Referring to
Some automotive radar systems, however, use relatively small and inexpensive antennas and other components. This is due both to cost considerations and size constraints. Such constraints in the antenna lead to a problem with antenna quality and antenna interaction with a body of a vehicle on which an automotive radar system is mounted. In particular, and in accordance with the concepts, systems and techniques described herein, it has been recognized that the use of relatively small and inexpensive antennas results in a complex phase relationship between azimuth and phase difference in an automotive radar system.
It has also been recognized that conventional two-channel automotive radar systems (also referred to as two channel automotive “sensor” systems) generate ambiguities which cannot be easily resolved. Specifically, as illustrated in
In accordance with one aspect of the concepts, systems and techniques described herein, it has been found that the above problem may be solved in a two-channel automotive radar system by adding a third antenna. Thus, described herein is an automotive radar system which utilizes a three channel switched antenna to improve the angular resolution of an azimuth tracking two-channel automotive radar system having a wide (i.e. field of view greater than above approximately 145 or 150 degrees). It should, of course, be appreciated that the concepts and techniques described herein also find application in systems having a narrow field of view (FOV)—i.e. a FOV less than approximately 150 degrees—although a narrow field of view requirement might allow an antenna design having attenuated RF energy propagating at 0 and 180 degrees and thus reduce the number and severity of problems when RF the energy interacts with a structure proximate the antenna including, but not limited to, for example an edge of the antenna board, an enclosure frame, and/or a vehicle body.
Specifically, in a two-channel automotive radar system, a first antenna is spaced from a second antenna by a distance of λ/2 and a third antenna is spaced from the second antenna by a distance of λ and is spaced from the first antenna by a distance of 3λ/2. The first antenna is coupled to a first channel of the two-channel receiver and the second and third antennas (with the second antenna spaced λ/2 from the first antenna and the third antenna being spaced 3λ/2 from the first antenna) are selectively coupled to the second receiver channel through a switch. Thus, signals received from two separate antennas share one channel of the two-channel receiver.
With this particular arrangement, a two-channel automotive radar system having an angular resolution which does not result in ambiguities is provided. In particular, by providing a two-channel automotive radar system having three appropriately spaced antennas and with two of the antennas selectively sharing a single channel, the two-channel automotive radar system can generate two (2) different phase curves with a first one of the phase curves corresponding to an unambiguous phase curve (substantially the same as that provided in a conventional two-channel system with λ/2 antenna spacing) and a second one of the two phase curves corresponding to a phase curve having a slope which is different than the slope of the first phase curve (e.g. a phase curve generated by using λ/2 antenna spacing).
The advantages to using such a system include, but are not limited to: (1) that the 3λ/2 phase curve has higher azimuth angle resolution; (2) the λ/2 phase curve is used to resolve the ambiguities in the 3λ/2 phase curve; (3) the system of less sensitive to placement and mounting (lower effective ripple); and (4) the system provided better field of view (FOV) performance.
In accordance with a further aspect of the concepts, systems and techniques described herein, an automotive radar system comprises three receive antennas with a first antenna is spaced from a second antenna by a distance of λ/2 and a third antenna is spaced from the second antenna by a distance of λ and spaced from the first antenna by a distance of 3λ/2. Each of the three antenna are coupled to one of three channels in a radio frequency (RF) receiver. Thus, each receiver channel has an input coupled to a respective one of three antennas.
With this particular arrangement, a three-channel automotive radar system is provided having an angular resolution which does not result in ambiguities. In particular, by providing a three-channel automotive radar system having three appropriately spaced antennas, the three-channel automotive radar system can generate two (2) different phase curves with a first one of the phase curves corresponding to an unambiguous phase curve (substantially the same as that provided in a conventional two-channel system with λ/2 antenna spacing) and a second one of the two phase curves corresponding to a phase curve having a slope which is different than the slope of the first phase curve (e.g. a phase curve generated by using 3λ/2 antenna spacing).
The advantages to using such a system include, but are not limited to: (1) that the 3λ/2 phase curve has higher azimuth angle resolution; (2) the λ/2 phase curve is used to resolve the ambiguities in the 3λ/2 phase curve; (3) the system is less sensitive to placement and mounting (lower effective ripple); and (4) the system provides better field of view (FOV) performance because the radar has less need to attenuate energy towards the 0 and 180 degree directions.
