This invention relates to increasing the visibility of an arrow after it has been fired by illuminating the fletchings of the arrow.
As described in U.S. Pat. Nos. 4,340,930; 6,364,499; 7,021,784; 7,837,580; 7,927,240; 7,931,550; and 7,993,224, what is shown is the utilization of lighted nocks to find an arrow once it has been fired. Note further that a related case, U.S. Pat. No. 8,758,177, also describes a prior art nock light and assembly.
In addition to the above-mentioned patents there is a product brand called Nockturnal® manufactured by the Assignee hereof in which a lighted nock is actuated upon firing to inject light into the nock itself.
The problem is there is insufficient light to be able to see the nock under all conditions, especially for instance when the arrow goes into a leaf pile. The reason is that the light from these nocks are primarily transferred out the back of the nock and not significantly from the side.
Thus, in the past lighted nocks have been visible from the rear but not from the side and when they end up in the forest under leaves and the like they are often not retrievable because they cannot be seen from any distance, especially when the nock itself is obscured.
It will be appreciated that in the prior art nock lights include an LED assembly and battery which is secured within the arrow shaft or bolt in which the LED light has a hemispherical dome projecting into the transparent nock. In several of the above-mentioned patents the light is turned on or activated when the bow string presses against a plunger or pin which forces the LED assembly into contact with battery contacts to turn on the nock light. Other methods of turning the LED on also exist in prior art such as incorporating an accelerometer, or other subassembly motion caused by the string motion; all of which could be used with the innovations in this patent application to produce lighted fletchings.
In order to provide more visibility for an arrow that has been fired, the aforementioned nock lights inject light into translucent fletchings such that the light that is injected into the nock is also injected into a portion of the fletching. As a result the fletching not only projects light towards the back of the arrow in the direction of the hunter but also causes the fletchings to glow and thereby be visible.
The key to the subject invention is that the light from the nock is transmitted into the fletchings because they are mounted on the arrow shaft such that light from the LED enters a bottom edge of the fletching. Thus in one embodiment the fletchings are partially on top of the nock such that the trailing end of the fletchings is illuminated by nock illumination.
Also because it is not desirable to have too much light coming from the front of the fletchings, in one embodiment the fletchings are two piece fletchings that are co-molded. The forward portion of the two piece fletching is opaque or colored. The trailing edge of the forward portion has a parabolic shape for reflecting light back toward the rear clear piece of the fletching that then lights up for the hunter.
The interface between the opaque portion and the transparent portion of each of the fletchings is parabolic in one embodiment so that light that comes from the nock light goes into the fletching and is reflected back along the axis of the arrow or bolt so that it provides a brighter rear view for the hunter.
In one embodiment the LED light and battery assembly are contained at the trailing edge of the arrow adjacent a clear polycarbonate nock. In this embodiment the clear polycarbonate nock has a raised lip portion that physically engages a clear under edge of the fletchings so as to be able to transmit light from the LED injected into the lighted nock into the fletchings.
The fletchings in one embodiment are formed from a molded piece of clear urethane which has good light transmission capability but has also elastomeric properties such as to enable it to be press fit onto the polycarbonate nock to establish a robust interface between the polycarbonate nock and the urethane fletchings. As a result there is minimal light transmission lost across this interface.
While it is not required that the fletchings have an opaque or colored forward portion with a parabolic interface between the colored portion and the transparent portion, the fletchings themselves may be co-molded in two parts such that the rearward portion of the fletching is molded onto the forward portion of the fletching which is an opaque piece of urethane. In such a co-molded embodiment the trailing portion of the fletchings is clear and is optically transparent as possible a urethane fletching. In the comolding process the same tool may be utilized to establish threshold integrity between the opaque portion and the transparent portion of the fletching. The interface between the opaque portion at the front of the fletching and the clear piece at the back of the fletching functions to reflect light that is introduced into the fletching back along the axis of the arrow or bolt. Thus, any light that gets into the fletching reflects off the front opaque portion and is transmitted across the interface out the back of the fletchings.