The concepts, structures and techniques described herein can benefit any 24 GHz radar, especially those using wide field of view (FOV) antenna designs. Furthermore, the concepts, structures and techniques described herein can be used in a wide variety of applications including, but not limited to blind spot detection, lane change, CTA, and park slot measurement.
It should be noted that individual concepts, features (or elements) and techniques of different embodiments described above may be combined to form other embodiments not specifically set forth herein. Furthermore, various concepts, features (or elements) and techniques, which are described in a combination, may also be provided separately or in any suitable sub-combination. It is thus expected that other embodiments not specifically described herein are also within the scope of this disclosure.
The foregoing and other aspects, features and advantages of the concepts described herein will be apparent from the following description of particular embodiments, as illustrated in the accompanying drawings in which like reference characters refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention.
Described herein is an automotive radar system (also sometime referred to herein as an automotive sensor system) and techniques suitable for providing unambiguous phase information for locating a target. The techniques described herein are suitable for use with a frequency modulated continuous wave (FMCW) automotive radar system, however, it should be appreciated that the systems and techniques described herein also may be used in non-FMCW automotive radars as well as in radars other than automotive radars.
Referring now to
The second and third antennas 24, 26 are selectively coupled to the second receiver channel 26b through an RF switch 28. Thus, in the example system of
As noted above, those of ordinary skill in the art will appreciate that receiver channel 26b may include a significant number of other components as is generally known (e.g. a low noise amplifier). It should also be appreciated that switch 30 is not shown as being a proper part of RF receiver 28. After reading the description provided herein, however, those of ordinary skill in the art will appreciate that switch 30 may be provided as a component separate from receiver 28 or may be provided as part of receiver 28. Furthermore, in some applications, switch 30 may even be provided as part of the RF receiver channel 28b.
Receiver channels 28a, 28b, receive RF signals provide thereto from respective ones of antennas 22-26 and downconvert the signals to a first intermediate frequency for further processing by respective ones of intermediate frequency (IF) receiver channels 32a, 32b.
Significantly, processing of the RF signals through receiver channels 28a, 28b and switch 30 retains the relative phase information associated with the signals received through the respective antennas 22-26. The preferred results are achieved when ambiguity resolution of 3λ/2 is done when the scene is the same as when measured by the λ/2 spacing. So preferred designs use alternating λ/2 and 3λ/2 spacing as rapidly as possible. The switching frequency is selected to provide the most up to date ambiguity timing of ambiguity resolution. In an automotive radar system utilizing major and minor processing cycles such as that described in U.S. Pat. No. 6,707,419 B2 assigned to the assignee of the present application and incorporated herein by reference, for a 40 millisecond (ms) major cycle, 80 ms is used for each 3λ/2 antenna, and 80 ms for each λ/2 antenna.
IF receivers 32a, 32b process the signals fed thereto from respective RF receiver channels 28a, 28b. Such processing may include conversion of analog signals to digital signals.
As noted above, RF receiver channel 32b receives signals from both antenna 24 and antenna 26. Since the spacing between antenna 22 and antenna 24 is different than the spacing between antenna 22 and antenna 26, by switching between the two antennas, the system generates two (2) different phase curves.
A phase curve is the measured relationship between measured phase difference and actual azimuth angle. Each antenna pair (e.g. antennas 22, 24 as a pair or antennas 22, 26 as a pair) has a unique relationship or phase curve. Assuming a 40 ms major cycle time and a relatively stationary radar scene over 80 ms, for example, one phase curve can be used to resolve the ambiguity of the other. Both phase difference measurements have useful information about the target. The relationship between signal to noise ratio and azimuth error can be used to weight the contribution of the λ/2 phase curve to the net azimuth estimate.