Because the urethane utilized in the fletching does not have 100% optical transparency light will scatter within the fletching to cause a significant amount to come out the side of the fletching as fletching glow as well as exiting from the rear of the fletching.
The result is that not only is a large majority of the light transmitted back towards the hunter so that he can see where his arrow has landed, the light is also scattered to the side causing the fletchings to exhibit a glow which is readily visible from all angles when a hunter is looking for his arrow.
Note that when the light emitted diodes are utilized, the LED lamps typically have a hemispherical cover. There is also an annulus in the nock that extends out from the nock, such that any light that comes out of the hemisphere goes straight back through the nock and also goes sideways through the annular portion of the nock in an orthogonal direction. Thus light is injected into the clear nock and goes into the fletching at the rear portion of the fletching thus to inject light into the fletching. While a hemispherical light cover is not required to enable light transmission into the fletchings and nock, it is one embodiment that can achieve such function. Other shapes of light cover could be used as well, as long as they allow light to transmit both to the rear and the sides of the nock to allow simultaneous lighting of fletchings and nock.
A hemispherical light cover is the preferred embodiment because the LED in essence produces a ring of light at the nock, with a portion of the fletching on top of the ring.
One of the unique characteristics is that the fletching simply extends back onto the nock, with the majority of the fletching still forward on the arrow. Thus there is no contact between the majority of the fletching and the nock. The overlap in one embodiment is approximately one-fifth of an inch which is enough to take light that is propagating into the nock barrel and transmit it into the overlying edge of the fletching.
The result is that while a large portion of the light exits the nock in the usual fashion, since the fletchings are not 100 percent transparent not all of the light is transmitted out the end of the nock but rather into the fletchings which results in a glowing fletching.
When the parabolic interface is utilized between opaque portion and transparent portions of the fletching a significant amount of the light is refracted and bent and bounced around inside the fletching such that a not small amount of the light exits the side of the fletching causing the fletching to glow and therefore be perceivable by the hunter.
In summary, an arrow or bolt is provided with a LED battery-powered module in which the light from the LED is transmitted up into transparent fletchings whereupon the fletching are made to glow from the side as well as to provide a large amount of light back towards the hunter along the axis of the arrow.
These and other features of the subject invention will be better understood in connection with the Detailed Description, in conjunction with the Drawings, of which:
Referring now to
Referring to
Referring to
This is more clearly shown in
Referring to
Referring now to
As shown in
Referring to
Referring now to
Referring to
Referring to
In the assembly of the two part fletching, the forward part of the fletching 60 is illustrated having fletching portions 62 mounted to assembly 30, with the parabolic surfaces 62 extending aft and with slots 80 adapted to coact with corresponding pins 82 in the after section of the fletchings as will be described in connection with
It can be seen that the aft section 64 slides into the forward section 60 in which pins 82 extend into slots 80 in the forward section 60 such that the aft section 64 is locked to the forward section 60. Here the aft section 64 is that into which light is injected causing fletching glow.
Referring now to
In
In
Referring now to
As mentioned hereinbefore the fletchings themselves may be co-molded and made of a urethane which is transparent. If it is a two piece fletching, the opaque piece may be made of urethane, whereas the transparent piece is also made of urethane. Many suitable materials could be used for the leading vane portion such as vinyl, polyethylene, polyurethane or other materials that can be blended to be flexible. The trailing fletching material should be transparent or nearly so, so are more limited in material selection. Silicone blends, urethane blends, polycarbonate blends or acrylic blends would be the most likely candidate materials.
While the subject invention is described in terms of the use of urethane for the fletchings, it will be appreciated that any clear material for the fletchings is within the scope of the subject invention. Moreover, the fletchings can also be made out of synthetic feathers which also will light up with the introduction of light into the fletching.
While the present invention has been described in connection with the preferred embodiments of the various figures, it is to be understood that other similar embodiments may be used or modifications or additions may be made to the described embodiment for performing the same function of the present invention without deviating therefrom. Therefore, the present invention should not be limited to any single embodiment, but rather construed in breadth and scope in accordance with the recitation of the appended claims.
This application is a continuation of U.S. patent application Ser. No. 13/998,211, filed on Oct. 11, 2013, the entire contents of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2484589 | Richards | Oct 1949 | A |
2887319 | Lay | May 1959 | A |
4003576 | Carella | Jan 1977 | A |
4305588 | Dodge | Dec 1981 | A |
4340930 | Carissimi | Jul 1982 | A |
4547837 | Bennett | Oct 1985 | A |
D301272 | Barrow et al. | May 1989 | S |
4856792 | Hardison | Aug 1989 | A |
4900037 | Miller | Feb 1990 | A |
5134552 | Call et al. | Jul 1992 | A |
5154432 | Saunders | Oct 1992 | A |
5306020 | Bolf | Apr 1994 | A |
6123631 | Ginder | Sep 2000 | A |
6364499 | Jones | Apr 2002 | B1 |
6390642 | Simonton | May 2002 | B1 |
6695727 | Kuhn | Feb 2004 | B1 |
6736742 | Price et al. | May 2004 | B2 |
7021784 | DiCarlo | Apr 2006 | B2 |
7189170 | Korsa et al. | Mar 2007 | B1 |
7211011 | Sutherland | May 2007 | B1 |
7374504 | Palomaki et al. | May 2008 | B2 |
7837580 | Huang et al. | Nov 2010 | B2 |
7862457 | Urcheck | Jan 2011 | B1 |
7927240 | Lynch | Apr 2011 | B2 |
7931550 | Lynch | Apr 2011 | B2 |
7993224 | Brywig | Aug 2011 | B2 |
8123636 | Temprine | Feb 2012 | B1 |
D664625 | Minica | Jul 2012 | S |
8257208 | Harding | Sep 2012 | B2 |
D669955 | Minica | Oct 2012 | S |
D669956 | Minica | Oct 2012 | S |
8342990 | Price | Jan 2013 | B1 |
8540594 | Chu | Sep 2013 | B2 |
8622855 | Bednar et al. | Jan 2014 | B2 |
8758177 | Minica | Jun 2014 | B2 |
8795109 | Roman | Aug 2014 | B2 |
20020039939 | Hartman | Apr 2002 | A1 |
20030166425 | Sutherland et al. | Sep 2003 | A1 |
20090097239 | Lynch | Apr 2009 | A1 |
20110218063 | Hunt | Sep 2011 | A1 |
20120100942 | Minica | Apr 2012 | A1 |
20130267359 | Pedersen | Oct 2013 | A1 |
20140187362 | Pedersen et al. | Jul 2014 | A1 |
Number | Date | Country |
---|---|---|
2777647 | Oct 1999 | FR |
2320207 | Jun 1998 | GB |
Entry |
---|
Archery Talk—Archers Helping Archers Forum: “Homemade Stuff?”, http://www.archerytalk.com/vb/showthread.php?t=201870&page=48&p=5786267 (2007). |
Archery Talk—Archers Helping Archers Forum: “Homemade Stuff?”, http://www.archerytalk.com/vb/showthread.php?t=201870&page=48&p=5791405 (2007). |
Archery Talk—Archers Helping Archers Forum: “Homemade Stuff?”, http://www.archerytalk.com/vb/showthread.php?t=201870&page=62&p=1056170361 (2009). |
PCT International Search Report (PCT Article 18 and Rules 43 and 44) for PCT/US2013/076108, Mar. 13, 2014. |
PCT Written Opinion of the International Searching Authority (PCT Rule 43bis.1) for PCT/US2013/076108, Mar. 13, 2014. |
International Search Report from PCT/US2014/059723, Dec. 22, 2014. |
Written Opinion of the International Search Authority from PCT/US2014/059723, Dec. 22, 2014. |
International Search Report from PCT/US2014/059742, Dec. 22, 2014. |
Written Opinion of the International Search Authority from PCT/US2014/059742, Dec. 22, 2014. |
Number | Date | Country | |
---|---|---|---|
20150362300 A1 | Dec 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13998211 | Oct 2013 | US |
Child | 14833773 | US |