Regardless of whether analog processing, digital processing or a combination of analog and digital processing is used, however, such processing in receiver 32 generates two (2) different phase curves such as those illustrated in
Referring now to
Specifically, phase curve 42 (generated by the 3λ/2 antenna spacing) has an azimuth angle resolution which is higher than phase curve 40. It should, of course be noted that phase curve 42 may itself, have ambiguities, Thus, phase curve 40 (generated by λ/2 antenna spacing) may be used to resolve ambiguities in the 3λ/2 phase curve.
It has been found that utilizing two or more phase curves with at least one phase curve having a slope which is different from the slope of another phase curve, an automotive radar system which is less sensitive to physical placement and mounting (lower effective ripple) on a vehicle than conventional systems is provided. It should be noted that a spacing of 3λ/2 produces three (3) times the slope of the λ/2 spacing. In addition, an effect related to the wider antenna spacing may result in the antenna being in a less coherent phase environment for reflections from the body. It has been found that utilizing two or more phase curves with at least one phase curve having a slope which is different from the slope of another phase curve, an automotive radar system which having better FOV performance is provided.
Referring now to
Referring now to
In the illustrative embodiment of
Thus, automotive radar system 50 utilizes a three channel switched antenna to improve the angular resolution of the system 50. Accordingly, automotive radar system 50 may operate as described above in conjunction with
Referring now to
As will now be apparent from the description provided herein, the concepts, structures and techniques described herein can benefit any 24 GHz radar, especially those using wide Field of View (FOV) antenna designs. Furthermore, the concepts, structures and techniques described herein can be used in a wide variety of applications including, but not limited to blind spot detection, lane change, CTA, and park slot measurement.
Having described preferred embodiments which serve to illustrate various concepts, structures and techniques, which are the subject of this disclosure, it will now become apparent to those of ordinary skill in the art that other embodiments incorporating these concepts, structures and techniques may be used. For example, it should be noted that individual concepts, features (or elements) and techniques of different embodiments described herein may be combined to form other embodiments not specifically set forth above. Furthermore, various concepts, features (or elements) and techniques, which are described in the context of a single embodiment, may also be provided separately or in any suitable sub-combination. It is thus expected that other embodiments not specifically described herein are also within the scope of the following claims.
Thus, while particular embodiments of the concepts, systems and techniques described herein have been shown and described, it will be apparent to those skilled in the art that various changes and modifications in form and details may be made therein without departing from the spirit and scope of the invention as defined by the following claims.
Accordingly, the appended claims encompass within their scope all such changes and modifications.
Number | Name | Date | Kind |
---|---|---|---|
3952303 | Watanabe et al. | Apr 1976 | A |
4825213 | Smrek | Apr 1989 | A |
5334984 | Akaba | Aug 1994 | A |
5579011 | Smrek | Nov 1996 | A |
6337656 | Natsume | Jan 2002 | B1 |
6366236 | Farmer et al. | Apr 2002 | B1 |
6577269 | Woodington et al. | Jun 2003 | B2 |
7265675 | Carrender et al. | Sep 2007 | B1 |
7379018 | Lohmeier et al. | May 2008 | B1 |
8054216 | Kinoshita et al. | Nov 2011 | B2 |
9229102 | Wright | Jan 2016 | B1 |
20050156780 | Bonthron et al. | Jul 2005 | A1 |
20080018523 | Kelly, Jr. et al. | Jan 2008 | A1 |
20100271258 | Takabayashi et al. | Oct 2010 | A1 |
20120313811 | Suzuki | Dec 2012 | A1 |
20150070207 | Millar et al. | Mar 2015 | A1 |
20150323660 | Hampikian | Nov 2015 | A1 |
20160033620 | Millar | Feb 2016 | A1 |
20160061947 | Patole et al. | Mar 2016 | A1 |
20160146925 | Millar | May 2016 | A1 |
20160146932 | Millar | May 2016 | A1 |
Number | Date | Country |
---|---|---|
10 2012 021 212 | Apr 2014 | DE |
0 766 100 | Apr 1997 | EP |
2462148 | Feb 2010 | GB |
Entry |
---|
PCT International Search Report and Written Opinion dated Mar. 3, 2016 corresponding to PCT International Application No. PCT/US2015/062378; 12 Pages. |
Number | Date | Country | |
---|---|---|---|
20160146932 A1 | May 2016 | US |